// Copyright (c) 2007 John Maddock // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // // Computes test data for the various bessel functions using // archived - deliberately naive - version of the code. // We'll rely on the high precision of mp_t to get us out of // trouble and not worry about how long the calculations take. // This provides a reasonably independent set of test data to // compare against newly added asymptotic expansions etc. // #include #include "mp_t.hpp" #include #include using namespace boost::math::tools; using namespace boost::math; using namespace boost::math::detail; using namespace std; // Compute J(v, x) and Y(v, x) simultaneously by Steed's method, see // Barnett et al, Computer Physics Communications, vol 8, 377 (1974) template int bessel_jy_bare(T v, T x, T* J, T* Y, int kind = need_j|need_y) { // Jv1 = J_(v+1), Yv1 = Y_(v+1), fv = J_(v+1) / J_v // Ju1 = J_(u+1), Yu1 = Y_(u+1), fu = J_(u+1) / J_u T u, Jv, Ju, Yv, Yv1, Yu, Yu1, fv, fu; T W, p, q, gamma, current, prev, next; bool reflect = false; int n, k, s; using namespace std; using namespace boost::math::tools; using namespace boost::math::constants; if (v < 0) { reflect = true; v = -v; // v is non-negative from here kind = need_j|need_y; // need both for reflection formula } n = real_cast(v + 0.5L); u = v - n; // -1/2 <= u < 1/2 if (x < 0) { *J = *Y = policies::raise_domain_error("", "Real argument x=%1% must be non-negative, complex number result not supported", x, policies::policy<>()); return 1; } if (x == 0) { *J = *Y = policies::raise_overflow_error( "", 0, policies::policy<>()); return 1; } // x is positive until reflection W = T(2) / (x * pi()); // Wronskian if (x <= 2) // x in (0, 2] { if(temme_jy(u, x, &Yu, &Yu1, policies::policy<>())) // Temme series { // domain error: *J = *Y = Yu; return 1; } prev = Yu; current = Yu1; for (k = 1; k <= n; k++) // forward recurrence for Y { next = 2 * (u + k) * current / x - prev; prev = current; current = next; } Yv = prev; Yv1 = current; CF1_jy(v, x, &fv, &s, policies::policy<>()); // continued fraction CF1 Jv = W / (Yv * fv - Yv1); // Wronskian relation } else // x in (2, \infty) { // Get Y(u, x): CF1_jy(v, x, &fv, &s, policies::policy<>()); // tiny initial value to prevent overflow T init = sqrt(tools::min_value()); prev = fv * s * init; current = s * init; for (k = n; k > 0; k--) // backward recurrence for J { next = 2 * (u + k) * current / x - prev; prev = current; current = next; } T ratio = (s * init) / current; // scaling ratio // can also call CF1() to get fu, not much difference in precision fu = prev / current; CF2_jy(u, x, &p, &q, policies::policy<>()); // continued fraction CF2 T t = u / x - fu; // t = J'/J gamma = (p - t) / q; Ju = sign(current) * sqrt(W / (q + gamma * (p - t))); Jv = Ju * ratio; // normalization Yu = gamma * Ju; Yu1 = Yu * (u/x - p - q/gamma); // compute Y: prev = Yu; current = Yu1; for (k = 1; k <= n; k++) // forward recurrence for Y { next = 2 * (u + k) * current / x - prev; prev = current; current = next; } Yv = prev; } if (reflect) { T z = (u + n % 2) * pi(); *J = cos(z) * Jv - sin(z) * Yv; // reflection formula *Y = sin(z) * Jv + cos(z) * Yv; } else { *J = Jv; *Y = Yv; } return 0; } int progress = 0; template T cyl_bessel_j_bare(T v, T x) { T j, y; bessel_jy_bare(v, x, &j, &y); std::cout << progress++ << ": J(" << v << ", " << x << ") = " << j << std::endl; if(fabs(j) > 1e30) throw std::domain_error(""); return j; } template T cyl_bessel_i_bare(T v, T x) { using namespace std; if(x < 0) { // better have integer v: if(floor(v) == v) { T r = cyl_bessel_i_bare(v, -x); if(tools::real_cast(v) & 1) r = -r; return r; } else return policies::raise_domain_error( "", "Got x = %1%, but we need x >= 0", x, policies::policy<>()); } if(x == 0) { return (v == 0) ? 1 : 0; } T I, K; boost::math::detail::bessel_ik(v, x, &I, &K, 0xffff, policies::policy<>()); std::cout << progress++ << ": I(" << v << ", " << x << ") = " << I << std::endl; if(fabs(I) > 1e30) throw std::domain_error(""); return I; } template T cyl_bessel_k_bare(T v, T x) { using namespace std; if(x < 0) { return policies::raise_domain_error( "", "Got x = %1%, but we need x > 0", x, policies::policy<>()); } if(x == 0) { return (v == 0) ? policies::raise_overflow_error("", 0, policies::policy<>()) : policies::raise_domain_error( "", "Got x = %1%, but we need x > 0", x, policies::policy<>()); } T I, K; bessel_ik(v, x, &I, &K, 0xFFFF, policies::policy<>()); std::cout << progress++ << ": K(" << v << ", " << x << ") = " << K << std::endl; if(fabs(K) > 1e30) throw std::domain_error(""); return K; } template T cyl_neumann_bare(T v, T x) { T j, y; bessel_jy(v, x, &j, &y, 0xFFFF, policies::policy<>()); std::cout << progress++ << ": Y(" << v << ", " << x << ") = " << y << std::endl; if(fabs(y) > 1e30) throw std::domain_error(""); return y; } template T sph_bessel_j_bare(T v, T x) { std::cout << progress++ << ": j(" << v << ", " << x << ") = "; if((v < 0) || (floor(v) != v)) throw std::domain_error(""); T r = sqrt(constants::pi() / (2 * x)) * cyl_bessel_j_bare(v+0.5, x); std::cout << r << std::endl; return r; } template T sph_bessel_y_bare(T v, T x) { std::cout << progress++ << ": y(" << v << ", " << x << ") = "; if((v < 0) || (floor(v) != v)) throw std::domain_error(""); T r = sqrt(constants::pi() / (2 * x)) * cyl_neumann_bare(v+0.5, x); std::cout << r << std::endl; return r; } enum { func_J = 0, func_Y, func_I, func_K, func_j, func_y }; int main(int argc, char* argv[]) { std::cout << std::setprecision(17) << std::scientific; std::cout << sph_bessel_j_bare(0., 0.1185395751953125e4) << std::endl; std::cout << sph_bessel_j_bare(22., 0.6540834903717041015625) << std::endl; std::cout << std::setprecision(40) << std::scientific; parameter_info arg1, arg2; test_data data; int functype = 0; std::string letter = "J"; if(argc == 2) { if(std::strcmp(argv[1], "--Y") == 0) { functype = func_Y; letter = "Y"; } else if(std::strcmp(argv[1], "--I") == 0) { functype = func_I; letter = "I"; } else if(std::strcmp(argv[1], "--K") == 0) { functype = func_K; letter = "K"; } else if(std::strcmp(argv[1], "--j") == 0) { functype = func_j; letter = "j"; } else if(std::strcmp(argv[1], "--y") == 0) { functype = func_y; letter = "y"; } else BOOST_ASSERT(0); } bool cont; std::string line; std::cout << "Welcome.\n" "This program will generate spot tests for the Bessel " << letter << " function\n\n"; do{ get_user_parameter_info(arg1, "v"); get_user_parameter_info(arg2, "x"); mp_t (*fp)(mp_t, mp_t); if(functype == func_J) fp = cyl_bessel_j_bare; else if(functype == func_I) fp = cyl_bessel_i_bare; else if(functype == func_K) fp = cyl_bessel_k_bare; else if(functype == func_Y) fp = cyl_neumann_bare; else if(functype == func_j) fp = sph_bessel_j_bare; else if(functype == func_y) fp = sph_bessel_y_bare; else BOOST_ASSERT(0); data.insert(fp, arg1, arg2); std::cout << "Any more data [y/n]?"; std::getline(std::cin, line); boost::algorithm::trim(line); cont = (line == "y"); }while(cont); std::cout << "Enter name of test data file [default=bessel_j_data.ipp]"; std::getline(std::cin, line); boost::algorithm::trim(line); if(line == "") line = "bessel_j_data.ipp"; std::ofstream ofs(line.c_str()); line.erase(line.find('.')); ofs << std::scientific << std::setprecision(40); write_code(ofs, data, line.c_str()); return 0; }