mirror of
https://github.com/intel/isa-l.git
synced 2025-09-06 14:20:54 +02:00

NASM version 2.14.01 supports all x86 ISA in this library. Since this version has been out since 2018, it is safe to only permit the library to be compiled with this minimum version, as announced in issue #297. Signed-off-by: Pablo de Lara <pablo.de.lara.guarch@intel.com>
505 lines
15 KiB
NASM
505 lines
15 KiB
NASM
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; Copyright(c) 2011-2020 Intel Corporation All rights reserved.
|
|
;
|
|
; Redistribution and use in source and binary forms, with or without
|
|
; modification, are permitted provided that the following conditions
|
|
; are met:
|
|
; * Redistributions of source code must retain the above copyright
|
|
; notice, this list of conditions and the following disclaimer.
|
|
; * Redistributions in binary form must reproduce the above copyright
|
|
; notice, this list of conditions and the following disclaimer in
|
|
; the documentation and/or other materials provided with the
|
|
; distribution.
|
|
; * Neither the name of Intel Corporation nor the names of its
|
|
; contributors may be used to endorse or promote products derived
|
|
; from this software without specific prior written permission.
|
|
;
|
|
; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
; "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
; LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
; A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
; OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
; SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
; LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
; DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
; THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
; (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
; OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
; Function API:
|
|
; UINT32 crc32_iscsi_by16_10(
|
|
; UINT32 init_crc, //initial CRC value, 32 bits
|
|
; const unsigned char *buf, //buffer pointer to calculate CRC on
|
|
; UINT64 len //buffer length in bytes (64-bit data)
|
|
; );
|
|
;
|
|
; Authors:
|
|
; Erdinc Ozturk
|
|
; Vinodh Gopal
|
|
; James Guilford
|
|
;
|
|
; Reference paper titled "Fast CRC Computation for Generic Polynomials Using PCLMULQDQ Instruction"
|
|
; URL: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
|
|
;
|
|
;
|
|
|
|
%include "reg_sizes.asm"
|
|
|
|
%ifndef FUNCTION_NAME
|
|
%define FUNCTION_NAME crc32_iscsi_by16_10
|
|
%endif
|
|
|
|
[bits 64]
|
|
default rel
|
|
|
|
section .text
|
|
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
%xdefine arg1 r8
|
|
%xdefine arg2 rcx
|
|
%xdefine arg3 rdx
|
|
|
|
%xdefine arg1_low32 r8d
|
|
%else
|
|
%xdefine arg1 rdx
|
|
%xdefine arg2 rdi
|
|
%xdefine arg3 rsi
|
|
|
|
%xdefine arg1_low32 edx
|
|
%endif
|
|
|
|
align 16
|
|
mk_global FUNCTION_NAME, function
|
|
FUNCTION_NAME:
|
|
endbranch
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
sub rsp, (16*10 + 8)
|
|
|
|
; push the xmm registers into the stack to maintain
|
|
vmovdqa [rsp + 16*0], xmm6
|
|
vmovdqa [rsp + 16*1], xmm7
|
|
vmovdqa [rsp + 16*2], xmm8
|
|
vmovdqa [rsp + 16*3], xmm9
|
|
vmovdqa [rsp + 16*4], xmm10
|
|
vmovdqa [rsp + 16*5], xmm11
|
|
vmovdqa [rsp + 16*6], xmm12
|
|
vmovdqa [rsp + 16*7], xmm13
|
|
vmovdqa [rsp + 16*8], xmm14
|
|
vmovdqa [rsp + 16*9], xmm15
|
|
%endif
|
|
|
|
; check if smaller than 256B
|
|
cmp arg3, 256
|
|
jl .less_than_256
|
|
|
|
; load the initial crc value
|
|
vmovd xmm10, arg1_low32 ; initial crc
|
|
|
|
; receive the initial 64B data, xor the initial crc value
|
|
vmovdqu8 zmm0, [arg2+16*0]
|
|
vmovdqu8 zmm4, [arg2+16*4]
|
|
vpxorq zmm0, zmm10
|
|
vbroadcasti32x4 zmm10, [rk3] ;xmm10 has rk3 and rk4
|
|
;imm value of pclmulqdq instruction will determine which constant to use
|
|
|
|
sub arg3, 256
|
|
cmp arg3, 256
|
|
jl .fold_128_B_loop
|
|
|
|
vmovdqu8 zmm7, [arg2+16*8]
|
|
vmovdqu8 zmm8, [arg2+16*12]
|
|
vbroadcasti32x4 zmm16, [rk_1] ;zmm16 has rk-1 and rk-2
|
|
sub arg3, 256
|
|
|
|
align 16
|
|
.fold_256_B_loop:
|
|
add arg2, 256
|
|
vpclmulqdq zmm1, zmm0, zmm16, 0x10
|
|
vpclmulqdq zmm0, zmm0, zmm16, 0x01
|
|
vpternlogq zmm0, zmm1, [arg2+16*0], 0x96
|
|
|
|
vpclmulqdq zmm2, zmm4, zmm16, 0x10
|
|
vpclmulqdq zmm4, zmm4, zmm16, 0x01
|
|
vpternlogq zmm4, zmm2, [arg2+16*4], 0x96
|
|
|
|
vpclmulqdq zmm3, zmm7, zmm16, 0x10
|
|
vpclmulqdq zmm7, zmm7, zmm16, 0x01
|
|
vpternlogq zmm7, zmm3, [arg2+16*8], 0x96
|
|
|
|
vpclmulqdq zmm5, zmm8, zmm16, 0x10
|
|
vpclmulqdq zmm8, zmm8, zmm16, 0x01
|
|
vpternlogq zmm8, zmm5, [arg2+16*12], 0x96
|
|
|
|
sub arg3, 256
|
|
jge .fold_256_B_loop
|
|
|
|
;; Fold 256 into 128
|
|
add arg2, 256
|
|
vpclmulqdq zmm1, zmm0, zmm10, 0x01
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x10
|
|
vpternlogq zmm7, zmm1, zmm2, 0x96 ; xor ABC
|
|
|
|
vpclmulqdq zmm5, zmm4, zmm10, 0x01
|
|
vpclmulqdq zmm6, zmm4, zmm10, 0x10
|
|
vpternlogq zmm8, zmm5, zmm6, 0x96 ; xor ABC
|
|
|
|
vmovdqa32 zmm0, zmm7
|
|
vmovdqa32 zmm4, zmm8
|
|
|
|
add arg3, 128
|
|
jmp .less_than_128_B
|
|
|
|
; at this section of the code, there is 128*x+y (0<=y<128) bytes of buffer. The fold_128_B_loop
|
|
; loop will fold 128B at a time until we have 128+y Bytes of buffer
|
|
|
|
; fold 128B at a time. This section of the code folds 8 xmm registers in parallel
|
|
align 16
|
|
.fold_128_B_loop:
|
|
add arg2, 128
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x10
|
|
vpclmulqdq zmm0, zmm0, zmm10, 0x01
|
|
vpternlogq zmm0, zmm2, [arg2+16*0], 0x96
|
|
|
|
vpclmulqdq zmm5, zmm4, zmm10, 0x10
|
|
vpclmulqdq zmm4, zmm4, zmm10, 0x01
|
|
vpternlogq zmm4, zmm5, [arg2+16*4], 0x96
|
|
|
|
sub arg3, 128
|
|
jge .fold_128_B_loop
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
add arg2, 128
|
|
align 16
|
|
.less_than_128_B:
|
|
;; At this point, the buffer pointer is pointing at the last
|
|
;; y bytes of the buffer, where 0 <= y < 128.
|
|
;; The 128 bytes of folded data is in 2 of the zmm registers:
|
|
;; zmm0 and zmm4
|
|
|
|
cmp arg3, -64
|
|
jl .fold_128_B_register
|
|
|
|
vbroadcasti32x4 zmm10, [rk15]
|
|
;; If there are still 64 bytes left, folds from 128 bytes to 64 bytes
|
|
;; and handles the next 64 bytes
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x10
|
|
vpclmulqdq zmm0, zmm0, zmm10, 0x01
|
|
vpternlogq zmm0, zmm2, zmm4, 0x96
|
|
add arg3, 128
|
|
|
|
jmp .fold_64B_loop
|
|
|
|
align 16
|
|
.fold_128_B_register:
|
|
; fold the 8 128b parts into 1 xmm register with different constants
|
|
vmovdqu8 zmm16, [rk9] ; multiply by rk9-rk16
|
|
vmovdqu8 zmm11, [rk17] ; multiply by rk17-rk20, rk1,rk2, 0,0
|
|
vpclmulqdq zmm1, zmm0, zmm16, 0x01
|
|
vpclmulqdq zmm2, zmm0, zmm16, 0x10
|
|
vextracti64x2 xmm7, zmm4, 3 ; save last that has no multiplicand
|
|
|
|
vpclmulqdq zmm5, zmm4, zmm11, 0x01
|
|
vpclmulqdq zmm6, zmm4, zmm11, 0x10
|
|
vmovdqa xmm10, [rk1] ; Needed later in reduction loop
|
|
vpternlogq zmm1, zmm2, zmm5, 0x96 ; xor ABC
|
|
vpternlogq zmm1, zmm6, zmm7, 0x96 ; xor ABC
|
|
|
|
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
|
|
vpxorq ymm8, ymm8, ymm1
|
|
vextracti64x2 xmm5, ymm8, 1
|
|
vpxorq xmm7, xmm5, xmm8
|
|
|
|
; instead of 128, we add 128-16 to the loop counter to save 1 instruction from the loop
|
|
; instead of a cmp instruction, we use the negative flag with the jl instruction
|
|
add arg3, 128-16
|
|
jl .final_reduction_for_128
|
|
|
|
; now we have 16+y bytes left to reduce. 16 Bytes is in register xmm7 and the rest is in memory
|
|
; we can fold 16 bytes at a time if y>=16
|
|
; continue folding 16B at a time
|
|
|
|
align 16
|
|
.16B_reduction_loop:
|
|
vpclmulqdq xmm8, xmm7, xmm10, 0x1
|
|
vpclmulqdq xmm7, xmm7, xmm10, 0x10
|
|
vpternlogq xmm7, xmm8, [arg2], 0x96
|
|
add arg2, 16
|
|
sub arg3, 16
|
|
; instead of a cmp instruction, we utilize the flags with the jge instruction
|
|
; equivalent of: cmp arg3, 16-16
|
|
; check if there is any more 16B in the buffer to be able to fold
|
|
jge .16B_reduction_loop
|
|
|
|
;now we have 16+z bytes left to reduce, where 0<= z < 16.
|
|
;first, we reduce the data in the xmm7 register
|
|
|
|
|
|
align 16
|
|
.final_reduction_for_128:
|
|
add arg3, 16
|
|
je .128_done
|
|
|
|
; here we are getting data that is less than 16 bytes.
|
|
; since we know that there was data before the pointer, we can offset
|
|
; the input pointer before the actual point, to receive exactly 16 bytes.
|
|
; after that the registers need to be adjusted.
|
|
align 16
|
|
.get_last_two_xmms:
|
|
|
|
vmovdqa xmm2, xmm7
|
|
vmovdqu xmm1, [arg2 - 16 + arg3]
|
|
|
|
; get rid of the extra data that was loaded before
|
|
; load the shift constant
|
|
lea rax, [rel pshufb_shf_table]
|
|
add rax, arg3
|
|
vmovdqu xmm0, [rax]
|
|
|
|
vpshufb xmm7, xmm0
|
|
vpxor xmm0, [mask3]
|
|
vpshufb xmm2, xmm0
|
|
|
|
vpblendvb xmm2, xmm2, xmm1, xmm0
|
|
;;;;;;;;;;
|
|
vpclmulqdq xmm8, xmm7, xmm10, 0x1
|
|
vpclmulqdq xmm7, xmm7, xmm10, 0x10
|
|
vpternlogq xmm7, xmm8, xmm2, 0x96
|
|
|
|
align 16
|
|
.128_done:
|
|
; compute crc of a 128-bit value
|
|
xor rax, rax
|
|
vmovq r11, xmm7
|
|
crc32 rax, r11
|
|
vpextrq r11, xmm7, 1
|
|
crc32 rax, r11
|
|
|
|
align 16
|
|
.cleanup:
|
|
|
|
%ifidn __OUTPUT_FORMAT__, win64
|
|
vmovdqa xmm6, [rsp + 16*0]
|
|
vmovdqa xmm7, [rsp + 16*1]
|
|
vmovdqa xmm8, [rsp + 16*2]
|
|
vmovdqa xmm9, [rsp + 16*3]
|
|
vmovdqa xmm10, [rsp + 16*4]
|
|
vmovdqa xmm11, [rsp + 16*5]
|
|
vmovdqa xmm12, [rsp + 16*6]
|
|
vmovdqa xmm13, [rsp + 16*7]
|
|
vmovdqa xmm14, [rsp + 16*8]
|
|
vmovdqa xmm15, [rsp + 16*9]
|
|
|
|
add rsp, (16*10 + 8)
|
|
%endif
|
|
ret
|
|
|
|
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
|
|
|
align 16
|
|
.less_than_256:
|
|
|
|
; check if there is enough buffer to be able to fold 16B at a time
|
|
cmp arg3, 32
|
|
jl .less_than_32
|
|
|
|
vmovd xmm1, arg1_low32 ; get the initial crc value
|
|
|
|
cmp arg3, 64
|
|
jl .less_than_64
|
|
|
|
;; receive the initial 64B data, xor the initial crc value
|
|
vmovdqu8 zmm0, [arg2]
|
|
vpxorq zmm0, zmm1
|
|
add arg2, 64
|
|
sub arg3, 64
|
|
|
|
cmp arg3, 64
|
|
jb .reduce_64B
|
|
|
|
vbroadcasti32x4 zmm10, [rk15]
|
|
|
|
align 16
|
|
.fold_64B_loop:
|
|
vmovdqu8 zmm4, [arg2]
|
|
vpclmulqdq zmm2, zmm0, zmm10, 0x10
|
|
vpclmulqdq zmm0, zmm0, zmm10, 0x01
|
|
vpternlogq zmm0, zmm2, zmm4, 0x96
|
|
|
|
add arg2, 64
|
|
sub arg3, 64
|
|
|
|
cmp arg3, 64
|
|
jge .fold_64B_loop
|
|
|
|
align 16
|
|
.reduce_64B:
|
|
; Reduce from 64 bytes to 16 bytes
|
|
vmovdqu8 zmm11, [rk17]
|
|
vpclmulqdq zmm1, zmm0, zmm11, 0x01
|
|
vpclmulqdq zmm2, zmm0, zmm11, 0x10
|
|
vextracti64x2 xmm7, zmm0, 3 ; save last that has no multiplicand
|
|
vpternlogq zmm1, zmm2, zmm7, 0x96
|
|
|
|
vmovdqa xmm10, [rk_1b] ; Needed later in reduction loop
|
|
|
|
vshufi64x2 zmm8, zmm1, zmm1, 0x4e ; Swap 1,0,3,2 - 01 00 11 10
|
|
vpxorq ymm8, ymm8, ymm1
|
|
vextracti64x2 xmm5, ymm8, 1
|
|
vpxorq xmm7, xmm5, xmm8
|
|
|
|
sub arg3, 16
|
|
jns .16B_reduction_loop ; At least 16 bytes of data to digest
|
|
jmp .final_reduction_for_128
|
|
|
|
align 16
|
|
.less_than_64:
|
|
;; if there is, load the constants
|
|
vmovdqa xmm10, [rk_1b]
|
|
|
|
vmovdqu xmm7, [arg2] ; load the plaintext
|
|
vpxor xmm7, xmm1 ; xmm1 already has initial crc value
|
|
|
|
;; update the buffer pointer
|
|
add arg2, 16
|
|
|
|
;; update the counter
|
|
;; - subtract 32 instead of 16 to save one instruction from the loop
|
|
sub arg3, 32
|
|
jmp .16B_reduction_loop
|
|
|
|
|
|
align 16
|
|
.less_than_32:
|
|
; mov initial crc to the return value. this is necessary for zero-length buffers.
|
|
mov eax, arg1_low32
|
|
test arg3, arg3
|
|
je .cleanup
|
|
|
|
vmovd xmm0, arg1_low32 ; get the initial crc value
|
|
|
|
cmp arg3, 16
|
|
je .exact_16_left
|
|
jl .less_than_16_left
|
|
|
|
vmovdqu xmm7, [arg2] ; load the plaintext
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
add arg2, 16
|
|
sub arg3, 16
|
|
vmovdqa xmm10, [rk1] ; rk1 and rk2 in xmm10
|
|
jmp .get_last_two_xmms
|
|
|
|
align 16
|
|
.less_than_16_left:
|
|
cmp arg3, 4
|
|
jl .only_less_than_4
|
|
|
|
xor r10, r10
|
|
bts r10, arg3
|
|
dec r10
|
|
kmovw k2, r10d
|
|
vmovdqu8 xmm7{k2}{z}, [arg2]
|
|
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
|
|
lea rax, [rel pshufb_shf_table]
|
|
vmovdqu xmm0, [rax + arg3]
|
|
vpshufb xmm7,xmm0
|
|
jmp .128_done
|
|
|
|
align 16
|
|
.exact_16_left:
|
|
vmovdqu xmm7, [arg2]
|
|
vpxor xmm7, xmm0 ; xor the initial crc value
|
|
jmp .128_done
|
|
|
|
align 16
|
|
.only_less_than_4:
|
|
mov eax, arg1_low32
|
|
cmp arg3, 2
|
|
jb .only_1_left
|
|
je .only_2_left
|
|
|
|
; 3 bytes left
|
|
crc32 eax, word [arg2]
|
|
crc32 eax, byte [arg2 + 2]
|
|
jmp .cleanup
|
|
|
|
align 16
|
|
.only_2_left:
|
|
crc32 eax, word [arg2]
|
|
jmp .cleanup
|
|
|
|
align 16
|
|
.only_1_left:
|
|
crc32 eax, byte [arg2]
|
|
jmp .cleanup
|
|
|
|
section .data
|
|
align 32
|
|
|
|
%ifndef USE_CONSTS
|
|
; precomputed constants
|
|
rk_1: dq 0x00000000b9e02b86
|
|
rk_2: dq 0x00000000dcb17aa4
|
|
rk1: dq 0x00000000493c7d27
|
|
rk2: dq 0x0000000ec1068c50
|
|
rk3: dq 0x0000000206e38d70
|
|
rk4: dq 0x000000006992cea2
|
|
rk5: dq 0x00000000493c7d27
|
|
rk6: dq 0x00000000dd45aab8
|
|
rk7: dq 0x00000000dea713f0
|
|
rk8: dq 0x0000000105ec76f0
|
|
rk9: dq 0x0000000047db8317
|
|
rk10: dq 0x000000002ad91c30
|
|
rk11: dq 0x000000000715ce53
|
|
rk12: dq 0x00000000c49f4f67
|
|
rk13: dq 0x0000000039d3b296
|
|
rk14: dq 0x00000000083a6eec
|
|
rk15: dq 0x000000009e4addf8
|
|
rk16: dq 0x00000000740eef02
|
|
rk17: dq 0x00000000ddc0152b
|
|
rk18: dq 0x000000001c291d04
|
|
rk19: dq 0x00000000ba4fc28e
|
|
rk20: dq 0x000000003da6d0cb
|
|
|
|
rk_1b: dq 0x00000000493c7d27
|
|
rk_2b: dq 0x0000000ec1068c50
|
|
dq 0x0000000000000000
|
|
dq 0x0000000000000000
|
|
|
|
%else
|
|
INCLUDE_CONSTS
|
|
%endif
|
|
|
|
pshufb_shf_table:
|
|
; use these values for shift constants for the pshufb instruction
|
|
; different alignments result in values as shown:
|
|
; dq 0x8887868584838281, 0x008f8e8d8c8b8a89 ; shl 15 (16-1) / shr1
|
|
; dq 0x8988878685848382, 0x01008f8e8d8c8b8a ; shl 14 (16-3) / shr2
|
|
; dq 0x8a89888786858483, 0x0201008f8e8d8c8b ; shl 13 (16-4) / shr3
|
|
; dq 0x8b8a898887868584, 0x030201008f8e8d8c ; shl 12 (16-4) / shr4
|
|
; dq 0x8c8b8a8988878685, 0x04030201008f8e8d ; shl 11 (16-5) / shr5
|
|
; dq 0x8d8c8b8a89888786, 0x0504030201008f8e ; shl 10 (16-6) / shr6
|
|
; dq 0x8e8d8c8b8a898887, 0x060504030201008f ; shl 9 (16-7) / shr7
|
|
; dq 0x8f8e8d8c8b8a8988, 0x0706050403020100 ; shl 8 (16-8) / shr8
|
|
; dq 0x008f8e8d8c8b8a89, 0x0807060504030201 ; shl 7 (16-9) / shr9
|
|
; dq 0x01008f8e8d8c8b8a, 0x0908070605040302 ; shl 6 (16-10) / shr10
|
|
; dq 0x0201008f8e8d8c8b, 0x0a09080706050403 ; shl 5 (16-11) / shr11
|
|
; dq 0x030201008f8e8d8c, 0x0b0a090807060504 ; shl 4 (16-12) / shr12
|
|
; dq 0x04030201008f8e8d, 0x0c0b0a0908070605 ; shl 3 (16-13) / shr13
|
|
; dq 0x0504030201008f8e, 0x0d0c0b0a09080706 ; shl 2 (16-14) / shr14
|
|
; dq 0x060504030201008f, 0x0e0d0c0b0a090807 ; shl 1 (16-15) / shr15
|
|
dq 0x8786858483828100, 0x8f8e8d8c8b8a8988
|
|
dq 0x0706050403020100, 0x000e0d0c0b0a0908
|
|
|
|
mask: dq 0xFFFFFFFFFFFFFFFF, 0x0000000000000000
|
|
mask2: dq 0xFFFFFFFF00000000, 0xFFFFFFFFFFFFFFFF
|
|
mask3: dq 0x8080808080808080, 0x8080808080808080
|