2010-09-23 18:17:48 +02:00
|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
2010-11-22 19:27:08 +01:00
|
|
|
BOWTrainer::BOWTrainer()
|
|
|
|
{}
|
|
|
|
|
|
|
|
BOWTrainer::~BOWTrainer()
|
|
|
|
{}
|
|
|
|
|
2010-09-30 16:21:22 +02:00
|
|
|
void BOWTrainer::add( const Mat& _descriptors )
|
|
|
|
{
|
|
|
|
CV_Assert( !_descriptors.empty() );
|
|
|
|
if( !descriptors.empty() )
|
|
|
|
{
|
|
|
|
CV_Assert( descriptors[0].cols == _descriptors.cols );
|
|
|
|
CV_Assert( descriptors[0].type() == _descriptors.type() );
|
|
|
|
size += _descriptors.rows;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
size = _descriptors.rows;
|
|
|
|
}
|
|
|
|
|
|
|
|
descriptors.push_back(_descriptors);
|
|
|
|
}
|
|
|
|
|
2010-11-22 19:27:08 +01:00
|
|
|
const vector<Mat>& BOWTrainer::getDescriptors() const
|
|
|
|
{
|
|
|
|
return descriptors;
|
|
|
|
}
|
|
|
|
|
|
|
|
int BOWTrainer::descripotorsCount() const
|
|
|
|
{
|
|
|
|
return descriptors.empty() ? 0 : size;
|
|
|
|
}
|
|
|
|
|
2010-09-30 16:21:22 +02:00
|
|
|
void BOWTrainer::clear()
|
|
|
|
{
|
|
|
|
descriptors.clear();
|
|
|
|
}
|
|
|
|
|
2010-09-23 18:17:48 +02:00
|
|
|
BOWKMeansTrainer::BOWKMeansTrainer( int _clusterCount, const TermCriteria& _termcrit,
|
|
|
|
int _attempts, int _flags ) :
|
|
|
|
clusterCount(_clusterCount), termcrit(_termcrit), attempts(_attempts), flags(_flags)
|
|
|
|
{}
|
|
|
|
|
2010-09-30 16:21:22 +02:00
|
|
|
Mat BOWKMeansTrainer::cluster() const
|
2010-09-23 18:17:48 +02:00
|
|
|
{
|
2010-09-30 16:21:22 +02:00
|
|
|
CV_Assert( !descriptors.empty() );
|
|
|
|
|
|
|
|
int descCount = 0;
|
|
|
|
for( size_t i = 0; i < descriptors.size(); i++ )
|
|
|
|
descCount += descriptors[i].rows;
|
|
|
|
|
|
|
|
Mat mergedDescriptors( descCount, descriptors[0].cols, descriptors[0].type() );
|
|
|
|
for( size_t i = 0, start = 0; i < descriptors.size(); i++ )
|
|
|
|
{
|
2010-11-25 17:55:46 +01:00
|
|
|
Mat submut = mergedDescriptors.rowRange((int)start, (int)(start + descriptors[i].rows));
|
2010-09-30 16:21:22 +02:00
|
|
|
descriptors[i].copyTo(submut);
|
|
|
|
start += descriptors[i].rows;
|
|
|
|
}
|
|
|
|
return cluster( mergedDescriptors );
|
|
|
|
}
|
|
|
|
|
2010-11-22 19:27:08 +01:00
|
|
|
BOWKMeansTrainer::~BOWKMeansTrainer()
|
|
|
|
{}
|
|
|
|
|
2012-06-09 17:00:04 +02:00
|
|
|
Mat BOWKMeansTrainer::cluster( const Mat& _descriptors ) const
|
2010-09-30 16:21:22 +02:00
|
|
|
{
|
|
|
|
Mat labels, vocabulary;
|
2012-06-09 17:00:04 +02:00
|
|
|
kmeans( _descriptors, clusterCount, labels, termcrit, attempts, flags, vocabulary );
|
2010-09-30 16:21:22 +02:00
|
|
|
return vocabulary;
|
2010-09-23 18:17:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
BOWImgDescriptorExtractor::BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& _dextractor,
|
|
|
|
const Ptr<DescriptorMatcher>& _dmatcher ) :
|
|
|
|
dextractor(_dextractor), dmatcher(_dmatcher)
|
|
|
|
{}
|
|
|
|
|
2010-11-22 19:27:08 +01:00
|
|
|
BOWImgDescriptorExtractor::~BOWImgDescriptorExtractor()
|
|
|
|
{}
|
|
|
|
|
2010-09-30 16:21:22 +02:00
|
|
|
void BOWImgDescriptorExtractor::setVocabulary( const Mat& _vocabulary )
|
2010-09-23 18:17:48 +02:00
|
|
|
{
|
|
|
|
dmatcher->clear();
|
|
|
|
vocabulary = _vocabulary;
|
2010-10-29 10:44:42 +02:00
|
|
|
dmatcher->add( vector<Mat>(1, vocabulary) );
|
2010-09-23 18:17:48 +02:00
|
|
|
}
|
|
|
|
|
2010-11-22 19:27:08 +01:00
|
|
|
const Mat& BOWImgDescriptorExtractor::getVocabulary() const
|
|
|
|
{
|
|
|
|
return vocabulary;
|
|
|
|
}
|
|
|
|
|
2010-09-23 18:17:48 +02:00
|
|
|
void BOWImgDescriptorExtractor::compute( const Mat& image, vector<KeyPoint>& keypoints, Mat& imgDescriptor,
|
2010-11-08 16:21:56 +01:00
|
|
|
vector<vector<int> >* pointIdxsOfClusters, Mat* _descriptors )
|
2010-09-23 18:17:48 +02:00
|
|
|
{
|
2010-09-30 16:21:22 +02:00
|
|
|
imgDescriptor.release();
|
|
|
|
|
|
|
|
if( keypoints.empty() )
|
|
|
|
return;
|
|
|
|
|
2010-09-23 18:17:48 +02:00
|
|
|
int clusterCount = descriptorSize(); // = vocabulary.rows
|
|
|
|
|
|
|
|
// Compute descriptors for the image.
|
2010-11-08 16:21:56 +01:00
|
|
|
Mat descriptors = _descriptors ? *_descriptors : Mat();
|
2010-09-23 18:17:48 +02:00
|
|
|
dextractor->compute( image, keypoints, descriptors );
|
|
|
|
|
|
|
|
// Match keypoint descriptors to cluster center (to vocabulary)
|
|
|
|
vector<DMatch> matches;
|
|
|
|
dmatcher->match( descriptors, matches );
|
|
|
|
|
|
|
|
// Compute image descriptor
|
2010-09-30 16:21:22 +02:00
|
|
|
if( pointIdxsOfClusters )
|
|
|
|
{
|
|
|
|
pointIdxsOfClusters->clear();
|
|
|
|
pointIdxsOfClusters->resize(clusterCount);
|
|
|
|
}
|
|
|
|
|
2010-09-23 18:17:48 +02:00
|
|
|
imgDescriptor = Mat( 1, clusterCount, descriptorType(), Scalar::all(0.0) );
|
|
|
|
float *dptr = (float*)imgDescriptor.data;
|
|
|
|
for( size_t i = 0; i < matches.size(); i++ )
|
|
|
|
{
|
2010-10-29 10:44:42 +02:00
|
|
|
int queryIdx = matches[i].queryIdx;
|
|
|
|
int trainIdx = matches[i].trainIdx; // cluster index
|
2010-09-23 18:17:48 +02:00
|
|
|
CV_Assert( queryIdx == (int)i );
|
|
|
|
|
|
|
|
dptr[trainIdx] = dptr[trainIdx] + 1.f;
|
2010-09-30 16:21:22 +02:00
|
|
|
if( pointIdxsOfClusters )
|
|
|
|
(*pointIdxsOfClusters)[trainIdx].push_back( queryIdx );
|
2010-09-23 18:17:48 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
// Normalize image descriptor.
|
|
|
|
imgDescriptor /= descriptors.rows;
|
|
|
|
}
|
|
|
|
|
2010-11-22 19:27:08 +01:00
|
|
|
int BOWImgDescriptorExtractor::descriptorSize() const
|
|
|
|
{
|
|
|
|
return vocabulary.empty() ? 0 : vocabulary.rows;
|
|
|
|
}
|
|
|
|
|
|
|
|
int BOWImgDescriptorExtractor::descriptorType() const
|
|
|
|
{
|
|
|
|
return CV_32FC1;
|
|
|
|
}
|
|
|
|
|
2010-09-23 18:17:48 +02:00
|
|
|
}
|