float based mp1/mp2/mp3 decoders.

Originally committed as revision 23095 to svn://svn.ffmpeg.org/ffmpeg/trunk
This commit is contained in:
Michael Niedermayer 2010-05-11 19:52:42 +00:00
parent 495af353db
commit b91d46614d
6 changed files with 295 additions and 149 deletions

View File

@ -192,17 +192,28 @@ OBJS-$(CONFIG_MMVIDEO_DECODER) += mmvideo.o
OBJS-$(CONFIG_MOTIONPIXELS_DECODER) += motionpixels.o
OBJS-$(CONFIG_MP1_DECODER) += mpegaudiodec.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP1FLOAT_DECODER) += mpegaudiodec_float.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP2_DECODER) += mpegaudiodec.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP2_ENCODER) += mpegaudioenc.o mpegaudio.o \
mpegaudiodata.o
OBJS-$(CONFIG_MP2FLOAT_DECODER) += mpegaudiodec_float.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP3ADU_DECODER) += mpegaudiodec.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP3ADUFLOAT_DECODER) += mpegaudiodec_float.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP3ON4_DECODER) += mpegaudiodec.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o \
mpeg4audio.o
OBJS-$(CONFIG_MP3ON4FLOAT_DECODER) += mpegaudiodec_float.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o \
mpeg4audio.o
OBJS-$(CONFIG_MP3_DECODER) += mpegaudiodec.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MP3FLOAT_DECODER) += mpegaudiodec_float.o mpegaudiodecheader.o \
mpegaudio.o mpegaudiodata.o
OBJS-$(CONFIG_MPC7_DECODER) += mpc7.o mpc.o mpegaudiodec.o \
mpegaudiodecheader.o mpegaudio.o \
mpegaudiodata.o

View File

@ -232,10 +232,15 @@ void avcodec_register_all(void)
REGISTER_DECODER (MACE6, mace6);
REGISTER_DECODER (MLP, mlp);
REGISTER_DECODER (MP1, mp1);
REGISTER_DECODER (MP1FLOAT, mp1float);
REGISTER_ENCDEC (MP2, mp2);
REGISTER_DECODER (MP2FLOAT, mp2float);
REGISTER_DECODER (MP3, mp3);
REGISTER_DECODER (MP3FLOAT, mp3float);
REGISTER_DECODER (MP3ADU, mp3adu);
REGISTER_DECODER (MP3ADUFLOAT, mp3adufloat);
REGISTER_DECODER (MP3ON4, mp3on4);
REGISTER_DECODER (MP3ON4FLOAT, mp3on4float);
REGISTER_DECODER (MPC7, mpc7);
REGISTER_DECODER (MPC8, mpc8);
REGISTER_ENCDEC (NELLYMOSER, nellymoser);

View File

@ -26,6 +26,10 @@
#ifndef AVCODEC_MPEGAUDIO_H
#define AVCODEC_MPEGAUDIO_H
#ifndef CONFIG_FLOAT
# define CONFIG_FLOAT 0
#endif
#include "avcodec.h"
#include "get_bits.h"
#include "dsputil.h"
@ -65,7 +69,10 @@
#define FIX(a) ((int)((a) * FRAC_ONE))
#if CONFIG_MPEGAUDIO_HP && CONFIG_AUDIO_NONSHORT
#if CONFIG_FLOAT
typedef float OUT_INT;
#define OUT_FMT SAMPLE_FMT_FLT
#elif CONFIG_MPEGAUDIO_HP && CONFIG_AUDIO_NONSHORT
typedef int32_t OUT_INT;
#define OUT_MAX INT32_MAX
#define OUT_MIN INT32_MIN
@ -79,9 +86,14 @@ typedef int16_t OUT_INT;
#define OUT_FMT SAMPLE_FMT_S16
#endif
#if FRAC_BITS <= 15
#if CONFIG_FLOAT
# define INTFLOAT float
typedef float MPA_INT;
#elif FRAC_BITS <= 15
# define INTFLOAT int
typedef int16_t MPA_INT;
#else
# define INTFLOAT int
typedef int32_t MPA_INT;
#endif
@ -105,7 +117,7 @@ typedef struct GranuleDef {
int preflag;
int short_start, long_end; /* long/short band indexes */
uint8_t scale_factors[40];
int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
INTFLOAT sb_hybrid[SBLIMIT * 18]; /* 576 samples */
} GranuleDef;
#define MPA_DECODE_HEADER \
@ -134,13 +146,12 @@ typedef struct MPADecodeContext {
GetBitContext in_gb;
DECLARE_ALIGNED(16, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
int synth_buf_offset[MPA_MAX_CHANNELS];
DECLARE_ALIGNED(16, int32_t, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
DECLARE_ALIGNED(16, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
GranuleDef granules[2][2]; /* Used in Layer 3 */
#ifdef DEBUG
int frame_count;
#endif
void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
int dither_state;
int error_recognition;
@ -161,7 +172,13 @@ void ff_mpa_synth_init(MPA_INT *window);
void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
MPA_INT *window, int *dither_state,
OUT_INT *samples, int incr,
int32_t sb_samples[SBLIMIT]);
INTFLOAT sb_samples[SBLIMIT]);
void ff_mpa_synth_init_float(MPA_INT *window);
void ff_mpa_synth_filter_float(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
MPA_INT *window, int *dither_state,
OUT_INT *samples, int incr,
INTFLOAT sb_samples[SBLIMIT]);
/* fast header check for resync */
static inline int ff_mpa_check_header(uint32_t header){

View File

@ -37,6 +37,8 @@ static int8_t table_4_3_exp[TABLE_4_3_SIZE];
static uint32_t table_4_3_value[TABLE_4_3_SIZE];
static uint32_t exp_table[512];
static uint32_t expval_table[512][16];
static float exp_table_float[512];
static float expval_table_float[512][16];
static void mpegaudio_tableinit(void)
{
@ -58,8 +60,10 @@ static void mpegaudio_tableinit(void)
for (value = 0; value < 16; value++) {
double f = (double)value * cbrtf(value) * pow(2, (exponent - 400) * 0.25 + FRAC_BITS + 5);
expval_table[exponent][value] = llrint(f);
expval_table_float[exponent][value] = f;
}
exp_table[exponent] = expval_table[exponent][1];
exp_table_float[exponent] = expval_table_float[exponent][1];
}
}
#endif /* CONFIG_HARDCODED_TABLES */

View File

@ -39,10 +39,26 @@
#include "mathops.h"
#if CONFIG_FLOAT
# define SHR(a,b) ((a)*(1.0/(1<<(b))))
# define compute_antialias compute_antialias_float
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
# define FIXR(x) (x)
# define FIXHR(x) (x)
# define MULH3(x, y, s) ((s)*(y)*(x))
# define MULLx(x, y, s) ((y)*(x))
# define RENAME(a) a ## _float
#else
# define SHR(a,b) ((a)>>(b))
# define compute_antialias compute_antialias_integer
/* WARNING: only correct for posititive numbers */
#define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
#define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
# define FIXR_OLD(a) ((int)((a) * FRAC_ONE + 0.5))
# define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
# define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
# define MULH3(x, y, s) MULH((s)*(x), y)
# define MULLx(x, y, s) MULL(x,y,s)
# define RENAME(a) a
#endif
/****************/
@ -73,11 +89,11 @@ static const int huff_quad_vlc_tables_sizes[2] = {
static uint16_t band_index_long[9][23];
#include "mpegaudio_tablegen.h"
/* intensity stereo coef table */
static int32_t is_table[2][16];
static int32_t is_table_lsf[2][2][16];
static INTFLOAT is_table[2][16];
static INTFLOAT is_table_lsf[2][2][16];
static int32_t csa_table[8][4];
static float csa_table_float[8][4];
static int32_t mdct_win[8][36];
static INTFLOAT mdct_win[8][36];
/* lower 2 bits: modulo 3, higher bits: shift */
static uint16_t scale_factor_modshift[64];
@ -86,7 +102,7 @@ static int32_t scale_factor_mult[15][3];
/* mult table for layer 2 group quantization */
#define SCALE_GEN(v) \
{ FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
{ FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
static const int32_t scale_factor_mult2[3][3] = {
SCALE_GEN(4.0 / 3.0), /* 3 steps */
@ -94,7 +110,7 @@ static const int32_t scale_factor_mult2[3][3] = {
SCALE_GEN(4.0 / 9.0), /* 9 steps */
};
DECLARE_ALIGNED(16, MPA_INT, ff_mpa_synth_window)[512];
DECLARE_ALIGNED(16, MPA_INT, RENAME(ff_mpa_synth_window))[512];
/**
* Convert region offsets to region sizes and truncate
@ -293,11 +309,6 @@ static av_cold int decode_init(AVCodecContext * avctx)
avctx->sample_fmt= OUT_FMT;
s->error_recognition= avctx->error_recognition;
if(avctx->antialias_algo != FF_AA_FLOAT)
s->compute_antialias= compute_antialias_integer;
else
s->compute_antialias= compute_antialias_float;
if (!init && !avctx->parse_only) {
int offset;
@ -315,9 +326,9 @@ static av_cold int decode_init(AVCodecContext * avctx)
int n, norm;
n = i + 2;
norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0 * 2.0), FRAC_BITS);
scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
i, norm,
scale_factor_mult[i][0],
@ -325,7 +336,7 @@ static av_cold int decode_init(AVCodecContext * avctx)
scale_factor_mult[i][2]);
}
ff_mpa_synth_init(ff_mpa_synth_window);
RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
/* huffman decode tables */
offset = 0;
@ -385,7 +396,7 @@ static av_cold int decode_init(AVCodecContext * avctx)
for(i=0;i<7;i++) {
float f;
int v;
INTFLOAT v;
if (i != 6) {
f = tan((double)i * M_PI / 12.0);
v = FIXR(f / (1.0 + f));
@ -520,7 +531,7 @@ static av_cold int decode_init(AVCodecContext * avctx)
tmp0 = tab[a] + tab[b];\
tmp1 = tab[a] - tab[b];\
tab[a] = tmp0;\
tab[b] = MULH(tmp1<<(s), c);\
tab[b] = MULH3(tmp1, c, 1<<(s));\
}
#define BF1(a, b, c, d)\
@ -543,9 +554,9 @@ static av_cold int decode_init(AVCodecContext * avctx)
#define ADD(a, b) tab[a] += tab[b]
/* DCT32 without 1/sqrt(2) coef zero scaling. */
static void dct32(int32_t *out, int32_t *tab)
static void dct32(INTFLOAT *out, INTFLOAT *tab)
{
int tmp0, tmp1;
INTFLOAT tmp0, tmp1;
/* pass 1 */
BF( 0, 31, COS0_0 , 1);
@ -701,7 +712,23 @@ static void dct32(int32_t *out, int32_t *tab)
out[31] = tab[31];
}
#if FRAC_BITS <= 15
#if CONFIG_FLOAT
static inline float round_sample(float *sum)
{
float sum1=*sum;
*sum = 0;
return sum1;
}
/* signed 16x16 -> 32 multiply add accumulate */
#define MACS(rt, ra, rb) rt+=(ra)*(rb)
/* signed 16x16 -> 32 multiply */
#define MULS(ra, rb) ((ra)*(rb))
#define MLSS(rt, ra, rb) rt-=(ra)*(rb)
#elif FRAC_BITS <= 15
static inline int round_sample(int *sum)
{
@ -748,7 +775,7 @@ static inline int round_sample(int64_t *sum)
#define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
{ \
int tmp;\
INTFLOAT tmp;\
tmp = p[0 * 64];\
op1(sum1, (w1)[0 * 64], tmp);\
op2(sum2, (w2)[0 * 64], tmp);\
@ -775,15 +802,17 @@ static inline int round_sample(int64_t *sum)
op2(sum2, (w2)[7 * 64], tmp);\
}
void av_cold ff_mpa_synth_init(MPA_INT *window)
void av_cold RENAME(ff_mpa_synth_init)(MPA_INT *window)
{
int i;
/* max = 18760, max sum over all 16 coefs : 44736 */
for(i=0;i<257;i++) {
int v;
INTFLOAT v;
v = ff_mpa_enwindow[i];
#if WFRAC_BITS < 16
#if CONFIG_FLOAT
v *= 1.0 / (1LL<<(16 + FRAC_BITS));
#elif WFRAC_BITS < 16
v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
#endif
window[i] = v;
@ -797,16 +826,18 @@ void av_cold ff_mpa_synth_init(MPA_INT *window)
/* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
32 samples. */
/* XXX: optimize by avoiding ring buffer usage */
void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
void RENAME(ff_mpa_synth_filter)(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
MPA_INT *window, int *dither_state,
OUT_INT *samples, int incr,
int32_t sb_samples[SBLIMIT])
INTFLOAT sb_samples[SBLIMIT])
{
register MPA_INT *synth_buf;
register const MPA_INT *w, *w2, *p;
int j, offset;
OUT_INT *samples2;
#if FRAC_BITS <= 15
#if CONFIG_FLOAT
float sum, sum2;
#elif FRAC_BITS <= 15
int32_t tmp[32];
int sum, sum2;
#else
@ -817,6 +848,7 @@ void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
synth_buf = synth_buf_ptr + offset;
#if FRAC_BITS <= 15
assert(!CONFIG_FLOAT);
dct32(tmp, sb_samples);
for(j=0;j<32;j++) {
/* NOTE: can cause a loss in precision if very high amplitude
@ -828,7 +860,7 @@ void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
#endif
/* copy to avoid wrap */
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
memcpy(synth_buf + 512, synth_buf, 32 * sizeof(*synth_buf));
samples2 = samples + 31 * incr;
w = window;
@ -873,7 +905,7 @@ void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
#define C3 FIXHR(0.86602540378443864676/2)
/* 0.5 / cos(pi*(2*i+1)/36) */
static const int icos36[9] = {
static const INTFLOAT icos36[9] = {
FIXR(0.50190991877167369479),
FIXR(0.51763809020504152469), //0
FIXR(0.55168895948124587824),
@ -886,7 +918,7 @@ static const int icos36[9] = {
};
/* 0.5 / cos(pi*(2*i+1)/36) */
static const int icos36h[9] = {
static const INTFLOAT icos36h[9] = {
FIXHR(0.50190991877167369479/2),
FIXHR(0.51763809020504152469/2), //0
FIXHR(0.55168895948124587824/2),
@ -900,9 +932,9 @@ static const int icos36h[9] = {
/* 12 points IMDCT. We compute it "by hand" by factorizing obvious
cases. */
static void imdct12(int *out, int *in)
static void imdct12(INTFLOAT *out, INTFLOAT *in)
{
int in0, in1, in2, in3, in4, in5, t1, t2;
INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
in0= in[0*3];
in1= in[1*3] + in[0*3];
@ -913,28 +945,28 @@ static void imdct12(int *out, int *in)
in5 += in3;
in3 += in1;
in2= MULH(2*in2, C3);
in3= MULH(4*in3, C3);
in2= MULH3(in2, C3, 2);
in3= MULH3(in3, C3, 4);
t1 = in0 - in4;
t2 = MULH(2*(in1 - in5), icos36h[4]);
t2 = MULH3(in1 - in5, icos36h[4], 2);
out[ 7]=
out[10]= t1 + t2;
out[ 1]=
out[ 4]= t1 - t2;
in0 += in4>>1;
in0 += SHR(in4, 1);
in4 = in0 + in2;
in5 += 2*in1;
in1 = MULH(in5 + in3, icos36h[1]);
in1 = MULH3(in5 + in3, icos36h[1], 1);
out[ 8]=
out[ 9]= in4 + in1;
out[ 2]=
out[ 3]= in4 - in1;
in0 -= in2;
in5 = MULH(2*(in5 - in3), icos36h[7]);
in5 = MULH3(in5 - in3, icos36h[7], 2);
out[ 0]=
out[ 5]= in0 - in5;
out[ 6]=
@ -953,10 +985,11 @@ static void imdct12(int *out, int *in)
/* using Lee like decomposition followed by hand coded 9 points DCT */
static void imdct36(int *out, int *buf, int *in, int *win)
static void imdct36(INTFLOAT *out, INTFLOAT *buf, INTFLOAT *in, INTFLOAT *win)
{
int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
int tmp[18], *tmp1, *in1;
int i, j;
INTFLOAT t0, t1, t2, t3, s0, s1, s2, s3;
INTFLOAT tmp[18], *tmp1, *in1;
for(i=17;i>=1;i--)
in[i] += in[i-1];
@ -966,61 +999,32 @@ static void imdct36(int *out, int *buf, int *in, int *win)
for(j=0;j<2;j++) {
tmp1 = tmp + j;
in1 = in + j;
#if 0
//more accurate but slower
int64_t t0, t1, t2, t3;
t2 = in1[2*4] + in1[2*8] - in1[2*2];
t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
t3 = in1[2*0] + SHR(in1[2*6],1);
t1 = in1[2*0] - in1[2*6];
tmp1[ 6] = t1 - (t2>>1);
tmp1[ 6] = t1 - SHR(t2,1);
tmp1[16] = t1 + t2;
t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
tmp1[10] = (t3 - t0 - t2) >> 32;
tmp1[ 2] = (t3 + t0 + t1) >> 32;
tmp1[14] = (t3 + t2 - t1) >> 32;
tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
t0 = MUL64(2*in1[2*3], C3);
t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
tmp1[ 0] = (t2 + t3 + t0) >> 32;
tmp1[12] = (t2 + t1 - t0) >> 32;
tmp1[ 8] = (t3 - t1 - t0) >> 32;
#else
t2 = in1[2*4] + in1[2*8] - in1[2*2];
t3 = in1[2*0] + (in1[2*6]>>1);
t1 = in1[2*0] - in1[2*6];
tmp1[ 6] = t1 - (t2>>1);
tmp1[16] = t1 + t2;
t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
t0 = MULH3(in1[2*2] + in1[2*4] , C2, 2);
t1 = MULH3(in1[2*4] - in1[2*8] , -2*C8, 1);
t2 = MULH3(in1[2*2] + in1[2*8] , -C4, 2);
tmp1[10] = t3 - t0 - t2;
tmp1[ 2] = t3 + t0 + t1;
tmp1[14] = t3 + t2 - t1;
tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
t0 = MULH(2*in1[2*3], C3);
tmp1[ 4] = MULH3(in1[2*5] + in1[2*7] - in1[2*1], -C3, 2);
t2 = MULH3(in1[2*1] + in1[2*5], C1, 2);
t3 = MULH3(in1[2*5] - in1[2*7], -2*C7, 1);
t0 = MULH3(in1[2*3], C3, 2);
t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
t1 = MULH3(in1[2*1] + in1[2*7], -C5, 2);
tmp1[ 0] = t2 + t3 + t0;
tmp1[12] = t2 + t1 - t0;
tmp1[ 8] = t3 - t1 - t0;
#endif
}
i = 0;
@ -1032,33 +1036,33 @@ static void imdct36(int *out, int *buf, int *in, int *win)
t2 = tmp[i + 1];
t3 = tmp[i + 3];
s1 = MULH(2*(t3 + t2), icos36h[j]);
s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
s1 = MULH3(t3 + t2, icos36h[j], 2);
s3 = MULLx(t3 - t2, icos36[8 - j], FRAC_BITS);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
buf[9 + j] = MULH(t0, win[18 + 9 + j]);
buf[8 - j] = MULH(t0, win[18 + 8 - j]);
out[(9 + j)*SBLIMIT] = MULH3(t1, win[9 + j], 1) + buf[9 + j];
out[(8 - j)*SBLIMIT] = MULH3(t1, win[8 - j], 1) + buf[8 - j];
buf[9 + j] = MULH3(t0, win[18 + 9 + j], 1);
buf[8 - j] = MULH3(t0, win[18 + 8 - j], 1);
t0 = s2 + s3;
t1 = s2 - s3;
out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
buf[ + j] = MULH(t0, win[18 + j]);
out[(9 + 8 - j)*SBLIMIT] = MULH3(t1, win[9 + 8 - j], 1) + buf[9 + 8 - j];
out[( j)*SBLIMIT] = MULH3(t1, win[ j], 1) + buf[ j];
buf[9 + 8 - j] = MULH3(t0, win[18 + 9 + 8 - j], 1);
buf[ + j] = MULH3(t0, win[18 + j], 1);
i += 4;
}
s0 = tmp[16];
s1 = MULH(2*tmp[17], icos36h[4]);
s1 = MULH3(tmp[17], icos36h[4], 2);
t0 = s0 + s1;
t1 = s0 - s1;
out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
out[(9 + 4)*SBLIMIT] = MULH3(t1, win[9 + 4], 1) + buf[9 + 4];
out[(8 - 4)*SBLIMIT] = MULH3(t1, win[8 - 4], 1) + buf[8 - 4];
buf[9 + 4] = MULH3(t0, win[18 + 9 + 4], 1);
buf[8 - 4] = MULH3(t0, win[18 + 8 - 4], 1);
}
/* return the number of decoded frames */
@ -1314,6 +1318,7 @@ static int mp_decode_layer2(MPADecodeContext *s)
return 3 * 12;
}
//FIXME optimze this shit
static inline void lsf_sf_expand(int *slen,
int sf, int n1, int n2, int n3)
{
@ -1424,7 +1429,8 @@ static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
/* read huffcode and compute each couple */
for(;j>0;j--) {
int exponent, x, y, v;
int exponent, x, y;
INTFLOAT v;
int pos= get_bits_count(&s->gb);
if (pos >= end_pos){
@ -1451,8 +1457,8 @@ static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
x = y >> 5;
y = y & 0x0f;
if (x < 15){
v = expval_table[ exponent ][ x ];
// v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
v = RENAME(expval_table)[ exponent ][ x ];
// v = RENAME(expval_table)[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
}else{
x += get_bitsz(&s->gb, linbits);
v = l3_unscale(x, exponent);
@ -1461,7 +1467,7 @@ static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
v = -v;
g->sb_hybrid[s_index] = v;
if (y < 15){
v = expval_table[ exponent ][ y ];
v = RENAME(expval_table)[ exponent ][ y ];
}else{
y += get_bitsz(&s->gb, linbits);
v = l3_unscale(y, exponent);
@ -1474,7 +1480,7 @@ static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
y = y & 0x0f;
x += y;
if (x < 15){
v = expval_table[ exponent ][ x ];
v = RENAME(expval_table)[ exponent ][ x ];
}else{
x += get_bitsz(&s->gb, linbits);
v = l3_unscale(x, exponent);
@ -1521,12 +1527,12 @@ static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
g->sb_hybrid[s_index+3]= 0;
while(code){
static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
int v;
INTFLOAT v;
int pos= s_index+idxtab[code];
code ^= 8>>idxtab[code];
v = exp_table[ exponents[pos] ];
// v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
if(get_bits1(&s->gb))
v = RENAME(exp_table)[ exponents[pos] ];
// v = RENAME(exp_table)[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
if(get_bits1(&s->gb)) //FIXME try to flip the sign bit in int32_t, same above
v = -v;
g->sb_hybrid[pos] = v;
}
@ -1557,8 +1563,8 @@ static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
static void reorder_block(MPADecodeContext *s, GranuleDef *g)
{
int i, j, len;
int32_t *ptr, *dst, *ptr1;
int32_t tmp[576];
INTFLOAT *ptr, *dst, *ptr1;
INTFLOAT tmp[576];
if (g->block_type != 2)
return;
@ -1594,10 +1600,8 @@ static void compute_stereo(MPADecodeContext *s,
GranuleDef *g0, GranuleDef *g1)
{
int i, j, k, l;
int32_t v1, v2;
int sf_max, tmp0, tmp1, sf, len, non_zero_found;
int32_t (*is_tab)[16];
int32_t *tab0, *tab1;
int sf_max, sf, len, non_zero_found;
INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
int non_zero_found_short[3];
/* intensity stereo */
@ -1641,8 +1645,8 @@ static void compute_stereo(MPADecodeContext *s,
v2 = is_tab[1][sf];
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tab0[j] = MULL(tmp0, v1, FRAC_BITS);
tab1[j] = MULL(tmp0, v2, FRAC_BITS);
tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
}
} else {
found1:
@ -1652,8 +1656,8 @@ static void compute_stereo(MPADecodeContext *s,
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tmp1 = tab1[j];
tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
}
}
}
@ -1685,8 +1689,8 @@ static void compute_stereo(MPADecodeContext *s,
v2 = is_tab[1][sf];
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tab0[j] = MULL(tmp0, v1, FRAC_BITS);
tab1[j] = MULL(tmp0, v2, FRAC_BITS);
tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
}
} else {
found2:
@ -1696,8 +1700,8 @@ static void compute_stereo(MPADecodeContext *s,
for(j=0;j<len;j++) {
tmp0 = tab0[j];
tmp1 = tab1[j];
tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
}
}
}
@ -1760,7 +1764,7 @@ static void compute_antialias_integer(MPADecodeContext *s,
static void compute_antialias_float(MPADecodeContext *s,
GranuleDef *g)
{
int32_t *ptr;
float *ptr;
int n, i;
/* we antialias only "long" bands */
@ -1780,8 +1784,8 @@ static void compute_antialias_float(MPADecodeContext *s,
#define FLOAT_AA(j)\
tmp0= ptr[-1-j];\
tmp1= ptr[ j];\
ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
ptr[-1-j] = tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j];\
ptr[ j] = tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j];
FLOAT_AA(0)
FLOAT_AA(1)
@ -1798,20 +1802,21 @@ static void compute_antialias_float(MPADecodeContext *s,
static void compute_imdct(MPADecodeContext *s,
GranuleDef *g,
int32_t *sb_samples,
int32_t *mdct_buf)
INTFLOAT *sb_samples,
INTFLOAT *mdct_buf)
{
int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
int32_t out2[12];
int i, j, mdct_long_end, v, sblimit;
INTFLOAT *win, *win1, *out_ptr, *ptr, *buf, *ptr1;
INTFLOAT out2[12];
int i, j, mdct_long_end, sblimit;
/* find last non zero block */
ptr = g->sb_hybrid + 576;
ptr1 = g->sb_hybrid + 2 * 18;
while (ptr >= ptr1) {
int32_t *p;
ptr -= 6;
v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
if (v != 0)
p= (int32_t*)ptr;
if(p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
break;
}
sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
@ -1854,20 +1859,20 @@ static void compute_imdct(MPADecodeContext *s,
}
imdct12(out2, ptr + 0);
for(i=0;i<6;i++) {
*out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*1];
buf[i + 6*2] = MULH3(out2[i + 6], win[i + 6], 1);
out_ptr += SBLIMIT;
}
imdct12(out2, ptr + 1);
for(i=0;i<6;i++) {
*out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
*out_ptr = MULH3(out2[i ], win[i ], 1) + buf[i + 6*2];
buf[i + 6*0] = MULH3(out2[i + 6], win[i + 6], 1);
out_ptr += SBLIMIT;
}
imdct12(out2, ptr + 2);
for(i=0;i<6;i++) {
buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
buf[i + 6*0] = MULH3(out2[i ], win[i ], 1) + buf[i + 6*0];
buf[i + 6*1] = MULH3(out2[i + 6], win[i + 6], 1);
buf[i + 6*2] = 0;
}
ptr += 18;
@ -1892,7 +1897,7 @@ static int mp_decode_layer3(MPADecodeContext *s)
int nb_granules, main_data_begin, private_bits;
int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
GranuleDef *g;
int16_t exponents[576];
int16_t exponents[576]; //FIXME try INTFLOAT
/* read side info */
if (s->lsf) {
@ -2122,7 +2127,7 @@ static int mp_decode_layer3(MPADecodeContext *s)
g = &s->granules[ch][gr];
reorder_block(s, g);
s->compute_antialias(s, g);
compute_antialias(s, g);
compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
}
} /* gr */
@ -2191,8 +2196,8 @@ static int mp_decode_frame(MPADecodeContext *s,
for(ch=0;ch<s->nb_channels;ch++) {
samples_ptr = samples + ch;
for(i=0;i<nb_frames;i++) {
ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
ff_mpa_synth_window, &s->dither_state,
RENAME(ff_mpa_synth_filter)(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
RENAME(ff_mpa_synth_window), &s->dither_state,
samples_ptr, s->nb_channels,
s->sb_samples[ch][i]);
samples_ptr += 32 * s->nb_channels;
@ -2386,7 +2391,6 @@ static int decode_init_mp3on4(AVCodecContext * avctx)
*/
for (i = 1; i < s->frames; i++) {
s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
s->mp3decctx[i]->adu_mode = 1;
s->mp3decctx[i]->avctx = avctx;
}
@ -2480,6 +2484,7 @@ static int decode_frame_mp3on4(AVCodecContext * avctx,
}
#endif /* CONFIG_MP3ON4_DECODER */
#if !CONFIG_FLOAT
#if CONFIG_MP1_DECODER
AVCodec mp1_decoder =
{
@ -2559,3 +2564,4 @@ AVCodec mp3on4_decoder =
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
};
#endif
#endif

View File

@ -0,0 +1,103 @@
/*
* Float MPEG Audio decoder
* Copyright (c) 2010 Michael Niedermayer
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define CONFIG_FLOAT 1
#include "mpegaudiodec.c"
#if CONFIG_MP1FLOAT_DECODER
AVCodec mp1float_decoder =
{
"mp1float",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_MP1,
sizeof(MPADecodeContext),
decode_init,
NULL,
NULL,
decode_frame,
CODEC_CAP_PARSE_ONLY,
.flush= flush,
.long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
};
#endif
#if CONFIG_MP2FLOAT_DECODER
AVCodec mp2float_decoder =
{
"mp2float",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_MP2,
sizeof(MPADecodeContext),
decode_init,
NULL,
NULL,
decode_frame,
CODEC_CAP_PARSE_ONLY,
.flush= flush,
.long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
};
#endif
#if CONFIG_MP3FLOAT_DECODER
AVCodec mp3float_decoder =
{
"mp3float",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_MP3,
sizeof(MPADecodeContext),
decode_init,
NULL,
NULL,
decode_frame,
CODEC_CAP_PARSE_ONLY,
.flush= flush,
.long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
};
#endif
#if CONFIG_MP3ADUFLOAT_DECODER
AVCodec mp3adufloat_decoder =
{
"mp3adufloat",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_MP3ADU,
sizeof(MPADecodeContext),
decode_init,
NULL,
NULL,
decode_frame_adu,
CODEC_CAP_PARSE_ONLY,
.flush= flush,
.long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
};
#endif
#if CONFIG_MP3ON4FLOAT_DECODER
AVCodec mp3on4float_decoder =
{
"mp3on4float",
AVMEDIA_TYPE_AUDIO,
CODEC_ID_MP3ON4,
sizeof(MP3On4DecodeContext),
decode_init_mp3on4,
NULL,
decode_close_mp3on4,
decode_frame_mp3on4,
.flush= flush,
.long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
};
#endif