[rand.dist.norm.lognormal]
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@103957 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c2b0dc7e33
commit
2bc36fcff3
162
include/random
162
include/random
@ -1124,7 +1124,62 @@ public:
|
||||
};
|
||||
|
||||
template<class RealType = double>
|
||||
class lognormal_distribution;
|
||||
class lognormal_distribution
|
||||
{
|
||||
public:
|
||||
// types
|
||||
typedef RealType result_type;
|
||||
|
||||
class param_type
|
||||
{
|
||||
public:
|
||||
typedef lognormal_distribution distribution_type;
|
||||
|
||||
explicit param_type(result_type m = 0, result_type s = 1);
|
||||
|
||||
result_type m() const;
|
||||
result_type s() const;
|
||||
|
||||
friend bool operator==(const param_type& x, const param_type& y);
|
||||
friend bool operator!=(const param_type& x, const param_type& y);
|
||||
};
|
||||
|
||||
// constructor and reset functions
|
||||
explicit lognormal_distribution(result_type m = 0, result_type s = 1);
|
||||
explicit lognormal_distribution(const param_type& parm);
|
||||
void reset();
|
||||
|
||||
// generating functions
|
||||
template<class URNG> result_type operator()(URNG& g);
|
||||
template<class URNG> result_type operator()(URNG& g, const param_type& parm);
|
||||
|
||||
// property functions
|
||||
result_type m() const;
|
||||
result_type s() const;
|
||||
|
||||
param_type param() const;
|
||||
void param(const param_type& parm);
|
||||
|
||||
result_type min() const;
|
||||
result_type max() const;
|
||||
|
||||
friend bool operator==(const lognormal_distribution& x,
|
||||
const lognormal_distribution& y);
|
||||
friend bool operator!=(const lognormal_distribution& x,
|
||||
const lognormal_distribution& y);
|
||||
|
||||
template <class charT, class traits>
|
||||
friend
|
||||
basic_ostream<charT, traits>&
|
||||
operator<<(basic_ostream<charT, traits>& os,
|
||||
const lognormal_distribution& x);
|
||||
|
||||
template <class charT, class traits>
|
||||
friend
|
||||
basic_istream<charT, traits>&
|
||||
operator>>(basic_istream<charT, traits>& is,
|
||||
lognormal_distribution& x);
|
||||
};
|
||||
|
||||
template<class RealType = double>
|
||||
class chi_squared_distribution
|
||||
@ -3796,6 +3851,111 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
return __is;
|
||||
}
|
||||
|
||||
// lognormal_distribution
|
||||
|
||||
template<class _RealType = double>
|
||||
class lognormal_distribution
|
||||
{
|
||||
public:
|
||||
// types
|
||||
typedef _RealType result_type;
|
||||
|
||||
class param_type
|
||||
{
|
||||
normal_distribution<result_type> __nd_;
|
||||
public:
|
||||
typedef lognormal_distribution distribution_type;
|
||||
|
||||
explicit param_type(result_type __m = 0, result_type __s = 1)
|
||||
: __nd_(__m, __s) {}
|
||||
|
||||
result_type m() const {return __nd_.mean();}
|
||||
result_type s() const {return __nd_.stddev();}
|
||||
|
||||
friend bool operator==(const param_type& __x, const param_type& __y)
|
||||
{return __x.__nd_ == __y.__nd_;}
|
||||
friend bool operator!=(const param_type& __x, const param_type& __y)
|
||||
{return !(__x == __y);}
|
||||
friend class lognormal_distribution;
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const lognormal_distribution<_RT>& __x);
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
lognormal_distribution<_RT>& __x);
|
||||
};
|
||||
|
||||
private:
|
||||
param_type __p_;
|
||||
|
||||
public:
|
||||
// constructor and reset functions
|
||||
explicit lognormal_distribution(result_type __m = 0, result_type __s = 1)
|
||||
: __p_(param_type(__m, __s)) {}
|
||||
explicit lognormal_distribution(const param_type& __p)
|
||||
: __p_(__p) {}
|
||||
void reset() {__p_.__nd_.reset();}
|
||||
|
||||
// generating functions
|
||||
template<class _URNG> result_type operator()(_URNG& __g)
|
||||
{return (*this)(__g, __p_);}
|
||||
template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p)
|
||||
{return _STD::exp(const_cast<normal_distribution<result_type>&>(__p.__nd_)(__g));}
|
||||
|
||||
// property functions
|
||||
result_type m() const {return __p_.m();}
|
||||
result_type s() const {return __p_.s();}
|
||||
|
||||
param_type param() const {return __p_;}
|
||||
void param(const param_type& __p) {return __p_ = __p;}
|
||||
|
||||
result_type min() const {return 0;}
|
||||
result_type max() const {return numeric_limits<result_type>::infinity();}
|
||||
|
||||
friend bool operator==(const lognormal_distribution& __x,
|
||||
const lognormal_distribution& __y)
|
||||
{return __x.__p_ == __y.__p_;}
|
||||
friend bool operator!=(const lognormal_distribution& __x,
|
||||
const lognormal_distribution& __y)
|
||||
{return !(__x == __y);}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const lognormal_distribution<_RT>& __x);
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
friend
|
||||
basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
lognormal_distribution<_RT>& __x);
|
||||
};
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
inline
|
||||
basic_ostream<_CharT, _Traits>&
|
||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
|
||||
const lognormal_distribution<_RT>& __x)
|
||||
{
|
||||
return __os << __x.__p_.__nd_;
|
||||
}
|
||||
|
||||
template <class _CharT, class _Traits, class _RT>
|
||||
inline
|
||||
basic_istream<_CharT, _Traits>&
|
||||
operator>>(basic_istream<_CharT, _Traits>& __is,
|
||||
lognormal_distribution<_RT>& __x)
|
||||
{
|
||||
return __is >> __x.__p_.__nd_;
|
||||
}
|
||||
|
||||
// poisson_distribution
|
||||
|
||||
template<class _IntType = int>
|
||||
|
@ -0,0 +1,34 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// lognormal_distribution& operator=(const lognormal_distribution&);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
void
|
||||
test1()
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d1(20, 0.75);
|
||||
D d2;
|
||||
assert(d1 != d2);
|
||||
d2 = d1;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
test1();
|
||||
}
|
@ -0,0 +1,32 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// lognormal_distribution(const lognormal_distribution&);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
void
|
||||
test1()
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d1(20, 1.75);
|
||||
D d2 = d1;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
test1();
|
||||
}
|
@ -0,0 +1,40 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// explicit lognormal_distribution(result_type mean = 0, result_type stddev = 1);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d;
|
||||
assert(d.m() == 0);
|
||||
assert(d.s() == 1);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d(14.5);
|
||||
assert(d.m() == 14.5);
|
||||
assert(d.s() == 1);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d(14.5, 5.25);
|
||||
assert(d.m() == 14.5);
|
||||
assert(d.s() == 5.25);
|
||||
}
|
||||
}
|
@ -0,0 +1,30 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// explicit lognormal_distribution(const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P p(0.25, 10);
|
||||
D d(p);
|
||||
assert(d.m() == 0.25);
|
||||
assert(d.s() == 10);
|
||||
}
|
||||
}
|
@ -0,0 +1,37 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// bool operator=(const lognormal_distribution& x,
|
||||
// const lognormal_distribution& y);
|
||||
// bool operator!(const lognormal_distribution& x,
|
||||
// const lognormal_distribution& y);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d1(2.5, 4);
|
||||
D d2(2.5, 4);
|
||||
assert(d1 == d2);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d1(2.5, 4);
|
||||
D d2(2.5, 4.5);
|
||||
assert(d1 != d2);
|
||||
}
|
||||
}
|
@ -0,0 +1,242 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
T
|
||||
sqr(T x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(-1./8192, 0.015625);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(d.m() + sqr(d.s())/2);
|
||||
double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
|
||||
double x_skew = (std::exp(sqr(d.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.05);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.25);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(-1./32, 0.25);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(d.m() + sqr(d.s())/2);
|
||||
double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
|
||||
double x_skew = (std::exp(sqr(d.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(-1./8, 0.5);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(d.m() + sqr(d.s())/2);
|
||||
double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
|
||||
double x_skew = (std::exp(sqr(d.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.02);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d;
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(d.m() + sqr(d.s())/2);
|
||||
double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
|
||||
double x_skew = (std::exp(sqr(d.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.02);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.08);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.4);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(-0.78125, 1.25);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(d.m() + sqr(d.s())/2);
|
||||
double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
|
||||
double x_skew = (std::exp(sqr(d.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(d.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
|
||||
3*std::exp(2*sqr(d.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.04);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.2);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.7);
|
||||
}
|
||||
}
|
@ -0,0 +1,248 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
#include <vector>
|
||||
#include <numeric>
|
||||
|
||||
template <class T>
|
||||
inline
|
||||
T
|
||||
sqr(T x)
|
||||
{
|
||||
return x * x;
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d;
|
||||
P p(-1./8192, 0.015625);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(p.m() + sqr(p.s())/2);
|
||||
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
|
||||
double x_skew = (std::exp(sqr(p.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.05);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.25);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d;
|
||||
P p(-1./32, 0.25);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(p.m() + sqr(p.s())/2);
|
||||
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
|
||||
double x_skew = (std::exp(sqr(p.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.01);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d;
|
||||
P p(-1./8, 0.5);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(p.m() + sqr(p.s())/2);
|
||||
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
|
||||
double x_skew = (std::exp(sqr(p.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.01);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.02);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d(3, 4);
|
||||
P p;
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(p.m() + sqr(p.s())/2);
|
||||
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
|
||||
double x_skew = (std::exp(sqr(p.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.02);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.08);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.4);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
typedef std::mt19937 G;
|
||||
G g;
|
||||
D d;
|
||||
P p(-0.78125, 1.25);
|
||||
const int N = 1000000;
|
||||
std::vector<D::result_type> u;
|
||||
for (int i = 0; i < N; ++i)
|
||||
{
|
||||
D::result_type v = d(g, p);
|
||||
assert(v > 0);
|
||||
u.push_back(v);
|
||||
}
|
||||
double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
|
||||
double var = 0;
|
||||
double skew = 0;
|
||||
double kurtosis = 0;
|
||||
for (int i = 0; i < u.size(); ++i)
|
||||
{
|
||||
double d = (u[i] - mean);
|
||||
double d2 = sqr(d);
|
||||
var += d2;
|
||||
skew += d * d2;
|
||||
kurtosis += d2 * d2;
|
||||
}
|
||||
var /= u.size();
|
||||
double dev = std::sqrt(var);
|
||||
skew /= u.size() * dev * var;
|
||||
kurtosis /= u.size() * var * var;
|
||||
kurtosis -= 3;
|
||||
double x_mean = std::exp(p.m() + sqr(p.s())/2);
|
||||
double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
|
||||
double x_skew = (std::exp(sqr(p.s())) + 2) *
|
||||
std::sqrt((std::exp(sqr(p.s())) - 1));
|
||||
double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
|
||||
3*std::exp(2*sqr(p.s())) - 6;
|
||||
assert(std::abs(mean - x_mean) / x_mean < 0.01);
|
||||
assert(std::abs(var - x_var) / x_var < 0.04);
|
||||
assert(std::abs(skew - x_skew) / x_skew < 0.2);
|
||||
assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.7);
|
||||
}
|
||||
}
|
@ -0,0 +1,29 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// param_type param() const;
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P p(.125, .5);
|
||||
D d(p);
|
||||
assert(d.param() == p);
|
||||
}
|
||||
}
|
@ -0,0 +1,41 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// template <class CharT, class Traits, class RealType>
|
||||
// basic_ostream<CharT, Traits>&
|
||||
// operator<<(basic_ostream<CharT, Traits>& os,
|
||||
// const lognormal_distribution<RealType>& x);
|
||||
|
||||
// template <class CharT, class Traits, class RealType>
|
||||
// basic_istream<CharT, Traits>&
|
||||
// operator>>(basic_istream<CharT, Traits>& is,
|
||||
// lognormal_distribution<RealType>& x);
|
||||
|
||||
#include <random>
|
||||
#include <sstream>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d1(7, 5);
|
||||
std::ostringstream os;
|
||||
os << d1;
|
||||
std::istringstream is(os.str());
|
||||
D d2;
|
||||
is >> d2;
|
||||
assert(d1 == d2);
|
||||
}
|
||||
}
|
@ -0,0 +1,28 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// result_type max() const;
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d(5, .25);
|
||||
D::result_type m = d.max();
|
||||
assert(m == INFINITY);
|
||||
}
|
||||
}
|
@ -0,0 +1,27 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
|
||||
// result_type min() const;
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
D d(.5, .5);
|
||||
assert(d.min() == 0);
|
||||
}
|
||||
}
|
@ -0,0 +1,32 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p0(.75, 6);
|
||||
param_type p;
|
||||
p = p0;
|
||||
assert(p.m() == .75);
|
||||
assert(p.s() == 6);
|
||||
}
|
||||
}
|
@ -0,0 +1,31 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p0(10, .125);
|
||||
param_type p = p0;
|
||||
assert(p.m() == 10);
|
||||
assert(p.s() == .125);
|
||||
}
|
||||
}
|
@ -0,0 +1,44 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p;
|
||||
assert(p.m() == 0);
|
||||
assert(p.s() == 1);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p(10);
|
||||
assert(p.m() == 10);
|
||||
assert(p.s() == 1);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p(10, 5);
|
||||
assert(p.m() == 10);
|
||||
assert(p.s() == 5);
|
||||
}
|
||||
}
|
@ -0,0 +1,37 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <limits>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p1(0.75, .5);
|
||||
param_type p2(0.75, .5);
|
||||
assert(p1 == p2);
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
param_type p1(0.75, .5);
|
||||
param_type p2(0.5, .5);
|
||||
assert(p1 != p2);
|
||||
}
|
||||
}
|
@ -0,0 +1,28 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
// {
|
||||
// class param_type;
|
||||
|
||||
#include <random>
|
||||
#include <type_traits>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type param_type;
|
||||
typedef param_type::distribution_type distribution_type;
|
||||
static_assert((std::is_same<D, distribution_type>::value), "");
|
||||
}
|
||||
}
|
@ -0,0 +1,30 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution;
|
||||
|
||||
// void param(const param_type& parm);
|
||||
|
||||
#include <random>
|
||||
#include <cassert>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::param_type P;
|
||||
P p(0.25, 5.5);
|
||||
D d(0.75, 4);
|
||||
d.param(p);
|
||||
assert(d.param() == p);
|
||||
}
|
||||
}
|
@ -0,0 +1,34 @@
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
// <random>
|
||||
|
||||
// template<class RealType = double>
|
||||
// class lognormal_distribution
|
||||
// {
|
||||
// public:
|
||||
// // types
|
||||
// typedef RealType result_type;
|
||||
|
||||
#include <random>
|
||||
#include <type_traits>
|
||||
|
||||
int main()
|
||||
{
|
||||
{
|
||||
typedef std::lognormal_distribution<> D;
|
||||
typedef D::result_type result_type;
|
||||
static_assert((std::is_same<result_type, double>::value), "");
|
||||
}
|
||||
{
|
||||
typedef std::lognormal_distribution<float> D;
|
||||
typedef D::result_type result_type;
|
||||
static_assert((std::is_same<result_type, float>::value), "");
|
||||
}
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user