<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Incomplete Gamma Functions</title>
<link rel="stylesheet" href="../../math.css" type="text/css">
<meta name="generator" content="DocBook XSL Stylesheets V1.79.1">
<link rel="home" href="../../index.html" title="Math Toolkit 3.0.0">
<link rel="up" href="../sf_gamma.html" title="Gamma Functions">
<link rel="prev" href="gamma_ratios.html" title="Ratios of Gamma Functions">
<link rel="next" href="igamma_inv.html" title="Incomplete Gamma Function Inverses">
</head>
<body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF">
<table cellpadding="2" width="100%"><tr>
<td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td>
<td align="center"><a href="../../../../../../index.html">Home</a></td>
<td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td>
<td align="center"><a href="http://www.boost.org/users/people.html">People</a></td>
<td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td>
<td align="center"><a href="../../../../../../more/index.htm">More</a></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="gamma_ratios.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="igamma_inv.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
<div class="section">
<div class="titlepage"><div><div><h3 class="title">
<a name="math_toolkit.sf_gamma.igamma"></a><a class="link" href="igamma.html" title="Incomplete Gamma Functions">Incomplete Gamma Functions</a>
</h3></div></div></div>
<h5>
<a name="math_toolkit.sf_gamma.igamma.h0"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.igamma.synopsis"></a></span><a class="link" href="igamma.html#math_toolkit.sf_gamma.igamma.synopsis">Synopsis</a>
      </h5>
<pre class="programlisting"><span class="preprocessor">#include</span> <span class="special">&lt;</span><span class="identifier">boost</span><span class="special">/</span><span class="identifier">math</span><span class="special">/</span><span class="identifier">special_functions</span><span class="special">/</span><span class="identifier">gamma</span><span class="special">.</span><span class="identifier">hpp</span><span class="special">&gt;</span>
</pre>
<pre class="programlisting"><span class="keyword">namespace</span> <span class="identifier">boost</span><span class="special">{</span> <span class="keyword">namespace</span> <span class="identifier">math</span><span class="special">{</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_p</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_p</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_q</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_q</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma_lower</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma_lower</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>

<span class="special">}}</span> <span class="comment">// namespaces</span>
</pre>
<h5>
<a name="math_toolkit.sf_gamma.igamma.h1"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.igamma.description"></a></span><a class="link" href="igamma.html#math_toolkit.sf_gamma.igamma.description">Description</a>
      </h5>
<p>
        There are four <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html" target="_top">incomplete
        gamma functions</a>: two are normalised versions (also known as <span class="emphasis"><em>regularized</em></span>
        incomplete gamma functions) that return values in the range [0, 1], and two
        are non-normalised and return values in the range [0, Γ(a)]. Users interested
        in statistical applications should use the <a href="http://mathworld.wolfram.com/RegularizedGammaFunction.html" target="_top">normalised
        versions (<code class="computeroutput"><span class="identifier">gamma_p</span></code> and <code class="computeroutput"><span class="identifier">gamma_q</span></code>)</a>.
      </p>
<p>
        All of these functions require <span class="emphasis"><em>a &gt; 0</em></span> and <span class="emphasis"><em>z
        &gt;= 0</em></span>, otherwise they return the result of <a class="link" href="../error_handling.html#math_toolkit.error_handling.domain_error">domain_error</a>.
      </p>
<p>
        The final <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a> argument is optional and can
        be used to control the behaviour of the function: how it handles errors,
        what level of precision to use etc. Refer to the <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">policy
        documentation for more details</a>.
      </p>
<p>
        The return type of these functions is computed using the <a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>result
        type calculation rules</em></span></a> when T1 and T2 are different types,
        otherwise the return type is simply T1.
      </p>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_p</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">Policy</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_p</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
        Returns the normalised lower incomplete gamma function of a and z:
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma4.svg"></span>

        </p></blockquote></div>
<p>
        This function changes rapidly from 0 to 1 around the point z == a:
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../graphs/gamma_p.svg" align="middle"></span>

        </p></blockquote></div>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_q</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">gamma_q</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
        Returns the normalised upper incomplete gamma function of a and z:
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma3.svg"></span>

        </p></blockquote></div>
<p>
        This function changes rapidly from 1 to 0 around the point z == a:
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../graphs/gamma_q.svg" align="middle"></span>

        </p></blockquote></div>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma_lower</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma_lower</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
        Returns the full (non-normalised) lower incomplete gamma function of a and
        z:
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma2.svg"></span>

        </p></blockquote></div>
<pre class="programlisting"><span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">);</span>

<span class="keyword">template</span> <span class="special">&lt;</span><span class="keyword">class</span> <span class="identifier">T1</span><span class="special">,</span> <span class="keyword">class</span> <span class="identifier">T2</span><span class="special">,</span> <span class="keyword">class</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&gt;</span>
<a class="link" href="../result_type.html" title="Calculation of the Type of the Result"><span class="emphasis"><em>calculated-result-type</em></span></a> <span class="identifier">tgamma</span><span class="special">(</span><span class="identifier">T1</span> <span class="identifier">a</span><span class="special">,</span> <span class="identifier">T2</span> <span class="identifier">z</span><span class="special">,</span> <span class="keyword">const</span> <a class="link" href="../../policy.html" title="Chapter 21. Policies: Controlling Precision, Error Handling etc">Policy</a><span class="special">&amp;);</span>
</pre>
<p>
        Returns the full (non-normalised) upper incomplete gamma function of a and
        z:
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma1.svg"></span>

        </p></blockquote></div>
<h5>
<a name="math_toolkit.sf_gamma.igamma.h2"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.igamma.accuracy"></a></span><a class="link" href="igamma.html#math_toolkit.sf_gamma.igamma.accuracy">Accuracy</a>
      </h5>
<p>
        The following tables give peak and mean relative errors in over various domains
        of a and z, along with comparisons to the <a href="http://www.gnu.org/software/gsl/" target="_top">GSL-1.9</a>
        and <a href="http://www.netlib.org/cephes/" target="_top">Cephes</a> libraries.
        Note that only results for the widest floating-point type on the system are
        given as narrower types have <a class="link" href="../relative_error.html#math_toolkit.relative_error.zero_error">effectively
        zero error</a>.
      </p>
<p>
        Note that errors grow as <span class="emphasis"><em>a</em></span> grows larger.
      </p>
<p>
        Note also that the higher error rates for the 80 and 128 bit long double
        results are somewhat misleading: expected results that are zero at 64-bit
        double precision may be non-zero - but exceptionally small - with the larger
        exponent range of a long double. These results therefore reflect the more
        extreme nature of the tests conducted for these types.
      </p>
<p>
        All values are in units of epsilon.
      </p>
<div class="table">
<a name="math_toolkit.sf_gamma.igamma.table_gamma_p"></a><p class="title"><b>Table 8.9. Error rates for gamma_p</b></p>
<div class="table-contents"><table class="table" summary="Error rates for gamma_p">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> double
                </p>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> long double
                </p>
              </th>
<th>
                <p>
                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
                </p>
              </th>
<th>
                <p>
                  Microsoft Visual C++ version 14.1<br> Win32<br> double
                </p>
              </th>
</tr></thead>
<tbody>
<tr>
<td>
                <p>
                  tgamma(a, z) medium values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0.955ε (Mean = 0.05ε)</span><br> <br>
                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 342ε (Mean = 45.8ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 389ε (Mean = 44ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 41.6ε (Mean = 8.09ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 239ε (Mean = 30.2ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 35.1ε (Mean = 6.98ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) small values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 4.82ε (Mean = 0.758ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 1.01ε (Mean = 0.306ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2ε (Mean = 0.464ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2ε (Mean = 0.461ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 1.54ε (Mean = 0.439ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) large values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 1.02e+03ε (Mean = 105ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 1.11e+03ε (Mean = 67.5ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 3.08e+04ε (Mean = 1.86e+03ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 3.02e+04ε (Mean = 1.91e+03ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 243ε (Mean = 20.2ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) integer and half integer values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 128ε (Mean = 22.6ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 66.2ε (Mean = 12.2ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 11.8ε (Mean = 2.66ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 71.6ε (Mean = 9.47ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 13ε (Mean = 2.97ε)</span>
                </p>
              </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="table">
<a name="math_toolkit.sf_gamma.igamma.table_gamma_q"></a><p class="title"><b>Table 8.10. Error rates for gamma_q</b></p>
<div class="table-contents"><table class="table" summary="Error rates for gamma_q">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> double
                </p>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> long double
                </p>
              </th>
<th>
                <p>
                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
                </p>
              </th>
<th>
                <p>
                  Microsoft Visual C++ version 14.1<br> Win32<br> double
                </p>
              </th>
</tr></thead>
<tbody>
<tr>
<td>
                <p>
                  tgamma(a, z) medium values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0.927ε (Mean = 0.035ε)</span><br> <br>
                  (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 201ε (Mean = 13.5ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 131ε (Mean = 12.7ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 32.3ε (Mean = 6.61ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 199ε (Mean = 26.6ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 23.7ε (Mean = 4ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) small values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> <span class="red">Max = 1.38e+10ε (Mean = 1.05e+09ε))</span><br>
                  (<span class="emphasis"><em>Rmath 3.2.3:</em></span> Max = 65.6ε (Mean = 11ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.45ε (Mean = 0.885ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.45ε (Mean = 0.819ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.26ε (Mean = 0.74ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) large values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 2.71e+04ε (Mean = 2.16e+03ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 1.02e+03ε (Mean = 62.7ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 6.82e+03ε (Mean = 414ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 1.15e+04ε (Mean = 733ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 469ε (Mean = 31.5ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) integer and half integer values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 118ε (Mean = 12.5ε))<br> (<span class="emphasis"><em>Rmath
                  3.2.3:</em></span> Max = 138ε (Mean = 16.9ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 11.1ε (Mean = 2.07ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 54.7ε (Mean = 6.16ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 8.72ε (Mean = 1.48ε)</span>
                </p>
              </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="table">
<a name="math_toolkit.sf_gamma.igamma.table_tgamma_lower"></a><p class="title"><b>Table 8.11. Error rates for tgamma_lower</b></p>
<div class="table-contents"><table class="table" summary="Error rates for tgamma_lower">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> double
                </p>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> long double
                </p>
              </th>
<th>
                <p>
                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
                </p>
              </th>
<th>
                <p>
                  Microsoft Visual C++ version 14.1<br> Win32<br> double
                </p>
              </th>
</tr></thead>
<tbody>
<tr>
<td>
                <p>
                  tgamma(a, z) medium values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0.833ε (Mean = 0.0315ε)</span><br>
                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> Max = 0.833ε (Mean = 0.0315ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 6.79ε (Mean = 1.46ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 363ε (Mean = 63.8ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 5.62ε (Mean = 1.49ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) small values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 0ε (Mean = 0ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 1.97ε (Mean = 0.555ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 1.97ε (Mean = 0.558ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 1.57ε (Mean = 0.525ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) integer and half integer values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 0ε (Mean = 0ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 4.83ε (Mean = 1.15ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 84.7ε (Mean = 17.5ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.69ε (Mean = 0.849ε)</span>
                </p>
              </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><div class="table">
<a name="math_toolkit.sf_gamma.igamma.table_tgamma_incomplete_"></a><p class="title"><b>Table 8.12. Error rates for tgamma (incomplete)</b></p>
<div class="table-contents"><table class="table" summary="Error rates for tgamma (incomplete)">
<colgroup>
<col>
<col>
<col>
<col>
<col>
</colgroup>
<thead><tr>
<th>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> double
                </p>
              </th>
<th>
                <p>
                  GNU C++ version 7.1.0<br> linux<br> long double
                </p>
              </th>
<th>
                <p>
                  Sun compiler version 0x5150<br> Sun Solaris<br> long double
                </p>
              </th>
<th>
                <p>
                  Microsoft Visual C++ version 14.1<br> Win32<br> double
                </p>
              </th>
</tr></thead>
<tbody>
<tr>
<td>
                <p>
                  tgamma(a, z) medium values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 200ε (Mean = 13.3ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 8.47ε (Mean = 1.9ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 412ε (Mean = 95.5ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 8.14ε (Mean = 1.76ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) small values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0.753ε (Mean = 0.0474ε)</span><br>
                  <br> (<span class="emphasis"><em>GSL 2.1:</em></span> <span class="red">Max =
                  1.38e+10ε (Mean = 1.05e+09ε))</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.31ε (Mean = 0.775ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.13ε (Mean = 0.717ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 2.53ε (Mean = 0.66ε)</span>
                </p>
              </td>
</tr>
<tr>
<td>
                <p>
                  tgamma(a, z) integer and half integer values
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 0ε (Mean = 0ε)</span><br> <br> (<span class="emphasis"><em>GSL
                  2.1:</em></span> Max = 117ε (Mean = 12.5ε))
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 5.52ε (Mean = 1.48ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 79.6ε (Mean = 20.9ε)</span>
                </p>
              </td>
<td>
                <p>
                  <span class="blue">Max = 5.16ε (Mean = 1.33ε)</span>
                </p>
              </td>
</tr>
</tbody>
</table></div>
</div>
<br class="table-break"><h5>
<a name="math_toolkit.sf_gamma.igamma.h3"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.igamma.testing"></a></span><a class="link" href="igamma.html#math_toolkit.sf_gamma.igamma.testing">Testing</a>
      </h5>
<p>
        There are two sets of tests: spot tests compare values taken from <a href="http://functions.wolfram.com/GammaBetaErf/" target="_top">Mathworld's online evaluator</a>
        with this implementation to perform a basic "sanity check". Accuracy
        tests use data generated at very high precision (using NTL's RR class set
        at 1000-bit precision) using this implementation with a very high precision
        60-term <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos approximation</a>,
        and some but not all of the special case handling disabled. This is less
        than satisfactory: an independent method should really be used, but apparently
        a complete lack of such methods are available. We can't even use a deliberately
        naive implementation without special case handling since Legendre's continued
        fraction (see below) is unstable for small a and z.
      </p>
<h5>
<a name="math_toolkit.sf_gamma.igamma.h4"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.igamma.implementation"></a></span><a class="link" href="igamma.html#math_toolkit.sf_gamma.igamma.implementation">Implementation</a>
      </h5>
<p>
        These four functions share a common implementation since they are all related
        via:
      </p>
<p>
        1)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma5.svg"></span>

        </p></blockquote></div>
<p>
        2)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma6.svg"></span>

        </p></blockquote></div>
<p>
        3)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma7.svg"></span>

        </p></blockquote></div>
<p>
        The lower incomplete gamma is computed from its series representation:
      </p>
<p>
        4)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma8.svg"></span>

        </p></blockquote></div>
<p>
        Or by subtraction of the upper integral from either Γ(a) or 1 when <span class="emphasis"><em>x
        - (1</em></span>(3x)) &gt; a and x &gt; 1.1/.
      </p>
<p>
        The upper integral is computed from Legendre's continued fraction representation:
      </p>
<p>
        5)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma9.svg"></span>

        </p></blockquote></div>
<p>
        When <span class="emphasis"><em>(x &gt; 1.1)</em></span> or by subtraction of the lower integral
        from either Γ(a) or 1 when <span class="emphasis"><em>x - (1</em></span>(3x)) &lt; a/.
      </p>
<p>
        For <span class="emphasis"><em>x &lt; 1.1</em></span> computation of the upper integral is
        more complex as the continued fraction representation is unstable in this
        area. However there is another series representation for the lower integral:
      </p>
<p>
        6)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma10.svg"></span>

        </p></blockquote></div>
<p>
        That lends itself to calculation of the upper integral via rearrangement
        to:
      </p>
<p>
        7)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma11.svg"></span>

        </p></blockquote></div>
<p>
        Refer to the documentation for <a class="link" href="../powers/powm1.html" title="powm1">powm1</a>
        and <a class="link" href="tgamma.html" title="Gamma">tgamma1pm1</a> for details
        of their implementation.
      </p>
<p>
        For <span class="emphasis"><em>x &lt; 1.1</em></span> the crossover point where the result
        is ~0.5 no longer occurs for <span class="emphasis"><em>x ~ y</em></span>. Using <span class="emphasis"><em>x
        * 0.75 &lt; a</em></span> as the crossover criterion for <span class="emphasis"><em>0.5 &lt;
        x &lt;= 1.1</em></span> keeps the maximum value computed (whether it's the
        upper or lower interval) to around 0.75. Likewise for <span class="emphasis"><em>x &lt;= 0.5</em></span>
        then using <span class="emphasis"><em>-0.4 / log(x) &lt; a</em></span> as the crossover criterion
        keeps the maximum value computed to around 0.7 (whether it's the upper or
        lower interval).
      </p>
<p>
        There are two special cases used when a is an integer or half integer, and
        the crossover conditions listed above indicate that we should compute the
        upper integral Q. If a is an integer in the range <span class="emphasis"><em>1 &lt;= a &lt;
        30</em></span> then the following finite sum is used:
      </p>
<p>
        9)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma1f.svg"></span>

        </p></blockquote></div>
<p>
        While for half-integers in the range <span class="emphasis"><em>0.5 &lt;= a &lt; 30</em></span>
        then the following finite sum is used:
      </p>
<p>
        10)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma2f.svg"></span>

        </p></blockquote></div>
<p>
        These are both more stable and more efficient than the continued fraction
        alternative.
      </p>
<p>
        When the argument <span class="emphasis"><em>a</em></span> is large, and <span class="emphasis"><em>x ~ a</em></span>
        then the series (4) and continued fraction (5) above are very slow to converge.
        In this area an expansion due to Temme is used:
      </p>
<p>
        11)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma16.svg"></span>

        </p></blockquote></div>
<p>
        12)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma17.svg"></span>

        </p></blockquote></div>
<p>
        13)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma18.svg"></span>

        </p></blockquote></div>
<p>
        14)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma19.svg"></span>

        </p></blockquote></div>
<p>
        The double sum is truncated to a fixed number of terms - to give a specific
        target precision - and evaluated as a polynomial-of-polynomials. There are
        versions for up to 128-bit long double precision: types requiring greater
        precision than that do not use these expansions. The coefficients C<sub>k</sub><sup>n</sup> are
        computed in advance using the recurrence relations given by Temme. The zone
        where these expansions are used is
      </p>
<pre class="programlisting"><span class="special">(</span><span class="identifier">a</span> <span class="special">&gt;</span> <span class="number">20</span><span class="special">)</span> <span class="special">&amp;&amp;</span> <span class="special">(</span><span class="identifier">a</span> <span class="special">&lt;</span> <span class="number">200</span><span class="special">)</span> <span class="special">&amp;&amp;</span> <span class="identifier">fabs</span><span class="special">(</span><span class="identifier">x</span><span class="special">-</span><span class="identifier">a</span><span class="special">)/</span><span class="identifier">a</span> <span class="special">&lt;</span> <span class="number">0.4</span>
</pre>
<p>
        And:
      </p>
<pre class="programlisting"><span class="special">(</span><span class="identifier">a</span> <span class="special">&gt;</span> <span class="number">200</span><span class="special">)</span> <span class="special">&amp;&amp;</span> <span class="special">(</span><span class="identifier">fabs</span><span class="special">(</span><span class="identifier">x</span><span class="special">-</span><span class="identifier">a</span><span class="special">)/</span><span class="identifier">a</span> <span class="special">&lt;</span> <span class="number">4.5</span><span class="special">/</span><span class="identifier">sqrt</span><span class="special">(</span><span class="identifier">a</span><span class="special">))</span>
</pre>
<p>
        The latter range is valid for all types up to 128-bit long doubles, and is
        designed to ensure that the result is larger than 10<sup>-6</sup>, the first range is
        used only for types up to 80-bit long doubles. These domains are narrower
        than the ones recommended by either Temme or Didonato and Morris. However,
        using a wider range results in large and inexact (i.e. computed) values being
        passed to the <code class="computeroutput"><span class="identifier">exp</span></code> and <code class="computeroutput"><span class="identifier">erfc</span></code> functions resulting in significantly
        larger error rates. In other words there is a fine trade off here between
        efficiency and error. The current limits should keep the number of terms
        required by (4) and (5) to no more than ~20 at double precision.
      </p>
<p>
        For the normalised incomplete gamma functions, calculation of the leading
        power terms is central to the accuracy of the function. For smallish a and
        x combining the power terms with the <a class="link" href="../lanczos.html" title="The Lanczos Approximation">Lanczos
        approximation</a> gives the greatest accuracy:
      </p>
<p>
        15)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma12.svg"></span>

        </p></blockquote></div>
<p>
        In the event that this causes underflow/overflow then the exponent can be
        reduced by a factor of <span class="emphasis"><em>a</em></span> and brought inside the power
        term.
      </p>
<p>
        When a and x are large, we end up with a very large exponent with a base
        near one: this will not be computed accurately via the pow function, and
        taking logs simply leads to cancellation errors. The worst of the errors
        can be avoided by using:
      </p>
<p>
        16)
      </p>
<div class="blockquote"><blockquote class="blockquote"><p>
          <span class="inlinemediaobject"><img src="../../../equations/igamma13.svg"></span>

        </p></blockquote></div>
<p>
        when <span class="emphasis"><em>a-x</em></span> is small and a and x are large. There is still
        a subtraction and therefore some cancellation errors - but the terms are
        small so the absolute error will be small - and it is absolute rather than
        relative error that counts in the argument to the <span class="emphasis"><em>exp</em></span>
        function. Note that for sufficiently large a and x the errors will still
        get you eventually, although this does delay the inevitable much longer than
        other methods. Use of <span class="emphasis"><em>log(1+x)-x</em></span> here is inspired by
        Temme (see references below).
      </p>
<h5>
<a name="math_toolkit.sf_gamma.igamma.h5"></a>
        <span class="phrase"><a name="math_toolkit.sf_gamma.igamma.references"></a></span><a class="link" href="igamma.html#math_toolkit.sf_gamma.igamma.references">References</a>
      </h5>
<div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; ">
<li class="listitem">
            N. M. Temme, A Set of Algorithms for the Incomplete Gamma Functions,
            Probability in the Engineering and Informational Sciences, 8, 1994.
          </li>
<li class="listitem">
            N. M. Temme, The Asymptotic Expansion of the Incomplete Gamma Functions,
            Siam J. Math Anal. Vol 10 No 4, July 1979, p757.
          </li>
<li class="listitem">
            A. R. Didonato and A. H. Morris, Computation of the Incomplete Gamma
            Function Ratios and their Inverse. ACM TOMS, Vol 12, No 4, Dec 1986,
            p377.
          </li>
<li class="listitem">
            W. Gautschi, The Incomplete Gamma Functions Since Tricomi, In Tricomi's
            Ideas and Contemporary Applied Mathematics, Atti dei Convegni Lincei,
            n. 147, Accademia Nazionale dei Lincei, Roma, 1998, pp. 203--237. <a href="http://citeseer.ist.psu.edu/gautschi98incomplete.html" target="_top">http://citeseer.ist.psu.edu/gautschi98incomplete.html</a>
          </li>
</ul></div>
</div>
<table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr>
<td align="left"></td>
<td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland,
      Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno
      Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde,
      Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle
      Walker and Xiaogang Zhang<p>
        Distributed under the Boost Software License, Version 1.0. (See accompanying
        file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>)
      </p>
</div></td>
</tr></table>
<hr>
<div class="spirit-nav">
<a accesskey="p" href="gamma_ratios.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../sf_gamma.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="igamma_inv.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a>
</div>
</body>
</html>