<html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Implementation</title> <link rel="stylesheet" href="../../math.css" type="text/css"> <meta name="generator" content="DocBook XSL Stylesheets V1.79.1"> <link rel="home" href="../../index.html" title="Math Toolkit 3.0.0"> <link rel="up" href="../roots_noderiv.html" title="Root Finding Without Derivatives"> <link rel="prev" href="root_termination.html" title="Termination Condition Functors"> <link rel="next" href="../roots_deriv.html" title="Root Finding With Derivatives: Newton-Raphson, Halley & Schröder"> </head> <body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"> <table cellpadding="2" width="100%"><tr> <td valign="top"><img alt="Boost C++ Libraries" width="277" height="86" src="../../../../../../boost.png"></td> <td align="center"><a href="../../../../../../index.html">Home</a></td> <td align="center"><a href="../../../../../../libs/libraries.htm">Libraries</a></td> <td align="center"><a href="http://www.boost.org/users/people.html">People</a></td> <td align="center"><a href="http://www.boost.org/users/faq.html">FAQ</a></td> <td align="center"><a href="../../../../../../more/index.htm">More</a></td> </tr></table> <hr> <div class="spirit-nav"> <a accesskey="p" href="root_termination.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../roots_noderiv.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../roots_deriv.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a> </div> <div class="section"> <div class="titlepage"><div><div><h3 class="title"> <a name="math_toolkit.roots_noderiv.implementation"></a><a class="link" href="implementation.html" title="Implementation">Implementation</a> </h3></div></div></div> <p> The implementation of the bisection algorithm is extremely straightforward and not detailed here. </p> <p> <a href="http://portal.acm.org/citation.cfm?id=210111" target="_top">TOMS Algorithm 748: enclosing zeros of continuous functions</a> is described in detail in: </p> <p> <span class="emphasis"><em>Algorithm 748: Enclosing Zeros of Continuous Functions, G. E. Alefeld, F. A. Potra and Yixun Shi, ACM Transactions on Mathematical Software, Vol. 21. No. 3. September 1995. Pages 327-344.</em></span> </p> <p> The implementation here is a faithful translation of this paper into C++. </p> </div> <table xmlns:rev="http://www.cs.rpi.edu/~gregod/boost/tools/doc/revision" width="100%"><tr> <td align="left"></td> <td align="right"><div class="copyright-footer">Copyright © 2006-2021 Nikhar Agrawal, Anton Bikineev, Matthew Borland, Paul A. Bristow, Marco Guazzone, Christopher Kormanyos, Hubert Holin, Bruno Lalande, John Maddock, Evan Miller, Jeremy Murphy, Matthew Pulver, Johan Råde, Gautam Sewani, Benjamin Sobotta, Nicholas Thompson, Thijs van den Berg, Daryle Walker and Xiaogang Zhang<p> Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at <a href="http://www.boost.org/LICENSE_1_0.txt" target="_top">http://www.boost.org/LICENSE_1_0.txt</a>) </p> </div></td> </tr></table> <hr> <div class="spirit-nav"> <a accesskey="p" href="root_termination.html"><img src="../../../../../../doc/src/images/prev.png" alt="Prev"></a><a accesskey="u" href="../roots_noderiv.html"><img src="../../../../../../doc/src/images/up.png" alt="Up"></a><a accesskey="h" href="../../index.html"><img src="../../../../../../doc/src/images/home.png" alt="Home"></a><a accesskey="n" href="../roots_deriv.html"><img src="../../../../../../doc/src/images/next.png" alt="Next"></a> </div> </body> </html>