boost/libs/math/tools/bessel_data.cpp
2021-10-05 21:37:46 +02:00

356 lines
9.3 KiB
C++

// Copyright (c) 2007 John Maddock
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// Computes test data for the various bessel functions using
// archived - deliberately naive - version of the code.
// We'll rely on the high precision of mp_t to get us out of
// trouble and not worry about how long the calculations take.
// This provides a reasonably independent set of test data to
// compare against newly added asymptotic expansions etc.
//
#include <fstream>
#include "mp_t.hpp"
#include <boost/math/tools/test_data.hpp>
#include <boost/math/special_functions/bessel.hpp>
using namespace boost::math::tools;
using namespace boost::math;
using namespace boost::math::detail;
using namespace std;
// Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see
// Barnett et al, Computer Physics Communications, vol 8, 377 (1974)
template <typename T>
int bessel_jy_bare(T v, T x, T* J, T* Y, int kind = need_j|need_y)
{
// Jv1 = J_(v+1), Yv1 = Y_(v+1), fv = J_(v+1) / J_v
// Ju1 = J_(u+1), Yu1 = Y_(u+1), fu = J_(u+1) / J_u
T u, Jv, Ju, Yv, Yv1, Yu, Yu1, fv, fu;
T W, p, q, gamma, current, prev, next;
bool reflect = false;
int n, k, s;
using namespace std;
using namespace boost::math::tools;
using namespace boost::math::constants;
if (v < 0)
{
reflect = true;
v = -v; // v is non-negative from here
kind = need_j|need_y; // need both for reflection formula
}
n = real_cast<int>(v + 0.5L);
u = v - n; // -1/2 <= u < 1/2
if (x < 0)
{
*J = *Y = policies::raise_domain_error<T>("",
"Real argument x=%1% must be non-negative, complex number result not supported", x, policies::policy<>());
return 1;
}
if (x == 0)
{
*J = *Y = policies::raise_overflow_error<T>(
"", 0, policies::policy<>());
return 1;
}
// x is positive until reflection
W = T(2) / (x * pi<T>()); // Wronskian
if (x <= 2) // x in (0, 2]
{
if(temme_jy(u, x, &Yu, &Yu1, policies::policy<>())) // Temme series
{
// domain error:
*J = *Y = Yu;
return 1;
}
prev = Yu;
current = Yu1;
for (k = 1; k <= n; k++) // forward recurrence for Y
{
next = 2 * (u + k) * current / x - prev;
prev = current;
current = next;
}
Yv = prev;
Yv1 = current;
CF1_jy(v, x, &fv, &s, policies::policy<>()); // continued fraction CF1
Jv = W / (Yv * fv - Yv1); // Wronskian relation
}
else // x in (2, \infty)
{
// Get Y(u, x):
CF1_jy(v, x, &fv, &s, policies::policy<>());
// tiny initial value to prevent overflow
T init = sqrt(tools::min_value<T>());
prev = fv * s * init;
current = s * init;
for (k = n; k > 0; k--) // backward recurrence for J
{
next = 2 * (u + k) * current / x - prev;
prev = current;
current = next;
}
T ratio = (s * init) / current; // scaling ratio
// can also call CF1() to get fu, not much difference in precision
fu = prev / current;
CF2_jy(u, x, &p, &q, policies::policy<>()); // continued fraction CF2
T t = u / x - fu; // t = J'/J
gamma = (p - t) / q;
Ju = sign(current) * sqrt(W / (q + gamma * (p - t)));
Jv = Ju * ratio; // normalization
Yu = gamma * Ju;
Yu1 = Yu * (u/x - p - q/gamma);
// compute Y:
prev = Yu;
current = Yu1;
for (k = 1; k <= n; k++) // forward recurrence for Y
{
next = 2 * (u + k) * current / x - prev;
prev = current;
current = next;
}
Yv = prev;
}
if (reflect)
{
T z = (u + n % 2) * pi<T>();
*J = cos(z) * Jv - sin(z) * Yv; // reflection formula
*Y = sin(z) * Jv + cos(z) * Yv;
}
else
{
*J = Jv;
*Y = Yv;
}
return 0;
}
int progress = 0;
template <class T>
T cyl_bessel_j_bare(T v, T x)
{
T j, y;
bessel_jy_bare(v, x, &j, &y);
std::cout << progress++ << ": J(" << v << ", " << x << ") = " << j << std::endl;
if(fabs(j) > 1e30)
throw std::domain_error("");
return j;
}
template <class T>
T cyl_bessel_i_bare(T v, T x)
{
using namespace std;
if(x < 0)
{
// better have integer v:
if(floor(v) == v)
{
T r = cyl_bessel_i_bare(v, -x);
if(tools::real_cast<int>(v) & 1)
r = -r;
return r;
}
else
return policies::raise_domain_error<T>(
"",
"Got x = %1%, but we need x >= 0", x, policies::policy<>());
}
if(x == 0)
{
return (v == 0) ? 1 : 0;
}
T I, K;
boost::math::detail::bessel_ik(v, x, &I, &K, 0xffff, policies::policy<>());
std::cout << progress++ << ": I(" << v << ", " << x << ") = " << I << std::endl;
if(fabs(I) > 1e30)
throw std::domain_error("");
return I;
}
template <class T>
T cyl_bessel_k_bare(T v, T x)
{
using namespace std;
if(x < 0)
{
return policies::raise_domain_error<T>(
"",
"Got x = %1%, but we need x > 0", x, policies::policy<>());
}
if(x == 0)
{
return (v == 0) ? policies::raise_overflow_error<T>("", 0, policies::policy<>())
: policies::raise_domain_error<T>(
"",
"Got x = %1%, but we need x > 0", x, policies::policy<>());
}
T I, K;
bessel_ik(v, x, &I, &K, 0xFFFF, policies::policy<>());
std::cout << progress++ << ": K(" << v << ", " << x << ") = " << K << std::endl;
if(fabs(K) > 1e30)
throw std::domain_error("");
return K;
}
template <class T>
T cyl_neumann_bare(T v, T x)
{
T j, y;
bessel_jy(v, x, &j, &y, 0xFFFF, policies::policy<>());
std::cout << progress++ << ": Y(" << v << ", " << x << ") = " << y << std::endl;
if(fabs(y) > 1e30)
throw std::domain_error("");
return y;
}
template <class T>
T sph_bessel_j_bare(T v, T x)
{
std::cout << progress++ << ": j(" << v << ", " << x << ") = ";
if((v < 0) || (floor(v) != v))
throw std::domain_error("");
T r = sqrt(constants::pi<T>() / (2 * x)) * cyl_bessel_j_bare(v+0.5, x);
std::cout << r << std::endl;
return r;
}
template <class T>
T sph_bessel_y_bare(T v, T x)
{
std::cout << progress++ << ": y(" << v << ", " << x << ") = ";
if((v < 0) || (floor(v) != v))
throw std::domain_error("");
T r = sqrt(constants::pi<T>() / (2 * x)) * cyl_neumann_bare(v+0.5, x);
std::cout << r << std::endl;
return r;
}
enum
{
func_J = 0,
func_Y,
func_I,
func_K,
func_j,
func_y
};
int main(int argc, char* argv[])
{
std::cout << std::setprecision(17) << std::scientific;
std::cout << sph_bessel_j_bare(0., 0.1185395751953125e4) << std::endl;
std::cout << sph_bessel_j_bare(22., 0.6540834903717041015625) << std::endl;
std::cout << std::setprecision(40) << std::scientific;
parameter_info<mp_t> arg1, arg2;
test_data<mp_t> data;
int functype = 0;
std::string letter = "J";
if(argc == 2)
{
if(std::strcmp(argv[1], "--Y") == 0)
{
functype = func_Y;
letter = "Y";
}
else if(std::strcmp(argv[1], "--I") == 0)
{
functype = func_I;
letter = "I";
}
else if(std::strcmp(argv[1], "--K") == 0)
{
functype = func_K;
letter = "K";
}
else if(std::strcmp(argv[1], "--j") == 0)
{
functype = func_j;
letter = "j";
}
else if(std::strcmp(argv[1], "--y") == 0)
{
functype = func_y;
letter = "y";
}
else
BOOST_ASSERT(0);
}
bool cont;
std::string line;
std::cout << "Welcome.\n"
"This program will generate spot tests for the Bessel " << letter << " function\n\n";
do{
get_user_parameter_info(arg1, "v");
get_user_parameter_info(arg2, "x");
mp_t (*fp)(mp_t, mp_t);
if(functype == func_J)
fp = cyl_bessel_j_bare;
else if(functype == func_I)
fp = cyl_bessel_i_bare;
else if(functype == func_K)
fp = cyl_bessel_k_bare;
else if(functype == func_Y)
fp = cyl_neumann_bare;
else if(functype == func_j)
fp = sph_bessel_j_bare;
else if(functype == func_y)
fp = sph_bessel_y_bare;
else
BOOST_ASSERT(0);
data.insert(fp, arg1, arg2);
std::cout << "Any more data [y/n]?";
std::getline(std::cin, line);
boost::algorithm::trim(line);
cont = (line == "y");
}while(cont);
std::cout << "Enter name of test data file [default=bessel_j_data.ipp]";
std::getline(std::cin, line);
boost::algorithm::trim(line);
if(line == "")
line = "bessel_j_data.ipp";
std::ofstream ofs(line.c_str());
line.erase(line.find('.'));
ofs << std::scientific << std::setprecision(40);
write_code(ofs, data, line.c_str());
return 0;
}