opencv/modules/ocl/test/test_arithm.cpp

1316 lines
37 KiB
C++
Raw Normal View History

///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Niko Li, newlife20080214@gmail.com
// Jia Haipeng, jiahaipeng95@gmail.com
// Shengen Yan, yanshengen@gmail.com
// Jiang Liyuan,jlyuan001.good@163.com
// Rock Li, Rock.Li@amd.com
// Zailong Wu, bullet@yeah.net
// Yao Wang, bitwangyaoyao@gmail.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
//#define PRINT_CPU_TIME 1000
//#define PRINT_TIME
#include "precomp.hpp"
#include <iomanip>
#ifdef HAVE_OPENCL
using namespace cv;
using namespace cv::ocl;
using namespace cvtest;
using namespace testing;
using namespace std;
PARAM_TEST_CASE(ArithmTestBase, MatType, bool)
{
int type;
cv::Scalar val;
//src mat
cv::Mat mat1;
cv::Mat mat2;
cv::Mat mask;
cv::Mat dst;
cv::Mat dst1; //bak, for two outputs
// set up roi
int roicols;
int roirows;
int src1x;
int src1y;
int src2x;
int src2y;
int dstx;
int dsty;
int maskx;
int masky;
//src mat with roi
cv::Mat mat1_roi;
cv::Mat mat2_roi;
cv::Mat mask_roi;
cv::Mat dst_roi;
cv::Mat dst1_roi; //bak
//ocl dst mat for testing
cv::ocl::oclMat gdst_whole;
cv::ocl::oclMat gdst1_whole; //bak
//ocl mat with roi
cv::ocl::oclMat gmat1;
cv::ocl::oclMat gmat2;
cv::ocl::oclMat gdst;
cv::ocl::oclMat gdst1; //bak
cv::ocl::oclMat gmask;
virtual void SetUp()
{
type = GET_PARAM(0);
cv::RNG &rng = TS::ptr()->get_rng();
cv::Size size(MWIDTH, MHEIGHT);
mat1 = randomMat(rng, size, type, 5, 16, false);
//mat2 = randomMat(rng, size, type, 5, 16, false);
mat2 = randomMat(rng, size, type, 5, 16, false);
dst = randomMat(rng, size, type, 5, 16, false);
dst1 = randomMat(rng, size, type, 5, 16, false);
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
}
void random_roi()
{
#ifdef RANDOMROI
//randomize ROI
cv::RNG &rng = TS::ptr()->get_rng();
roicols = rng.uniform(1, mat1.cols);
roirows = rng.uniform(1, mat1.rows);
src1x = rng.uniform(0, mat1.cols - roicols);
src1y = rng.uniform(0, mat1.rows - roirows);
dstx = rng.uniform(0, dst.cols - roicols);
dsty = rng.uniform(0, dst.rows - roirows);
maskx = rng.uniform(0, mask.cols - roicols);
masky = rng.uniform(0, mask.rows - roirows);
src2x = rng.uniform(0, mat2.cols - roicols);
src2y = rng.uniform(0, mat2.rows - roirows);
#else
roicols = mat1.cols;
roirows = mat1.rows;
src1x = 0;
src1y = 0;
dstx = 0;
dsty = 0;
maskx = 0;
masky = 0;
src2x = 0;
src2y = 0;
#endif
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
mat2_roi = mat2(Rect(src2x, src2y, roicols, roirows));
mask_roi = mask(Rect(maskx, masky, roicols, roirows));
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
dst1_roi = dst1(Rect(dstx, dsty, roicols, roirows));
gdst_whole = dst;
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
gdst1_whole = dst1;
gdst1 = gdst1_whole(Rect(dstx, dsty, roicols, roirows));
gmat1 = mat1_roi;
gmat2 = mat2_roi;
gmask = mask_roi; //end
}
void Near(double threshold = 0.)
{
2013-05-09 11:57:13 +02:00
EXPECT_MAT_NEAR(dst, Mat(gdst_whole), threshold);
}
void Near1(double threshold = 0.)
2013-05-09 11:57:13 +02:00
{
EXPECT_MAT_NEAR(dst1, Mat(gdst1_whole), threshold);
}
};
////////////////////////////////lut/////////////////////////////////////////////////
struct Lut : ArithmTestBase {};
#define VARNAME(A) string(#A);
TEST_P(Lut, Mat)
{
cv::Mat mat2(3, 512, CV_8UC1);
cv::RNG &rng = TS::ptr()->get_rng();
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(256));
for(int j = 0; j < LOOP_TIMES; j ++)
{
random_roi();
src2x = rng.uniform( 0, mat2.cols - 256);
src2y = rng.uniform (0, mat2.rows - 1);
cv::Mat mat2_roi = mat2(Rect(src2x, src2y, 256, 1));
cv::ocl::oclMat gmat2(mat2_roi);
cv::LUT(mat1_roi, mat2_roi, dst_roi);
cv::ocl::LUT(gmat1, gmat2, gdst);
Near(0);
}
}
////////////////////////////////exp/////////////////////////////////////////////////
struct Exp : ArithmTestBase {};
TEST_P(Exp, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::exp(mat1_roi, dst_roi);
cv::ocl::exp(gmat1, gdst);
Near(2);
}
}
////////////////////////////////log/////////////////////////////////////////////////
struct Log : ArithmTestBase {};
TEST_P(Log, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::log(mat1_roi, dst_roi);
cv::ocl::log(gmat1, gdst);
Near(1);
}
}
////////////////////////////////add/////////////////////////////////////////////////
struct Add : ArithmTestBase {};
TEST_P(Add, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::add(mat1_roi, mat2_roi, dst_roi);
cv::ocl::add(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Add, Mat_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::add(mat1_roi, mat2_roi, dst_roi, mask_roi);
cv::ocl::add(gmat1, gmat2, gdst, gmask);
Near(0);
}
}
TEST_P(Add, Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::add(mat1_roi, val, dst_roi);
cv::ocl::add(gmat1, val, gdst);
Near(1e-5);
}
}
TEST_P(Add, Scalar_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::add(mat1_roi, val, dst_roi, mask_roi);
cv::ocl::add(gmat1, val, gdst, gmask);
Near(1e-5);
}
}
////////////////////////////////sub/////////////////////////////////////////////////
struct Sub : ArithmTestBase {};
TEST_P(Sub, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::subtract(mat1_roi, mat2_roi, dst_roi);
cv::ocl::subtract(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Sub, Mat_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::subtract(mat1_roi, mat2_roi, dst_roi, mask_roi);
cv::ocl::subtract(gmat1, gmat2, gdst, gmask);
Near(0);
}
}
TEST_P(Sub, Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::subtract(mat1_roi, val, dst_roi);
cv::ocl::subtract(gmat1, val, gdst);
Near(1e-5);
}
}
TEST_P(Sub, Scalar_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::subtract(mat1_roi, val, dst_roi, mask_roi);
cv::ocl::subtract(gmat1, val, gdst, gmask);
Near(1e-5);
}
}
////////////////////////////////Mul/////////////////////////////////////////////////
struct Mul : ArithmTestBase {};
TEST_P(Mul, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::multiply(mat1_roi, mat2_roi, dst_roi);
cv::ocl::multiply(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Mul, Mat_Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::RNG &rng = TS::ptr()->get_rng();
double s = rng.uniform(-10.0, 10.0);
cv::multiply(mat1_roi, mat2_roi, dst_roi, s);
cv::ocl::multiply(gmat1, gmat2, gdst, s);
Near(.001);
}
}
struct Div : ArithmTestBase {};
TEST_P(Div, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::divide(mat1_roi, mat2_roi, dst_roi);
cv::ocl::divide(gmat1, gmat2, gdst);
Near(1);
}
}
TEST_P(Div, Mat_Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::RNG &rng = TS::ptr()->get_rng();
double s = rng.uniform(-10.0, 10.0);
cv::divide(mat1_roi, mat2_roi, dst_roi, s);
cv::ocl::divide(gmat1, gmat2, gdst, s);
Near(.001);
}
}
struct Absdiff : ArithmTestBase {};
TEST_P(Absdiff, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::absdiff(mat1_roi, mat2_roi, dst_roi);
cv::ocl::absdiff(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Absdiff, Mat_Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::absdiff(mat1_roi, val, dst_roi);
cv::ocl::absdiff(gmat1, val, gdst);
Near(1e-5);
}
}
struct CartToPolar : ArithmTestBase {};
TEST_P(CartToPolar, angleInDegree)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::cartToPolar(mat1_roi, mat2_roi, dst_roi, dst1_roi, 1);
cv::ocl::cartToPolar(gmat1, gmat2, gdst, gdst1, 1);
Near(.5);
Near1(.5);
}
}
TEST_P(CartToPolar, angleInRadians)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::cartToPolar(mat1_roi, mat2_roi, dst_roi, dst1_roi, 0);
cv::ocl::cartToPolar(gmat1, gmat2, gdst, gdst1, 0);
Near(.5);
Near1(.5);
}
}
struct PolarToCart : ArithmTestBase {};
TEST_P(PolarToCart, angleInDegree)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::polarToCart(mat1_roi, mat2_roi, dst_roi, dst1_roi, 1);
cv::ocl::polarToCart(gmat1, gmat2, gdst, gdst1, 1);
Near(.5);
Near1(.5);
}
}
TEST_P(PolarToCart, angleInRadians)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::polarToCart(mat1_roi, mat2_roi, dst_roi, dst1_roi, 0);
cv::ocl::polarToCart(gmat1, gmat2, gdst, gdst1, 0);
Near(.5);
Near1(.5);
}
}
struct Magnitude : ArithmTestBase {};
TEST_P(Magnitude, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::magnitude(mat1_roi, mat2_roi, dst_roi);
cv::ocl::magnitude(gmat1, gmat2, gdst);
Near(1e-5);
}
}
struct Transpose : ArithmTestBase {};
TEST_P(Transpose, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::transpose(mat1_roi, dst_roi);
cv::ocl::transpose(gmat1, gdst);
Near(1e-5);
}
}
struct Flip : ArithmTestBase {};
TEST_P(Flip, X)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::flip(mat1_roi, dst_roi, 0);
cv::ocl::flip(gmat1, gdst, 0);
Near(1e-5);
}
}
TEST_P(Flip, Y)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::flip(mat1_roi, dst_roi, 1);
cv::ocl::flip(gmat1, gdst, 1);
Near(1e-5);
}
}
TEST_P(Flip, BOTH)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::flip(mat1_roi, dst_roi, -1);
cv::ocl::flip(gmat1, gdst, -1);
Near(1e-5);
}
}
struct MinMax : ArithmTestBase {};
TEST_P(MinMax, MAT)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
double minVal, maxVal;
cv::Point minLoc, maxLoc;
if (mat1.depth() != CV_8S)
{
cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc);
}
else
{
minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < mat1_roi.rows; ++i)
for (int j = 0; j < mat1_roi.cols; ++j)
{
signed char val = mat1_roi.at<signed char>(i, j);
if (val < minVal) minVal = val;
if (val > maxVal) maxVal = val;
}
}
double minVal_, maxVal_;
cv::ocl::minMax(gmat1, &minVal_, &maxVal_);
EXPECT_DOUBLE_EQ(minVal_, minVal);
EXPECT_DOUBLE_EQ(maxVal_, maxVal);
}
}
TEST_P(MinMax, MASK)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
double minVal, maxVal;
cv::Point minLoc, maxLoc;
if (mat1.depth() != CV_8S)
{
cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc, mask_roi);
}
else
{
minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < mat1_roi.rows; ++i)
for (int j = 0; j < mat1_roi.cols; ++j)
{
signed char val = mat1_roi.at<signed char>(i, j);
unsigned char m = mask_roi.at<unsigned char>(i, j);
if (val < minVal && m) minVal = val;
if (val > maxVal && m) maxVal = val;
}
}
double minVal_, maxVal_;
cv::ocl::minMax(gmat1, &minVal_, &maxVal_, gmask);
EXPECT_DOUBLE_EQ(minVal_, minVal);
EXPECT_DOUBLE_EQ(maxVal_, maxVal);
}
}
struct MinMaxLoc : ArithmTestBase {};
TEST_P(MinMaxLoc, MAT)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
double minVal, maxVal;
cv::Point minLoc, maxLoc;
int depth = mat1.depth();
if (depth != CV_8S)
{
cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc);
}
else
{
minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < mat1_roi.rows; ++i)
for (int j = 0; j < mat1_roi.cols; ++j)
{
signed char val = mat1_roi.at<signed char>(i, j);
if (val < minVal)
{
minVal = val;
minLoc.x = j;
minLoc.y = i;
}
if (val > maxVal)
{
maxVal = val;
maxLoc.x = j;
maxLoc.y = i;
}
}
}
double minVal_, maxVal_;
cv::Point minLoc_, maxLoc_;
cv::ocl::minMaxLoc(gmat1, &minVal_, &maxVal_, &minLoc_, &maxLoc_, cv::ocl::oclMat());
double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.;
if(depth == 0)
{
minlocVal = mat1_roi.at<unsigned char>(minLoc);
minlocVal_ = mat1_roi.at<unsigned char>(minLoc_);
maxlocVal = mat1_roi.at<unsigned char>(maxLoc);
maxlocVal_ = mat1_roi.at<unsigned char>(maxLoc_);
error0 = ::abs(mat1_roi.at<unsigned char>(minLoc_) - mat1_roi.at<unsigned char>(minLoc));
error1 = ::abs(mat1_roi.at<unsigned char>(maxLoc_) - mat1_roi.at<unsigned char>(maxLoc));
}
if(depth == 1)
{
minlocVal = mat1_roi.at<signed char>(minLoc);
minlocVal_ = mat1_roi.at<signed char>(minLoc_);
maxlocVal = mat1_roi.at<signed char>(maxLoc);
maxlocVal_ = mat1_roi.at<signed char>(maxLoc_);
error0 = ::abs(mat1_roi.at<signed char>(minLoc_) - mat1_roi.at<signed char>(minLoc));
error1 = ::abs(mat1_roi.at<signed char>(maxLoc_) - mat1_roi.at<signed char>(maxLoc));
}
if(depth == 2)
{
minlocVal = mat1_roi.at<unsigned short>(minLoc);
minlocVal_ = mat1_roi.at<unsigned short>(minLoc_);
maxlocVal = mat1_roi.at<unsigned short>(maxLoc);
maxlocVal_ = mat1_roi.at<unsigned short>(maxLoc_);
error0 = ::abs(mat1_roi.at<unsigned short>(minLoc_) - mat1_roi.at<unsigned short>(minLoc));
error1 = ::abs(mat1_roi.at<unsigned short>(maxLoc_) - mat1_roi.at<unsigned short>(maxLoc));
}
if(depth == 3)
{
minlocVal = mat1_roi.at<signed short>(minLoc);
minlocVal_ = mat1_roi.at<signed short>(minLoc_);
maxlocVal = mat1_roi.at<signed short>(maxLoc);
maxlocVal_ = mat1_roi.at<signed short>(maxLoc_);
error0 = ::abs(mat1_roi.at<signed short>(minLoc_) - mat1_roi.at<signed short>(minLoc));
error1 = ::abs(mat1_roi.at<signed short>(maxLoc_) - mat1_roi.at<signed short>(maxLoc));
}
if(depth == 4)
{
minlocVal = mat1_roi.at<int>(minLoc);
minlocVal_ = mat1_roi.at<int>(minLoc_);
maxlocVal = mat1_roi.at<int>(maxLoc);
maxlocVal_ = mat1_roi.at<int>(maxLoc_);
error0 = ::abs(mat1_roi.at<int>(minLoc_) - mat1_roi.at<int>(minLoc));
error1 = ::abs(mat1_roi.at<int>(maxLoc_) - mat1_roi.at<int>(maxLoc));
}
if(depth == 5)
{
minlocVal = mat1_roi.at<float>(minLoc);
minlocVal_ = mat1_roi.at<float>(minLoc_);
maxlocVal = mat1_roi.at<float>(maxLoc);
maxlocVal_ = mat1_roi.at<float>(maxLoc_);
error0 = ::abs(mat1_roi.at<float>(minLoc_) - mat1_roi.at<float>(minLoc));
error1 = ::abs(mat1_roi.at<float>(maxLoc_) - mat1_roi.at<float>(maxLoc));
}
if(depth == 6)
{
minlocVal = mat1_roi.at<double>(minLoc);
minlocVal_ = mat1_roi.at<double>(minLoc_);
maxlocVal = mat1_roi.at<double>(maxLoc);
maxlocVal_ = mat1_roi.at<double>(maxLoc_);
error0 = ::abs(mat1_roi.at<double>(minLoc_) - mat1_roi.at<double>(minLoc));
error1 = ::abs(mat1_roi.at<double>(maxLoc_) - mat1_roi.at<double>(maxLoc));
}
EXPECT_DOUBLE_EQ(minVal_, minVal);
EXPECT_DOUBLE_EQ(maxVal_, maxVal);
EXPECT_DOUBLE_EQ(minlocVal_, minlocVal);
EXPECT_DOUBLE_EQ(maxlocVal_, maxlocVal);
EXPECT_DOUBLE_EQ(error0, 0.0);
EXPECT_DOUBLE_EQ(error1, 0.0);
}
}
TEST_P(MinMaxLoc, MASK)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
double minVal, maxVal;
cv::Point minLoc, maxLoc;
int depth = mat1.depth();
if (depth != CV_8S)
{
cv::minMaxLoc(mat1_roi, &minVal, &maxVal, &minLoc, &maxLoc, mask_roi);
}
else
{
minVal = std::numeric_limits<double>::max();
maxVal = -std::numeric_limits<double>::max();
for (int i = 0; i < mat1_roi.rows; ++i)
for (int j = 0; j < mat1_roi.cols; ++j)
{
signed char val = mat1_roi.at<signed char>(i, j);
unsigned char m = mask_roi.at<unsigned char>(i , j);
if (val < minVal && m)
{
minVal = val;
minLoc.x = j;
minLoc.y = i;
}
if (val > maxVal && m)
{
maxVal = val;
maxLoc.x = j;
maxLoc.y = i;
}
}
}
double minVal_, maxVal_;
cv::Point minLoc_, maxLoc_;
cv::ocl::minMaxLoc(gmat1, &minVal_, &maxVal_, &minLoc_, &maxLoc_, gmask);
double error0 = 0., error1 = 0., minlocVal = 0., minlocVal_ = 0., maxlocVal = 0., maxlocVal_ = 0.;
if(minLoc_.x == -1 || minLoc_.y == -1 || maxLoc_.x == -1 || maxLoc_.y == -1) continue;
if(depth == 0)
{
minlocVal = mat1_roi.at<unsigned char>(minLoc);
minlocVal_ = mat1_roi.at<unsigned char>(minLoc_);
maxlocVal = mat1_roi.at<unsigned char>(maxLoc);
maxlocVal_ = mat1_roi.at<unsigned char>(maxLoc_);
error0 = ::abs(mat1_roi.at<unsigned char>(minLoc_) - mat1_roi.at<unsigned char>(minLoc));
error1 = ::abs(mat1_roi.at<unsigned char>(maxLoc_) - mat1_roi.at<unsigned char>(maxLoc));
}
if(depth == 1)
{
minlocVal = mat1_roi.at<signed char>(minLoc);
minlocVal_ = mat1_roi.at<signed char>(minLoc_);
maxlocVal = mat1_roi.at<signed char>(maxLoc);
maxlocVal_ = mat1_roi.at<signed char>(maxLoc_);
error0 = ::abs(mat1_roi.at<signed char>(minLoc_) - mat1_roi.at<signed char>(minLoc));
error1 = ::abs(mat1_roi.at<signed char>(maxLoc_) - mat1_roi.at<signed char>(maxLoc));
}
if(depth == 2)
{
minlocVal = mat1_roi.at<unsigned short>(minLoc);
minlocVal_ = mat1_roi.at<unsigned short>(minLoc_);
maxlocVal = mat1_roi.at<unsigned short>(maxLoc);
maxlocVal_ = mat1_roi.at<unsigned short>(maxLoc_);
error0 = ::abs(mat1_roi.at<unsigned short>(minLoc_) - mat1_roi.at<unsigned short>(minLoc));
error1 = ::abs(mat1_roi.at<unsigned short>(maxLoc_) - mat1_roi.at<unsigned short>(maxLoc));
}
if(depth == 3)
{
minlocVal = mat1_roi.at<signed short>(minLoc);
minlocVal_ = mat1_roi.at<signed short>(minLoc_);
maxlocVal = mat1_roi.at<signed short>(maxLoc);
maxlocVal_ = mat1_roi.at<signed short>(maxLoc_);
error0 = ::abs(mat1_roi.at<signed short>(minLoc_) - mat1_roi.at<signed short>(minLoc));
error1 = ::abs(mat1_roi.at<signed short>(maxLoc_) - mat1_roi.at<signed short>(maxLoc));
}
if(depth == 4)
{
minlocVal = mat1_roi.at<int>(minLoc);
minlocVal_ = mat1_roi.at<int>(minLoc_);
maxlocVal = mat1_roi.at<int>(maxLoc);
maxlocVal_ = mat1_roi.at<int>(maxLoc_);
error0 = ::abs(mat1_roi.at<int>(minLoc_) - mat1_roi.at<int>(minLoc));
error1 = ::abs(mat1_roi.at<int>(maxLoc_) - mat1_roi.at<int>(maxLoc));
}
if(depth == 5)
{
minlocVal = mat1_roi.at<float>(minLoc);
minlocVal_ = mat1_roi.at<float>(minLoc_);
maxlocVal = mat1_roi.at<float>(maxLoc);
maxlocVal_ = mat1_roi.at<float>(maxLoc_);
error0 = ::abs(mat1_roi.at<float>(minLoc_) - mat1_roi.at<float>(minLoc));
error1 = ::abs(mat1_roi.at<float>(maxLoc_) - mat1_roi.at<float>(maxLoc));
}
if(depth == 6)
{
minlocVal = mat1_roi.at<double>(minLoc);
minlocVal_ = mat1_roi.at<double>(minLoc_);
maxlocVal = mat1_roi.at<double>(maxLoc);
maxlocVal_ = mat1_roi.at<double>(maxLoc_);
error0 = ::abs(mat1_roi.at<double>(minLoc_) - mat1_roi.at<double>(minLoc));
error1 = ::abs(mat1_roi.at<double>(maxLoc_) - mat1_roi.at<double>(maxLoc));
}
EXPECT_DOUBLE_EQ(minVal_, minVal);
EXPECT_DOUBLE_EQ(maxVal_, maxVal);
EXPECT_DOUBLE_EQ(minlocVal_, minlocVal);
EXPECT_DOUBLE_EQ(maxlocVal_, maxlocVal);
EXPECT_DOUBLE_EQ(error0, 0.0);
EXPECT_DOUBLE_EQ(error1, 0.0);
}
}
struct Sum : ArithmTestBase {};
TEST_P(Sum, MAT)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
Scalar cpures = cv::sum(mat1_roi);
Scalar gpures = cv::ocl::sum(gmat1);
//check results
EXPECT_NEAR(cpures[0], gpures[0], 0.1);
EXPECT_NEAR(cpures[1], gpures[1], 0.1);
EXPECT_NEAR(cpures[2], gpures[2], 0.1);
EXPECT_NEAR(cpures[3], gpures[3], 0.1);
}
}
struct CountNonZero : ArithmTestBase {};
TEST_P(CountNonZero, MAT)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
int cpures = cv::countNonZero(mat1_roi);
int gpures = cv::ocl::countNonZero(gmat1);
EXPECT_DOUBLE_EQ((double)cpures, (double)gpures);
}
}
////////////////////////////////phase/////////////////////////////////////////////////
struct Phase : ArithmTestBase {};
TEST_P(Phase, Mat)
{
if(mat1.depth() != CV_32F && mat1.depth() != CV_64F)
{
cout << "\tUnsupported type\t\n";
}
for(int angelInDegrees = 0; angelInDegrees < 2; angelInDegrees++)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
2013-01-24 13:15:34 +01:00
cv::phase(mat1_roi, mat2_roi, dst_roi, angelInDegrees ? true : false);
cv::ocl::phase(gmat1, gmat2, gdst, angelInDegrees ? true : false);
Near(1e-2);
}
}
}
////////////////////////////////bitwise_and/////////////////////////////////////////////////
struct Bitwise_and : ArithmTestBase {};
TEST_P(Bitwise_and, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_and(mat1_roi, mat2_roi, dst_roi);
cv::ocl::bitwise_and(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Bitwise_and, Mat_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_and(mat1_roi, mat2_roi, dst_roi, mask_roi);
cv::ocl::bitwise_and(gmat1, gmat2, gdst, gmask);
Near(0);
}
}
TEST_P(Bitwise_and, Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_and(mat1_roi, val, dst_roi);
cv::ocl::bitwise_and(gmat1, val, gdst);
Near(1e-5);
}
}
TEST_P(Bitwise_and, Scalar_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_and(mat1_roi, val, dst_roi, mask_roi);
cv::ocl::bitwise_and(gmat1, val, gdst, gmask);
Near(1e-5);
}
}
////////////////////////////////bitwise_or/////////////////////////////////////////////////
struct Bitwise_or : ArithmTestBase {};
TEST_P(Bitwise_or, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_or(mat1_roi, mat2_roi, dst_roi);
cv::ocl::bitwise_or(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Bitwise_or, Mat_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_or(mat1_roi, mat2_roi, dst_roi, mask_roi);
cv::ocl::bitwise_or(gmat1, gmat2, gdst, gmask);
Near(0);
}
}
TEST_P(Bitwise_or, Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_or(mat1_roi, val, dst_roi);
cv::ocl::bitwise_or(gmat1, val, gdst);
Near(1e-5);
}
}
TEST_P(Bitwise_or, Scalar_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_or(mat1_roi, val, dst_roi, mask_roi);
cv::ocl::bitwise_or(gmat1, val, gdst, gmask);
Near(1e-5);
}
}
////////////////////////////////bitwise_xor/////////////////////////////////////////////////
struct Bitwise_xor : ArithmTestBase {};
TEST_P(Bitwise_xor, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_xor(mat1_roi, mat2_roi, dst_roi);
cv::ocl::bitwise_xor(gmat1, gmat2, gdst);
Near(0);
}
}
TEST_P(Bitwise_xor, Mat_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_xor(mat1_roi, mat2_roi, dst_roi, mask_roi);
cv::ocl::bitwise_xor(gmat1, gmat2, gdst, gmask);
Near(0);
}
}
TEST_P(Bitwise_xor, Scalar)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_xor(mat1_roi, val, dst_roi);
cv::ocl::bitwise_xor(gmat1, val, gdst);
Near(1e-5);
}
}
TEST_P(Bitwise_xor, Scalar_Mask)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_xor(mat1_roi, val, dst_roi, mask_roi);
cv::ocl::bitwise_xor(gmat1, val, gdst, gmask);
Near(1e-5);
}
}
////////////////////////////////bitwise_not/////////////////////////////////////////////////
struct Bitwise_not : ArithmTestBase {};
TEST_P(Bitwise_not, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::bitwise_not(mat1_roi, dst_roi);
cv::ocl::bitwise_not(gmat1, gdst);
Near(0);
}
}
////////////////////////////////compare/////////////////////////////////////////////////
struct Compare : ArithmTestBase {};
TEST_P(Compare, Mat)
{
if(mat1.type() == CV_8SC1)
//if(mat1.type() != CV_8UC1 || mat1.type()!= CV_16UC1 || mat1.type()!= CV_16SC1|| mat1.type()!= CV_32SC1 || mat1.type()!= CV_32FC1|| mat1.type()!= CV_64FC1)
{
cout << "\tUnsupported type\t\n";
}
int cmp_codes[] = {CMP_EQ, CMP_GT, CMP_GE, CMP_LT, CMP_LE, CMP_NE};
//const char *cmp_str[] = {"CMP_EQ", "CMP_GT", "CMP_GE", "CMP_LT", "CMP_LE", "CMP_NE"};
int cmp_num = sizeof(cmp_codes) / sizeof(int);
for (int i = 0; i < cmp_num; ++i)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
cv::compare(mat1_roi, mat2_roi, dst_roi, cmp_codes[i]);
cv::ocl::compare(gmat1, gmat2, gdst, cmp_codes[i]);
Near(0);
}
}
}
struct Pow : ArithmTestBase {};
TEST_P(Pow, Mat)
{
if(mat1.depth() != CV_32F && mat1.depth() != CV_64F)
{
cout << "\tUnsupported type\t\n";
}
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
double p = 4.5;
cv::pow(mat1_roi, p, dst_roi);
cv::ocl::pow(gmat1, p, gdst);
Near(1);
}
}
struct MagnitudeSqr : ArithmTestBase {};
TEST_P(MagnitudeSqr, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
2013-05-09 11:57:13 +02:00
random_roi();
for(int i = 0; i < mat1.rows; ++i)
for(int j = 0; j < mat1.cols; ++j)
{
float val1 = mat1.at<float>(i, j);
float val2 = mat2.at<float>(i, j);
((float *)(dst.data))[i * dst.step / 4 + j] = val1 * val1 + val2 * val2;
}
2013-05-09 11:57:13 +02:00
cv::ocl::oclMat clmat1(mat1), clmat2(mat2);
cv::ocl::magnitudeSqr(clmat1, clmat2, gdst);
Near(1);
}
}
struct AddWeighted : ArithmTestBase {};
TEST_P(AddWeighted, Mat)
{
for(int j = 0; j < LOOP_TIMES; j++)
{
random_roi();
double alpha = 2.0, beta = 1.0, gama = 3.0;
cv::addWeighted(mat1_roi, alpha, mat2_roi, beta, gama, dst_roi);
// cv::ocl::oclMat clmat1(mat1),clmat2(mat2),cldst;
cv::ocl::addWeighted(gmat1, alpha, gmat2, beta, gama, gdst);
Near(1e-5);
}
}
//********test****************
INSTANTIATE_TEST_CASE_P(Arithm, Lut, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Exp, Combine(
Values(CV_32FC1, CV_32FC1),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Log, Combine(
Values(CV_32FC1, CV_32FC1),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Add, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false)));
INSTANTIATE_TEST_CASE_P(Arithm, Sub, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false)));
INSTANTIATE_TEST_CASE_P(Arithm, Mul, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Div, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Absdiff, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, CartToPolar, Combine(
Values(CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, PolarToCart, Combine(
Values(CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Magnitude, Combine(
Values(CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Flip, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, MinMax, Combine(
Values(CV_8UC1, CV_32SC1, CV_32FC1),
Values(false)));
INSTANTIATE_TEST_CASE_P(Arithm, MinMaxLoc, Combine(
Values(CV_8UC1, CV_32SC1, CV_32FC1),
Values(false)));
INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine(
Values(CV_8U, CV_32S, CV_32F),
Values(false)));
INSTANTIATE_TEST_CASE_P(Arithm, CountNonZero, Combine(
Values(CV_8U, CV_32S, CV_32F),
Values(false)));
INSTANTIATE_TEST_CASE_P(Arithm, Phase, Combine(Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false)));
// Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_and, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32SC3, CV_32SC4, CV_32FC1, CV_32FC3, CV_32FC4), Values(false)));
//Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_or, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1, CV_32FC3, CV_32FC4), Values(false)));
//Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_xor, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1, CV_32FC3, CV_32FC4), Values(false)));
//Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Bitwise_not, Combine(
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32SC1, CV_32FC1, CV_32FC3, CV_32FC4), Values(false)));
//Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Compare, Combine(Values(CV_8UC1, CV_32SC1, CV_32FC1), Values(false)));
// Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine(Values(CV_32FC1, CV_32FC3, CV_32FC4), Values(false)));
// Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, MagnitudeSqr, Combine(
Values(CV_32FC1, CV_32FC1),
Values(false))); // Values(false) is the reserved parameter
INSTANTIATE_TEST_CASE_P(Arithm, AddWeighted, Combine(
Values(CV_8UC1, CV_32SC1, CV_32FC1),
Values(false))); // Values(false) is the reserved parameter
#endif // HAVE_OPENCL