opencv/samples/python/kalman.py

99 lines
3.7 KiB
Python
Raw Normal View History

#!/usr/bin/python
2012-10-17 11:12:04 +04:00
"""
Tracking of rotating point.
Rotation speed is constant.
Both state and measurements vectors are 1D (a point angle),
Measurement is the real point angle + gaussian noise.
The real and the estimated points are connected with yellow line segment,
the real and the measured points are connected with red line segment.
(if Kalman filter works correctly,
the yellow segment should be shorter than the red one).
Pressing any key (except ESC) will reset the tracking with a different speed.
Pressing ESC will stop the program.
"""
import urllib2
2011-07-12 12:56:03 +00:00
import cv2.cv as cv
from math import cos, sin, sqrt
import sys
if __name__ == "__main__":
A = [ [1, 1], [0, 1] ]
2012-10-17 11:12:04 +04:00
img = cv.CreateImage((500, 500), 8, 3)
kalman = cv.CreateKalman(2, 1, 0)
state = cv.CreateMat(2, 1, cv.CV_32FC1) # (phi, delta_phi)
process_noise = cv.CreateMat(2, 1, cv.CV_32FC1)
measurement = cv.CreateMat(1, 1, cv.CV_32FC1)
rng = cv.RNG(-1)
code = -1L
cv.Zero(measurement)
cv.NamedWindow("Kalman", 1)
while True:
cv.RandArr(rng, state, cv.CV_RAND_NORMAL, cv.RealScalar(0), cv.RealScalar(0.1))
2012-10-17 11:12:04 +04:00
kalman.transition_matrix[0,0] = 1
kalman.transition_matrix[0,1] = 1
kalman.transition_matrix[1,0] = 0
kalman.transition_matrix[1,1] = 1
cv.SetIdentity(kalman.measurement_matrix, cv.RealScalar(1))
cv.SetIdentity(kalman.process_noise_cov, cv.RealScalar(1e-5))
cv.SetIdentity(kalman.measurement_noise_cov, cv.RealScalar(1e-1))
cv.SetIdentity(kalman.error_cov_post, cv.RealScalar(1))
cv.RandArr(rng, kalman.state_post, cv.CV_RAND_NORMAL, cv.RealScalar(0), cv.RealScalar(0.1))
2012-10-17 11:12:04 +04:00
while True:
def calc_point(angle):
return (cv.Round(img.width/2 + img.width/3*cos(angle)),
2012-10-17 11:12:04 +04:00
cv.Round(img.height/2 - img.width/3*sin(angle)))
2012-10-17 11:12:04 +04:00
state_angle = state[0,0]
state_pt = calc_point(state_angle)
2012-10-17 11:12:04 +04:00
prediction = cv.KalmanPredict(kalman)
2012-10-17 11:12:04 +04:00
predict_angle = prediction[0, 0]
predict_pt = calc_point(predict_angle)
cv.RandArr(rng, measurement, cv.CV_RAND_NORMAL, cv.RealScalar(0),
cv.RealScalar(sqrt(kalman.measurement_noise_cov[0, 0])))
2012-10-17 11:12:04 +04:00
# generate measurement
cv.MatMulAdd(kalman.measurement_matrix, state, measurement, measurement)
measurement_angle = measurement[0, 0]
measurement_pt = calc_point(measurement_angle)
2012-10-17 11:12:04 +04:00
# plot points
def draw_cross(center, color, d):
cv.Line(img, (center[0] - d, center[1] - d),
(center[0] + d, center[1] + d), color, 1, cv.CV_AA, 0)
cv.Line(img, (center[0] + d, center[1] - d),
(center[0] - d, center[1] + d), color, 1, cv.CV_AA, 0)
cv.Zero(img)
draw_cross(state_pt, cv.CV_RGB(255, 255, 255), 3)
draw_cross(measurement_pt, cv.CV_RGB(255, 0,0), 3)
draw_cross(predict_pt, cv.CV_RGB(0, 255, 0), 3)
cv.Line(img, state_pt, measurement_pt, cv.CV_RGB(255, 0,0), 3, cv. CV_AA, 0)
cv.Line(img, state_pt, predict_pt, cv.CV_RGB(255, 255, 0), 3, cv. CV_AA, 0)
2012-10-17 11:12:04 +04:00
cv.KalmanCorrect(kalman, measurement)
cv.RandArr(rng, process_noise, cv.CV_RAND_NORMAL, cv.RealScalar(0),
cv.RealScalar(sqrt(kalman.process_noise_cov[0, 0])))
cv.MatMulAdd(kalman.transition_matrix, state, process_noise, state)
cv.ShowImage("Kalman", img)
2012-10-17 11:12:04 +04:00
code = cv.WaitKey(100) % 0x100
if code != -1:
break
2012-10-17 11:12:04 +04:00
if code in [27, ord('q'), ord('Q')]:
break
2012-10-17 11:12:04 +04:00
cv.DestroyWindow("Kalman")