[rand.dist.norm.lognormal]
git-svn-id: https://llvm.org/svn/llvm-project/libcxx/trunk@103957 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
		
							
								
								
									
										162
									
								
								include/random
									
									
									
									
									
								
							
							
						
						
									
										162
									
								
								include/random
									
									
									
									
									
								
							@@ -1124,7 +1124,62 @@ public:
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class RealType = double>
 | 
			
		||||
    class lognormal_distribution;
 | 
			
		||||
class lognormal_distribution
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    // types
 | 
			
		||||
    typedef RealType result_type;
 | 
			
		||||
 | 
			
		||||
    class param_type
 | 
			
		||||
    {
 | 
			
		||||
    public:
 | 
			
		||||
        typedef lognormal_distribution distribution_type;
 | 
			
		||||
 | 
			
		||||
        explicit param_type(result_type m = 0, result_type s = 1);
 | 
			
		||||
 | 
			
		||||
        result_type m() const;
 | 
			
		||||
        result_type s() const;
 | 
			
		||||
 | 
			
		||||
        friend bool operator==(const param_type& x, const param_type& y);
 | 
			
		||||
        friend bool operator!=(const param_type& x, const param_type& y);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // constructor and reset functions
 | 
			
		||||
    explicit lognormal_distribution(result_type m = 0, result_type s = 1);
 | 
			
		||||
    explicit lognormal_distribution(const param_type& parm);
 | 
			
		||||
    void reset();
 | 
			
		||||
 | 
			
		||||
    // generating functions
 | 
			
		||||
    template<class URNG> result_type operator()(URNG& g);
 | 
			
		||||
    template<class URNG> result_type operator()(URNG& g, const param_type& parm);
 | 
			
		||||
 | 
			
		||||
    // property functions
 | 
			
		||||
    result_type m() const;
 | 
			
		||||
    result_type s() const;
 | 
			
		||||
 | 
			
		||||
    param_type param() const;
 | 
			
		||||
    void param(const param_type& parm);
 | 
			
		||||
 | 
			
		||||
    result_type min() const;
 | 
			
		||||
    result_type max() const;
 | 
			
		||||
 | 
			
		||||
    friend bool operator==(const lognormal_distribution& x,
 | 
			
		||||
                           const lognormal_distribution& y);
 | 
			
		||||
    friend bool operator!=(const lognormal_distribution& x,
 | 
			
		||||
                           const lognormal_distribution& y);
 | 
			
		||||
 | 
			
		||||
    template <class charT, class traits>
 | 
			
		||||
    friend
 | 
			
		||||
    basic_ostream<charT, traits>&
 | 
			
		||||
    operator<<(basic_ostream<charT, traits>& os,
 | 
			
		||||
               const lognormal_distribution& x);
 | 
			
		||||
    
 | 
			
		||||
    template <class charT, class traits>
 | 
			
		||||
    friend
 | 
			
		||||
    basic_istream<charT, traits>&
 | 
			
		||||
    operator>>(basic_istream<charT, traits>& is,
 | 
			
		||||
               lognormal_distribution& x);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template<class RealType = double>
 | 
			
		||||
class chi_squared_distribution
 | 
			
		||||
@@ -3796,6 +3851,111 @@ operator>>(basic_istream<_CharT, _Traits>& __is,
 | 
			
		||||
    return __is;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// lognormal_distribution
 | 
			
		||||
 | 
			
		||||
template<class _RealType = double>
 | 
			
		||||
class lognormal_distribution
 | 
			
		||||
{
 | 
			
		||||
public:
 | 
			
		||||
    // types
 | 
			
		||||
    typedef _RealType result_type;
 | 
			
		||||
 | 
			
		||||
    class param_type
 | 
			
		||||
    {
 | 
			
		||||
        normal_distribution<result_type> __nd_;
 | 
			
		||||
    public:
 | 
			
		||||
        typedef lognormal_distribution distribution_type;
 | 
			
		||||
 | 
			
		||||
        explicit param_type(result_type __m = 0, result_type __s = 1)
 | 
			
		||||
            : __nd_(__m, __s) {}
 | 
			
		||||
 | 
			
		||||
        result_type m() const {return __nd_.mean();}
 | 
			
		||||
        result_type s() const {return __nd_.stddev();}
 | 
			
		||||
 | 
			
		||||
        friend bool operator==(const param_type& __x, const param_type& __y)
 | 
			
		||||
            {return __x.__nd_ == __y.__nd_;}
 | 
			
		||||
        friend bool operator!=(const param_type& __x, const param_type& __y)
 | 
			
		||||
            {return !(__x == __y);}
 | 
			
		||||
        friend class lognormal_distribution;
 | 
			
		||||
 | 
			
		||||
        template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
        friend
 | 
			
		||||
        basic_ostream<_CharT, _Traits>&
 | 
			
		||||
        operator<<(basic_ostream<_CharT, _Traits>& __os,
 | 
			
		||||
                   const lognormal_distribution<_RT>& __x);
 | 
			
		||||
        
 | 
			
		||||
        template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
        friend
 | 
			
		||||
        basic_istream<_CharT, _Traits>&
 | 
			
		||||
        operator>>(basic_istream<_CharT, _Traits>& __is,
 | 
			
		||||
                   lognormal_distribution<_RT>& __x);
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
private:
 | 
			
		||||
    param_type __p_;
 | 
			
		||||
 | 
			
		||||
public:
 | 
			
		||||
    // constructor and reset functions
 | 
			
		||||
    explicit lognormal_distribution(result_type __m = 0, result_type __s = 1)
 | 
			
		||||
        : __p_(param_type(__m, __s)) {}
 | 
			
		||||
    explicit lognormal_distribution(const param_type& __p)
 | 
			
		||||
        : __p_(__p) {}
 | 
			
		||||
    void reset() {__p_.__nd_.reset();}
 | 
			
		||||
 | 
			
		||||
    // generating functions
 | 
			
		||||
    template<class _URNG> result_type operator()(_URNG& __g)
 | 
			
		||||
        {return (*this)(__g, __p_);}
 | 
			
		||||
    template<class _URNG> result_type operator()(_URNG& __g, const param_type& __p)
 | 
			
		||||
        {return _STD::exp(const_cast<normal_distribution<result_type>&>(__p.__nd_)(__g));}
 | 
			
		||||
 | 
			
		||||
    // property functions
 | 
			
		||||
    result_type m() const {return __p_.m();}
 | 
			
		||||
    result_type s() const {return __p_.s();}
 | 
			
		||||
 | 
			
		||||
    param_type param() const {return __p_;}
 | 
			
		||||
    void param(const param_type& __p) {return __p_ = __p;}
 | 
			
		||||
 | 
			
		||||
    result_type min() const {return 0;}
 | 
			
		||||
    result_type max() const {return numeric_limits<result_type>::infinity();}
 | 
			
		||||
 | 
			
		||||
    friend bool operator==(const lognormal_distribution& __x,
 | 
			
		||||
                           const lognormal_distribution& __y)
 | 
			
		||||
        {return __x.__p_ == __y.__p_;}
 | 
			
		||||
    friend bool operator!=(const lognormal_distribution& __x,
 | 
			
		||||
                           const lognormal_distribution& __y)
 | 
			
		||||
        {return !(__x == __y);}
 | 
			
		||||
 | 
			
		||||
    template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
    friend
 | 
			
		||||
    basic_ostream<_CharT, _Traits>&
 | 
			
		||||
    operator<<(basic_ostream<_CharT, _Traits>& __os,
 | 
			
		||||
               const lognormal_distribution<_RT>& __x);
 | 
			
		||||
    
 | 
			
		||||
    template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
    friend
 | 
			
		||||
    basic_istream<_CharT, _Traits>&
 | 
			
		||||
    operator>>(basic_istream<_CharT, _Traits>& __is,
 | 
			
		||||
               lognormal_distribution<_RT>& __x);
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
inline
 | 
			
		||||
basic_ostream<_CharT, _Traits>&
 | 
			
		||||
operator<<(basic_ostream<_CharT, _Traits>& __os,
 | 
			
		||||
           const lognormal_distribution<_RT>& __x)
 | 
			
		||||
{
 | 
			
		||||
    return __os << __x.__p_.__nd_;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <class _CharT, class _Traits, class _RT>
 | 
			
		||||
inline
 | 
			
		||||
basic_istream<_CharT, _Traits>&
 | 
			
		||||
operator>>(basic_istream<_CharT, _Traits>& __is,
 | 
			
		||||
           lognormal_distribution<_RT>& __x)
 | 
			
		||||
{
 | 
			
		||||
    return __is >> __x.__p_.__nd_;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// poisson_distribution
 | 
			
		||||
 | 
			
		||||
template<class _IntType = int>
 | 
			
		||||
 
 | 
			
		||||
@@ -0,0 +1,34 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// lognormal_distribution& operator=(const lognormal_distribution&);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
void
 | 
			
		||||
test1()
 | 
			
		||||
{
 | 
			
		||||
    typedef std::lognormal_distribution<> D;
 | 
			
		||||
    D d1(20, 0.75);
 | 
			
		||||
    D d2;
 | 
			
		||||
    assert(d1 != d2);
 | 
			
		||||
    d2 = d1;
 | 
			
		||||
    assert(d1 == d2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    test1();
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,32 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// lognormal_distribution(const lognormal_distribution&);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
void
 | 
			
		||||
test1()
 | 
			
		||||
{
 | 
			
		||||
    typedef std::lognormal_distribution<> D;
 | 
			
		||||
    D d1(20, 1.75);
 | 
			
		||||
    D d2 = d1;
 | 
			
		||||
    assert(d1 == d2);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    test1();
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,40 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// explicit lognormal_distribution(result_type mean = 0, result_type stddev = 1);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d;
 | 
			
		||||
        assert(d.m() == 0);
 | 
			
		||||
        assert(d.s() == 1);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d(14.5);
 | 
			
		||||
        assert(d.m() == 14.5);
 | 
			
		||||
        assert(d.s() == 1);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d(14.5, 5.25);
 | 
			
		||||
        assert(d.m() == 14.5);
 | 
			
		||||
        assert(d.s() == 5.25);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,30 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// explicit lognormal_distribution(const param_type& parm);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        P p(0.25, 10);
 | 
			
		||||
        D d(p);
 | 
			
		||||
        assert(d.m() == 0.25);
 | 
			
		||||
        assert(d.s() == 10);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,37 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// bool operator=(const lognormal_distribution& x,
 | 
			
		||||
//                const lognormal_distribution& y);
 | 
			
		||||
// bool operator!(const lognormal_distribution& x,
 | 
			
		||||
//                const lognormal_distribution& y);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d1(2.5, 4);
 | 
			
		||||
        D d2(2.5, 4);
 | 
			
		||||
        assert(d1 == d2);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d1(2.5, 4);
 | 
			
		||||
        D d2(2.5, 4.5);
 | 
			
		||||
        assert(d1 != d2);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,242 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// template<class _URNG> result_type operator()(_URNG& g);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <numeric>
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
inline
 | 
			
		||||
T
 | 
			
		||||
sqr(T x)
 | 
			
		||||
{
 | 
			
		||||
    return x * x;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d(-1./8192, 0.015625);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(d.m() + sqr(d.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(d.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(d.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(d.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.01);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.05);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.25);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d(-1./32, 0.25);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(d.m() + sqr(d.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(d.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(d.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(d.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.01);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.01);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d(-1./8, 0.5);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(d.m() + sqr(d.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(d.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(d.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(d.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.01);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.02);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d;
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(d.m() + sqr(d.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(d.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(d.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(d.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.02);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.08);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.4);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d(-0.78125, 1.25);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(d.m() + sqr(d.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(d.s())) - 1) * std::exp(2*d.m() + sqr(d.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(d.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(d.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(d.s())) + 2*std::exp(3*sqr(d.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(d.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.04);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.2);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.7);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,248 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// template<class _URNG> result_type operator()(_URNG& g, const param_type& parm);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <vector>
 | 
			
		||||
#include <numeric>
 | 
			
		||||
 | 
			
		||||
template <class T>
 | 
			
		||||
inline
 | 
			
		||||
T
 | 
			
		||||
sqr(T x)
 | 
			
		||||
{
 | 
			
		||||
    return x * x;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d;
 | 
			
		||||
        P p(-1./8192, 0.015625);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g, p);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(p.m() + sqr(p.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(p.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(p.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(p.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.01);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.05);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.25);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d;
 | 
			
		||||
        P p(-1./32, 0.25);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g, p);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(p.m() + sqr(p.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(p.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(p.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(p.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.01);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.01);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.03);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d;
 | 
			
		||||
        P p(-1./8, 0.5);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g, p);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(p.m() + sqr(p.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(p.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(p.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(p.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.01);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.02);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.05);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d(3, 4);
 | 
			
		||||
        P p;
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g, p);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(p.m() + sqr(p.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(p.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(p.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(p.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.02);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.08);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.4);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        typedef std::mt19937 G;
 | 
			
		||||
        G g;
 | 
			
		||||
        D d;
 | 
			
		||||
        P p(-0.78125, 1.25);
 | 
			
		||||
        const int N = 1000000;
 | 
			
		||||
        std::vector<D::result_type> u;
 | 
			
		||||
        for (int i = 0; i < N; ++i)
 | 
			
		||||
        {
 | 
			
		||||
            D::result_type v = d(g, p);
 | 
			
		||||
            assert(v > 0);
 | 
			
		||||
            u.push_back(v);
 | 
			
		||||
        }
 | 
			
		||||
        double mean = std::accumulate(u.begin(), u.end(), 0.0) / u.size();
 | 
			
		||||
        double var = 0;
 | 
			
		||||
        double skew = 0;
 | 
			
		||||
        double kurtosis = 0;
 | 
			
		||||
        for (int i = 0; i < u.size(); ++i)
 | 
			
		||||
        {
 | 
			
		||||
            double d = (u[i] - mean);
 | 
			
		||||
            double d2 = sqr(d);
 | 
			
		||||
            var += d2;
 | 
			
		||||
            skew += d * d2;
 | 
			
		||||
            kurtosis += d2 * d2;
 | 
			
		||||
        }
 | 
			
		||||
        var /= u.size();
 | 
			
		||||
        double dev = std::sqrt(var);
 | 
			
		||||
        skew /= u.size() * dev * var;
 | 
			
		||||
        kurtosis /= u.size() * var * var;
 | 
			
		||||
        kurtosis -= 3;
 | 
			
		||||
        double x_mean = std::exp(p.m() + sqr(p.s())/2);
 | 
			
		||||
        double x_var = (std::exp(sqr(p.s())) - 1) * std::exp(2*p.m() + sqr(p.s()));
 | 
			
		||||
        double x_skew = (std::exp(sqr(p.s())) + 2) * 
 | 
			
		||||
              std::sqrt((std::exp(sqr(p.s())) - 1));
 | 
			
		||||
        double x_kurtosis = std::exp(4*sqr(p.s())) + 2*std::exp(3*sqr(p.s())) +
 | 
			
		||||
                          3*std::exp(2*sqr(p.s())) - 6;
 | 
			
		||||
        assert(std::abs(mean - x_mean) / x_mean < 0.01);
 | 
			
		||||
        assert(std::abs(var - x_var) / x_var < 0.04);
 | 
			
		||||
        assert(std::abs(skew - x_skew) / x_skew < 0.2);
 | 
			
		||||
        assert(std::abs(kurtosis - x_kurtosis) / x_kurtosis < 0.7);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,29 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// param_type param() const;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        P p(.125, .5);
 | 
			
		||||
        D d(p);
 | 
			
		||||
        assert(d.param() == p);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,41 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// template <class CharT, class Traits, class RealType>
 | 
			
		||||
// basic_ostream<CharT, Traits>&
 | 
			
		||||
// operator<<(basic_ostream<CharT, Traits>& os,
 | 
			
		||||
//            const lognormal_distribution<RealType>& x);
 | 
			
		||||
 | 
			
		||||
// template <class CharT, class Traits, class RealType>
 | 
			
		||||
// basic_istream<CharT, Traits>&
 | 
			
		||||
// operator>>(basic_istream<CharT, Traits>& is,
 | 
			
		||||
//            lognormal_distribution<RealType>& x);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <sstream>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d1(7, 5);
 | 
			
		||||
        std::ostringstream os;
 | 
			
		||||
        os << d1;
 | 
			
		||||
        std::istringstream is(os.str());
 | 
			
		||||
        D d2;
 | 
			
		||||
        is >> d2;
 | 
			
		||||
        assert(d1 == d2);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,28 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// result_type max() const;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d(5, .25);
 | 
			
		||||
        D::result_type m = d.max();
 | 
			
		||||
        assert(m == INFINITY);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,27 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
 | 
			
		||||
// result_type min() const;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        D d(.5, .5);
 | 
			
		||||
        assert(d.min() == 0);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,32 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
// {
 | 
			
		||||
//     class param_type;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p0(.75, 6);
 | 
			
		||||
        param_type p;
 | 
			
		||||
        p = p0;
 | 
			
		||||
        assert(p.m() == .75);
 | 
			
		||||
        assert(p.s() == 6);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,31 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
// {
 | 
			
		||||
//     class param_type;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p0(10, .125);
 | 
			
		||||
        param_type p = p0;
 | 
			
		||||
        assert(p.m() == 10);
 | 
			
		||||
        assert(p.s() == .125);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,44 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
// {
 | 
			
		||||
//     class param_type;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p;
 | 
			
		||||
        assert(p.m() == 0);
 | 
			
		||||
        assert(p.s() == 1);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p(10);
 | 
			
		||||
        assert(p.m() == 10);
 | 
			
		||||
        assert(p.s() == 1);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p(10, 5);
 | 
			
		||||
        assert(p.m() == 10);
 | 
			
		||||
        assert(p.s() == 5);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,37 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
// {
 | 
			
		||||
//     class param_type;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <limits>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p1(0.75, .5);
 | 
			
		||||
        param_type p2(0.75, .5);
 | 
			
		||||
        assert(p1 == p2);
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        param_type p1(0.75, .5);
 | 
			
		||||
        param_type p2(0.5, .5);
 | 
			
		||||
        assert(p1 != p2);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,28 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
// {
 | 
			
		||||
//     class param_type;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type param_type;
 | 
			
		||||
        typedef param_type::distribution_type distribution_type;
 | 
			
		||||
        static_assert((std::is_same<D, distribution_type>::value), "");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,30 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution;
 | 
			
		||||
 | 
			
		||||
// void param(const param_type& parm);
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <cassert>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::param_type P;
 | 
			
		||||
        P p(0.25, 5.5);
 | 
			
		||||
        D d(0.75, 4);
 | 
			
		||||
        d.param(p);
 | 
			
		||||
        assert(d.param() == p);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@@ -0,0 +1,34 @@
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
//
 | 
			
		||||
//                     The LLVM Compiler Infrastructure
 | 
			
		||||
//
 | 
			
		||||
// This file is distributed under the University of Illinois Open Source
 | 
			
		||||
// License. See LICENSE.TXT for details.
 | 
			
		||||
//
 | 
			
		||||
//===----------------------------------------------------------------------===//
 | 
			
		||||
 | 
			
		||||
// <random>
 | 
			
		||||
 | 
			
		||||
// template<class RealType = double>
 | 
			
		||||
// class lognormal_distribution
 | 
			
		||||
// {
 | 
			
		||||
// public:
 | 
			
		||||
//     // types
 | 
			
		||||
//     typedef RealType result_type;
 | 
			
		||||
 | 
			
		||||
#include <random>
 | 
			
		||||
#include <type_traits>
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<> D;
 | 
			
		||||
        typedef D::result_type result_type;
 | 
			
		||||
        static_assert((std::is_same<result_type, double>::value), "");
 | 
			
		||||
    }
 | 
			
		||||
    {
 | 
			
		||||
        typedef std::lognormal_distribution<float> D;
 | 
			
		||||
        typedef D::result_type result_type;
 | 
			
		||||
        static_assert((std::is_same<result_type, float>::value), "");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user