am 68126def: am 4d46c940: Merge "Rewrite the POSIX timer functions."

* commit '68126def6e37eae1ddc0b372fcecc3ac8287b97e':
  Rewrite the POSIX timer functions.
This commit is contained in:
Elliott Hughes 2014-03-08 07:28:11 +00:00 committed by Android Git Automerger
commit d1256ccbb3
10 changed files with 446 additions and 670 deletions

View File

@ -165,6 +165,7 @@ libc_bionic_src_files := \
bionic/pipe.cpp \
bionic/poll.cpp \
bionic/posix_fallocate.cpp \
bionic/posix_timers.cpp \
bionic/pthread_atfork.cpp \
bionic/pthread_attr.cpp \
bionic/pthread_cond.cpp \
@ -224,7 +225,6 @@ libc_bionic_src_files := \
bionic/sys_signame.c \
bionic/tdestroy.cpp \
bionic/thread_atexit.cpp \
bionic/timer.cpp \
bionic/tmpfile.cpp \
bionic/unlink.cpp \
bionic/utimes.cpp \

View File

@ -213,11 +213,11 @@ int clock_getres(clockid_t clk_id, struct timespec* res) all
int clock_nanosleep(clockid_t clock_id, int flags, const struct timespec* req, struct timespec* rem) all
int getitimer(int, const struct itimerval*) all
int setitimer(int, const struct itimerval*, struct itimerval*) all
int __timer_create:timer_create(clockid_t clockid, struct sigevent* evp, timer_t* timerid) all
int __timer_settime:timer_settime(timer_t, int, const struct itimerspec*, struct itimerspec*) all
int __timer_gettime:timer_gettime(timer_t, struct itimerspec*) all
int __timer_getoverrun:timer_getoverrun(timer_t) all
int __timer_delete:timer_delete(timer_t) all
int __timer_create:timer_create(clockid_t clockid, struct sigevent* evp, __kernel_timer_t* timerid) all
int __timer_settime:timer_settime(__kernel_timer_t, int, const struct itimerspec*, struct itimerspec*) all
int __timer_gettime:timer_gettime(__kernel_timer_t, struct itimerspec*) all
int __timer_getoverrun:timer_getoverrun(__kernel_timer_t) all
int __timer_delete:timer_delete(__kernel_timer_t) all
int timerfd_create(clockid_t, int) all
int timerfd_settime(int, int, const struct itimerspec*, struct itimerspec*) all
int timerfd_gettime(int, struct itimerspec*) all

View File

@ -29,15 +29,9 @@
#include <unistd.h>
#include <sys/syscall.h>
#include "private/libc_logging.h"
#include "pthread_internal.h"
int fork() {
// POSIX mandates that the timers of a fork child process be
// disarmed, but not destroyed. To avoid a race condition, we're
// going to stop all timers now, and only re-start them in case
// of error, or in the parent process
__timer_table_start_stop(1);
__bionic_atfork_run_prepare();
pthread_internal_t* self = __get_thread();
@ -50,7 +44,6 @@ int fork() {
if (result == 0) {
__bionic_atfork_run_child();
} else {
__timer_table_start_stop(0);
__bionic_atfork_run_parent();
}
return result;

View File

@ -0,0 +1,221 @@
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "pthread_internal.h"
#include "private/bionic_futex.h"
#include "private/bionic_pthread.h"
#include "private/kernel_sigset_t.h"
#include <errno.h>
#include <stdio.h>
#include <string.h>
// System calls.
extern "C" int __rt_sigtimedwait(const sigset_t*, siginfo_t*, const struct timespec*, size_t);
extern "C" int __timer_create(clockid_t, sigevent*, __kernel_timer_t*);
extern "C" int __timer_delete(__kernel_timer_t);
extern "C" int __timer_getoverrun(__kernel_timer_t);
extern "C" int __timer_gettime(__kernel_timer_t, itimerspec*);
extern "C" int __timer_settime(__kernel_timer_t, int, const itimerspec*, itimerspec*);
// Most POSIX timers are handled directly by the kernel. We translate SIGEV_THREAD timers
// into SIGEV_THREAD_ID timers so the kernel handles all the time-related stuff and we just
// need to worry about running user code on a thread.
// We can't use SIGALRM because too many other C library functions throw that around, and since
// they don't send to a specific thread, all threads are eligible to handle the signal and we can
// end up with one of our POSIX timer threads handling it (meaning that the intended recipient
// doesn't). glibc uses SIGRTMIN for its POSIX timer implementation, so in the absence of any
// reason to use anything else, we use that too.
static const int TIMER_SIGNAL = SIGRTMIN;
struct PosixTimer {
__kernel_timer_t kernel_timer_id;
int sigev_notify;
// These fields are only needed for a SIGEV_THREAD timer.
pthread_t callback_thread;
void (*callback)(sigval_t);
sigval_t callback_argument;
volatile int exiting;
};
static __kernel_timer_t to_kernel_timer_id(timer_t timer) {
return reinterpret_cast<PosixTimer*>(timer)->kernel_timer_id;
}
static void* __timer_thread_start(void* arg) {
PosixTimer* timer = reinterpret_cast<PosixTimer*>(arg);
kernel_sigset_t sigset;
sigaddset(sigset.get(), TIMER_SIGNAL);
while (true) {
// Wait for a signal...
siginfo_t si;
memset(&si, 0, sizeof(si));
int rc = __rt_sigtimedwait(sigset.get(), &si, NULL, sizeof(sigset));
if (rc == -1) {
continue;
}
if (si.si_code == SI_TIMER) {
// This signal was sent because a timer fired, so call the callback.
timer->callback(timer->callback_argument);
} else if (si.si_code == SI_TKILL) {
// This signal was sent because someone wants us to exit.
timer->exiting = 1;
__futex_wake(&timer->exiting, INT32_MAX);
return NULL;
}
}
}
static void __timer_thread_stop(PosixTimer* timer) {
pthread_kill(timer->callback_thread, TIMER_SIGNAL);
// We can't pthread_join because POSIX says "the threads created in response to a timer
// expiration are created detached, or in an unspecified way if the thread attribute's
// detachstate is PTHREAD_CREATE_JOINABLE".
while (timer->exiting == 0) {
__futex_wait(&timer->exiting, 0, NULL);
}
}
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_create.html
int timer_create(clockid_t clock_id, sigevent* evp, timer_t* timer_id) {
PosixTimer* new_timer = reinterpret_cast<PosixTimer*>(malloc(sizeof(PosixTimer)));
if (new_timer == NULL) {
return -1;
}
new_timer->sigev_notify = (evp == NULL) ? SIGEV_SIGNAL : evp->sigev_notify;
// If not a SIGEV_THREAD timer, the kernel can handle it without our help.
if (new_timer->sigev_notify != SIGEV_THREAD) {
if (__timer_create(clock_id, evp, &new_timer->kernel_timer_id) == -1) {
free(new_timer);
return -1;
}
*timer_id = new_timer;
return 0;
}
// Otherwise, this must be SIGEV_THREAD timer...
new_timer->callback = evp->sigev_notify_function;
new_timer->callback_argument = evp->sigev_value;
new_timer->exiting = 0;
// Check arguments that the kernel doesn't care about but we do.
if (new_timer->callback == NULL) {
free(new_timer);
errno = EINVAL;
return -1;
}
// Create this timer's thread.
pthread_attr_t thread_attributes;
if (evp->sigev_notify_attributes == NULL) {
pthread_attr_init(&thread_attributes);
} else {
thread_attributes = *reinterpret_cast<pthread_attr_t*>(evp->sigev_notify_attributes);
}
pthread_attr_setdetachstate(&thread_attributes, PTHREAD_CREATE_DETACHED);
// We start the thread with TIMER_SIGNAL blocked by blocking the signal here and letting it
// inherit. If it tried to block the signal itself, there would be a race.
kernel_sigset_t sigset;
sigaddset(sigset.get(), TIMER_SIGNAL);
kernel_sigset_t old_sigset;
pthread_sigmask(SIG_BLOCK, sigset.get(), old_sigset.get());
int rc = pthread_create(&new_timer->callback_thread, &thread_attributes, __timer_thread_start, new_timer);
pthread_sigmask(SIG_SETMASK, old_sigset.get(), NULL);
if (rc != 0) {
free(new_timer);
errno = rc;
return -1;
}
sigevent se = *evp;
se.sigev_signo = TIMER_SIGNAL;
se.sigev_notify = SIGEV_THREAD_ID;
se.sigev_notify_thread_id = __pthread_gettid(new_timer->callback_thread);
if (__timer_create(clock_id, &se, &new_timer->kernel_timer_id) == -1) {
__timer_thread_stop(new_timer);
free(new_timer);
return -1;
}
// Give the thread a meaningful name.
// It can't do this itself because the kernel timer isn't created until after it's running.
char name[32];
snprintf(name, sizeof(name), "POSIX interval timer %d", to_kernel_timer_id(new_timer));
pthread_setname_np(new_timer->callback_thread, name);
*timer_id = new_timer;
return 0;
}
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_delete.html
int timer_delete(timer_t id) {
int rc = __timer_delete(to_kernel_timer_id(id));
if (rc == -1) {
return -1;
}
PosixTimer* timer = reinterpret_cast<PosixTimer*>(id);
// Make sure the timer's thread has exited before we free the timer data.
if (timer->sigev_notify == SIGEV_THREAD) {
__timer_thread_stop(timer);
}
free(timer);
return 0;
}
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_getoverrun.html
int timer_gettime(timer_t id, itimerspec* ts) {
return __timer_gettime(to_kernel_timer_id(id), ts);
}
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_getoverrun.html
int timer_settime(timer_t id, int flags, const itimerspec* ts, itimerspec* ots) {
return __timer_settime(to_kernel_timer_id(id), flags, ts, ots);
}
// http://pubs.opengroup.org/onlinepubs/9699919799/functions/timer_getoverrun.html
int timer_getoverrun(timer_t id) {
return __timer_getoverrun(to_kernel_timer_id(id));
}

View File

@ -48,14 +48,12 @@ struct atfork_list_t {
static atfork_list_t gAtForkList = { NULL, NULL };
void __bionic_atfork_run_prepare() {
// We will lock this here, and unlock it in the parent and child functions.
// We lock the atfork list here, unlock it in the parent, and reset it in the child.
// This ensures that nobody can modify the handler array between the calls
// to the prepare and parent/child handlers.
//
// TODO: If a handler mucks with the list, it could cause problems. Right
// now it's ok because all they can do is add new items to the end
// of the list, but if/when we implement cleanup in dlclose() things
// will get more interesting...
// TODO: If a handler tries to mutate the list, they'll block. We should probably copy
// the list before forking, and have prepare, parent, and child all work on the consistent copy.
pthread_mutex_lock(&gAtForkListMutex);
// Call pthread_atfork() prepare handlers. POSIX states that the prepare
@ -75,10 +73,7 @@ void __bionic_atfork_run_child() {
}
}
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&gAtForkListMutex, &attr);
gAtForkListMutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER;
}
void __bionic_atfork_run_parent() {

View File

@ -91,8 +91,7 @@ __LIBC_HIDDEN__ extern pthread_mutex_t gThreadListLock;
__LIBC_HIDDEN__ int __timespec_from_absolute(timespec*, const timespec*, clockid_t);
/* needed by fork.c */
__LIBC_HIDDEN__ extern void __timer_table_start_stop(int);
/* Needed by fork. */
__LIBC_HIDDEN__ extern void __bionic_atfork_run_prepare();
__LIBC_HIDDEN__ extern void __bionic_atfork_run_child();
__LIBC_HIDDEN__ extern void __bionic_atfork_run_parent();

View File

@ -1,636 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "pthread_internal.h"
#include <errno.h>
#include <stdio.h>
#include <string.h>
extern int __pthread_cond_timedwait(pthread_cond_t*, pthread_mutex_t*, const timespec*, clockid_t);
extern int __pthread_cond_timedwait_relative(pthread_cond_t*, pthread_mutex_t*, const timespec*);
// Normal (i.e. non-SIGEV_THREAD) timers are created directly by the kernel
// and are passed as is to/from the caller.
//
// This file also implements the support required for SIGEV_THREAD ("POSIX interval")
// timers. See the following pages for additional details:
//
// www.opengroup.org/onlinepubs/000095399/functions/timer_create.html
// www.opengroup.org/onlinepubs/000095399/functions/timer_settime.html
// www.opengroup.org/onlinepubs/000095399/functions/xsh_chap02_04.html#tag_02_04_01
//
// The Linux kernel doesn't support these, so we need to implement them in the
// C library. We use a very basic scheme where each timer is associated to a
// thread that will loop, waiting for timeouts or messages from the program
// corresponding to calls to timer_settime() and timer_delete().
//
// Note also an important thing: Posix mandates that in the case of fork(),
// the timers of the child process should be disarmed, but not deleted.
// this is implemented by providing a fork() wrapper (see bionic/fork.c) which
// stops all timers before the fork, and only re-start them in case of error
// or in the parent process.
//
// This stop/start is implemented by the __timer_table_start_stop() function
// below.
//
// A SIGEV_THREAD timer ID will always have its TIMER_ID_WRAP_BIT
// set to 1. In this implementation, this is always bit 31, which is
// guaranteed to never be used by kernel-provided timer ids
//
// (See code in <kernel>/lib/idr.c, used to manage IDs, to see why.)
#define TIMER_ID_WRAP_BIT 0x80000000
#define TIMER_ID_WRAP(id) ((timer_t)((id) | TIMER_ID_WRAP_BIT))
#define TIMER_ID_UNWRAP(id) ((timer_t)((id) & ~TIMER_ID_WRAP_BIT))
#define TIMER_ID_IS_WRAPPED(id) (((id) & TIMER_ID_WRAP_BIT) != 0)
/* this value is used internally to indicate a 'free' or 'zombie'
* thr_timer structure. Here, 'zombie' means that timer_delete()
* has been called, but that the corresponding thread hasn't
* exited yet.
*/
#define TIMER_ID_NONE ((timer_t)0xffffffff)
/* True iff a timer id is valid */
#define TIMER_ID_IS_VALID(id) ((id) != TIMER_ID_NONE)
/* the maximum value of overrun counters */
#define DELAYTIMER_MAX 0x7fffffff
typedef struct thr_timer thr_timer_t;
typedef struct thr_timer_table thr_timer_table_t;
/* The Posix spec says the function receives an unsigned parameter, but
* it's really a 'union sigval' a.k.a. sigval_t */
typedef void (*thr_timer_func_t)( sigval_t );
struct thr_timer {
thr_timer_t* next; /* next in free list */
timer_t id; /* TIMER_ID_NONE iff free or dying */
clockid_t clock;
pthread_t thread;
pthread_attr_t attributes;
thr_timer_func_t callback;
sigval_t value;
/* the following are used to communicate between
* the timer thread and the timer_XXX() functions
*/
pthread_mutex_t mutex; /* lock */
pthread_cond_t cond; /* signal a state change to thread */
int volatile done; /* set by timer_delete */
int volatile stopped; /* set by _start_stop() */
timespec volatile expires; /* next expiration time, or 0 */
timespec volatile period; /* reload value, or 0 */
int volatile overruns; /* current number of overruns */
};
#define MAX_THREAD_TIMERS 32
struct thr_timer_table {
pthread_mutex_t lock;
thr_timer_t* free_timer;
thr_timer_t timers[ MAX_THREAD_TIMERS ];
};
/** GLOBAL TABLE OF THREAD TIMERS
**/
static void
thr_timer_table_init( thr_timer_table_t* t )
{
int nn;
memset(t, 0, sizeof *t);
pthread_mutex_init( &t->lock, NULL );
for (nn = 0; nn < MAX_THREAD_TIMERS; nn++)
t->timers[nn].id = TIMER_ID_NONE;
t->free_timer = &t->timers[0];
for (nn = 1; nn < MAX_THREAD_TIMERS; nn++)
t->timers[nn-1].next = &t->timers[nn];
}
static thr_timer_t*
thr_timer_table_alloc( thr_timer_table_t* t )
{
thr_timer_t* timer;
if (t == NULL)
return NULL;
pthread_mutex_lock(&t->lock);
timer = t->free_timer;
if (timer != NULL) {
t->free_timer = timer->next;
timer->next = NULL;
timer->id = TIMER_ID_WRAP((timer - t->timers));
}
pthread_mutex_unlock(&t->lock);
return timer;
}
static void
thr_timer_table_free( thr_timer_table_t* t, thr_timer_t* timer )
{
pthread_mutex_lock( &t->lock );
timer->id = TIMER_ID_NONE;
timer->thread = 0;
timer->next = t->free_timer;
t->free_timer = timer;
pthread_mutex_unlock( &t->lock );
}
static void thr_timer_table_start_stop(thr_timer_table_t* t, int stop) {
if (t == NULL) {
return;
}
pthread_mutex_lock(&t->lock);
for (int nn = 0; nn < MAX_THREAD_TIMERS; ++nn) {
thr_timer_t* timer = &t->timers[nn];
if (TIMER_ID_IS_VALID(timer->id)) {
// Tell the thread to start/stop.
pthread_mutex_lock(&timer->mutex);
timer->stopped = stop;
pthread_cond_signal( &timer->cond );
pthread_mutex_unlock(&timer->mutex);
}
}
pthread_mutex_unlock(&t->lock);
}
/* convert a timer_id into the corresponding thr_timer_t* pointer
* returns NULL if the id is not wrapped or is invalid/free
*/
static thr_timer_t*
thr_timer_table_from_id( thr_timer_table_t* t,
timer_t id,
int remove )
{
unsigned index;
thr_timer_t* timer;
if (t == NULL || !TIMER_ID_IS_WRAPPED(id))
return NULL;
index = (unsigned) TIMER_ID_UNWRAP(id);
if (index >= MAX_THREAD_TIMERS)
return NULL;
pthread_mutex_lock(&t->lock);
timer = &t->timers[index];
if (!TIMER_ID_IS_VALID(timer->id)) {
timer = NULL;
} else {
/* if we're removing this timer, clear the id
* right now to prevent another thread to
* use the same id after the unlock */
if (remove)
timer->id = TIMER_ID_NONE;
}
pthread_mutex_unlock(&t->lock);
return timer;
}
/* the static timer table - we only create it if the process
* really wants to use SIGEV_THREAD timers, which should be
* pretty infrequent
*/
static pthread_once_t __timer_table_once = PTHREAD_ONCE_INIT;
static thr_timer_table_t* __timer_table;
static void __timer_table_init(void) {
__timer_table = reinterpret_cast<thr_timer_table_t*>(calloc(1, sizeof(*__timer_table)));
if (__timer_table != NULL) {
thr_timer_table_init(__timer_table);
}
}
static thr_timer_table_t* __timer_table_get(void) {
pthread_once(&__timer_table_once, __timer_table_init);
return __timer_table;
}
/** POSIX THREAD TIMERS CLEANUP ON FORK
**
** this should be called from the 'fork()' wrapper to stop/start
** all active thread timers. this is used to implement a Posix
** requirements: the timers of fork child processes must be
** disarmed but not deleted.
**/
void __timer_table_start_stop(int stop) {
// We access __timer_table directly so we don't create it if it doesn't yet exist.
thr_timer_table_start_stop(__timer_table, stop);
}
static thr_timer_t*
thr_timer_from_id( timer_t id )
{
thr_timer_table_t* table = __timer_table_get();
thr_timer_t* timer = thr_timer_table_from_id( table, id, 0 );
return timer;
}
static __inline__ void
thr_timer_lock( thr_timer_t* t )
{
pthread_mutex_lock(&t->mutex);
}
static __inline__ void
thr_timer_unlock( thr_timer_t* t )
{
pthread_mutex_unlock(&t->mutex);
}
static __inline__ void timespec_add(timespec* a, const timespec* b) {
a->tv_sec += b->tv_sec;
a->tv_nsec += b->tv_nsec;
if (a->tv_nsec >= 1000000000) {
a->tv_nsec -= 1000000000;
a->tv_sec += 1;
}
}
static __inline__ void timespec_sub(timespec* a, const timespec* b) {
a->tv_sec -= b->tv_sec;
a->tv_nsec -= b->tv_nsec;
if (a->tv_nsec < 0) {
a->tv_nsec += 1000000000;
a->tv_sec -= 1;
}
}
static __inline__ void timespec_zero(timespec* a) {
a->tv_sec = a->tv_nsec = 0;
}
static __inline__ int timespec_is_zero(const timespec* a) {
return (a->tv_sec == 0 && a->tv_nsec == 0);
}
static __inline__ int timespec_cmp(const timespec* a, const timespec* b) {
if (a->tv_sec < b->tv_sec) return -1;
if (a->tv_sec > b->tv_sec) return +1;
if (a->tv_nsec < b->tv_nsec) return -1;
if (a->tv_nsec > b->tv_nsec) return +1;
return 0;
}
static __inline__ int timespec_cmp0(const timespec* a) {
if (a->tv_sec < 0) return -1;
if (a->tv_sec > 0) return +1;
if (a->tv_nsec < 0) return -1;
if (a->tv_nsec > 0) return +1;
return 0;
}
/** POSIX TIMERS APIs */
extern "C" int __timer_create(clockid_t, sigevent*, timer_t*);
extern "C" int __timer_delete(timer_t);
extern "C" int __timer_gettime(timer_t, itimerspec*);
extern "C" int __timer_settime(timer_t, int, const itimerspec*, itimerspec*);
extern "C" int __timer_getoverrun(timer_t);
static void* timer_thread_start(void*);
int timer_create(clockid_t clock_id, sigevent* evp, timer_t* timer_id) {
// If not a SIGEV_THREAD timer, the kernel can handle it without our help.
if (__predict_true(evp == NULL || evp->sigev_notify != SIGEV_THREAD)) {
return __timer_create(clock_id, evp, timer_id);
}
// Check arguments.
if (evp->sigev_notify_function == NULL) {
errno = EINVAL;
return -1;
}
// Check that the clock id is supported by the kernel.
timespec dummy;
if (clock_gettime(clock_id, &dummy) < 0 && errno == EINVAL) {
return -1;
}
// Create a new timer and its thread.
// TODO: use a single global thread for all timers.
thr_timer_table_t* table = __timer_table_get();
thr_timer_t* timer = thr_timer_table_alloc(table);
if (timer == NULL) {
errno = ENOMEM;
return -1;
}
// Copy the thread attributes.
if (evp->sigev_notify_attributes == NULL) {
pthread_attr_init(&timer->attributes);
} else {
timer->attributes = ((pthread_attr_t*) evp->sigev_notify_attributes)[0];
}
// Posix says that the default is PTHREAD_CREATE_DETACHED and
// that PTHREAD_CREATE_JOINABLE has undefined behavior.
// So simply always use DETACHED :-)
pthread_attr_setdetachstate(&timer->attributes, PTHREAD_CREATE_DETACHED);
timer->callback = evp->sigev_notify_function;
timer->value = evp->sigev_value;
timer->clock = clock_id;
pthread_mutex_init(&timer->mutex, NULL);
pthread_cond_init(&timer->cond, NULL);
timer->done = 0;
timer->stopped = 0;
timer->expires.tv_sec = timer->expires.tv_nsec = 0;
timer->period.tv_sec = timer->period.tv_nsec = 0;
timer->overruns = 0;
// Create the thread.
int rc = pthread_create(&timer->thread, &timer->attributes, timer_thread_start, timer);
if (rc != 0) {
thr_timer_table_free(table, timer);
errno = rc;
return -1;
}
*timer_id = timer->id;
return 0;
}
int
timer_delete( timer_t id )
{
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) )
return __timer_delete( id );
else
{
thr_timer_table_t* table = __timer_table_get();
thr_timer_t* timer = thr_timer_table_from_id(table, id, 1);
if (timer == NULL) {
errno = EINVAL;
return -1;
}
/* tell the timer's thread to stop */
thr_timer_lock(timer);
timer->done = 1;
pthread_cond_signal( &timer->cond );
thr_timer_unlock(timer);
/* NOTE: the thread will call __timer_table_free() to free the
* timer object. the '1' parameter to thr_timer_table_from_id
* above ensured that the object and its timer_id cannot be
* reused before that.
*/
return 0;
}
}
/* return the relative time until the next expiration, or 0 if
* the timer is disarmed */
static void timer_gettime_internal(thr_timer_t* timer, itimerspec* spec) {
timespec diff = const_cast<timespec&>(timer->expires);
if (!timespec_is_zero(&diff)) {
timespec now;
clock_gettime(timer->clock, &now);
timespec_sub(&diff, &now);
/* in case of overrun, return 0 */
if (timespec_cmp0(&diff) < 0) {
timespec_zero(&diff);
}
}
spec->it_value = diff;
spec->it_interval = const_cast<timespec&>(timer->period);
}
int timer_gettime(timer_t id, itimerspec* ospec) {
if (ospec == NULL) {
errno = EINVAL;
return -1;
}
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) {
return __timer_gettime( id, ospec );
} else {
thr_timer_t* timer = thr_timer_from_id(id);
if (timer == NULL) {
errno = EINVAL;
return -1;
}
thr_timer_lock(timer);
timer_gettime_internal( timer, ospec );
thr_timer_unlock(timer);
}
return 0;
}
int
timer_settime(timer_t id, int flags, const itimerspec* spec, itimerspec* ospec) {
if (spec == NULL) {
errno = EINVAL;
return -1;
}
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) {
return __timer_settime( id, flags, spec, ospec );
} else {
thr_timer_t* timer = thr_timer_from_id(id);
timespec expires, now;
if (timer == NULL) {
errno = EINVAL;
return -1;
}
thr_timer_lock(timer);
/* return current timer value if ospec isn't NULL */
if (ospec != NULL) {
timer_gettime_internal(timer, ospec );
}
/* compute next expiration time. note that if the
* new it_interval is 0, we should disarm the timer
*/
expires = spec->it_value;
if (!timespec_is_zero(&expires)) {
clock_gettime( timer->clock, &now );
if (!(flags & TIMER_ABSTIME)) {
timespec_add(&expires, &now);
} else {
if (timespec_cmp(&expires, &now) < 0)
expires = now;
}
}
const_cast<timespec&>(timer->expires) = expires;
const_cast<timespec&>(timer->period) = spec->it_interval;
thr_timer_unlock( timer );
/* signal the change to the thread */
pthread_cond_signal( &timer->cond );
}
return 0;
}
int
timer_getoverrun(timer_t id)
{
if ( __predict_true(!TIMER_ID_IS_WRAPPED(id)) ) {
return __timer_getoverrun( id );
} else {
thr_timer_t* timer = thr_timer_from_id(id);
int result;
if (timer == NULL) {
errno = EINVAL;
return -1;
}
thr_timer_lock(timer);
result = timer->overruns;
thr_timer_unlock(timer);
return result;
}
}
static void* timer_thread_start(void* arg) {
thr_timer_t* timer = reinterpret_cast<thr_timer_t*>(arg);
thr_timer_lock(timer);
// Give this thread a meaningful name.
char name[32];
snprintf(name, sizeof(name), "POSIX interval timer 0x%08x", timer->id);
pthread_setname_np(pthread_self(), name);
// We loop until timer->done is set in timer_delete().
while (!timer->done) {
timespec expires = const_cast<timespec&>(timer->expires);
timespec period = const_cast<timespec&>(timer->period);
// If the timer is stopped or disarmed, wait indefinitely
// for a state change from timer_settime/_delete/_start_stop.
if (timer->stopped || timespec_is_zero(&expires)) {
pthread_cond_wait(&timer->cond, &timer->mutex);
continue;
}
// Otherwise, we need to do a timed wait until either a
// state change of the timer expiration time.
timespec now;
clock_gettime(timer->clock, &now);
if (timespec_cmp(&expires, &now) > 0) {
// Cool, there was no overrun, so compute the
// relative timeout as 'expires - now', then wait.
timespec diff = expires;
timespec_sub(&diff, &now);
int ret = __pthread_cond_timedwait_relative(&timer->cond, &timer->mutex, &diff);
// If we didn't time out, it means that a state change
// occurred, so loop to take care of it.
if (ret != ETIMEDOUT) {
continue;
}
} else {
// Overrun was detected before we could wait!
if (!timespec_is_zero(&period)) {
// For periodic timers, compute total overrun count.
do {
timespec_add(&expires, &period);
if (timer->overruns < DELAYTIMER_MAX) {
timer->overruns += 1;
}
} while (timespec_cmp(&expires, &now) < 0);
// Backtrack the last one, because we're going to
// add the same value just a bit later.
timespec_sub(&expires, &period);
} else {
// For non-periodic timers, things are simple.
timer->overruns = 1;
}
}
// If we get here, a timeout was detected.
// First reload/disarm the timer as needed.
if (!timespec_is_zero(&period)) {
timespec_add(&expires, &period);
} else {
timespec_zero(&expires);
}
const_cast<timespec&>(timer->expires) = expires;
// Now call the timer callback function. Release the
// lock to allow the function to modify the timer setting
// or call timer_getoverrun().
// NOTE: at this point we trust the callback not to be a
// total moron and pthread_kill() the timer thread
thr_timer_unlock(timer);
timer->callback(timer->value);
thr_timer_lock(timer);
// Now clear the overruns counter. it only makes sense
// within the callback.
timer->overruns = 0;
}
thr_timer_unlock(timer);
// Free the timer object.
thr_timer_table_free(__timer_table_get(), timer);
return NULL;
}

View File

@ -69,7 +69,7 @@ typedef __ino_t ino_t;
typedef __uint32_t __nlink_t;
typedef __nlink_t nlink_t;
typedef int __timer_t;
typedef void* __timer_t;
typedef __timer_t timer_t;
typedef __int32_t __suseconds_t;

View File

@ -25,6 +25,8 @@
#include <time.h>
#include <unistd.h>
#include "ScopedSignalHandler.h"
TEST(pthread, pthread_key_create) {
pthread_key_t key;
ASSERT_EQ(0, pthread_key_create(&key, NULL));
@ -337,14 +339,8 @@ static void pthread_kill__in_signal_handler_helper(int signal_number) {
}
TEST(pthread, pthread_kill__in_signal_handler) {
struct sigaction action;
struct sigaction original_action;
sigemptyset(&action.sa_mask);
action.sa_flags = 0;
action.sa_handler = pthread_kill__in_signal_handler_helper;
ASSERT_EQ(0, sigaction(SIGALRM, &action, &original_action));
ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
ASSERT_EQ(0, sigaction(SIGALRM, &original_action, NULL));
}
TEST(pthread, pthread_detach__no_such_thread) {

View File

@ -14,11 +14,14 @@
* limitations under the License.
*/
#include <sys/cdefs.h>
#include <time.h>
#include <errno.h>
#include <features.h>
#include <gtest/gtest.h>
#include <signal.h>
#include <time.h>
#include "ScopedSignalHandler.h"
#if defined(__BIONIC__) // mktime_tz is a bionic extension.
#include <libc/private/bionic_time.h>
@ -92,3 +95,208 @@ TEST(time, mktime_10310929) {
#endif
#endif
}
void SetTime(timer_t t, time_t value_s, time_t value_ns, time_t interval_s, time_t interval_ns) {
itimerspec ts;
ts.it_value.tv_sec = value_s;
ts.it_value.tv_nsec = value_ns;
ts.it_interval.tv_sec = interval_s;
ts.it_interval.tv_nsec = interval_ns;
ASSERT_EQ(0, timer_settime(t, TIMER_ABSTIME, &ts, NULL));
}
static void NoOpNotifyFunction(sigval_t) {
}
TEST(time, timer_create) {
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
int pid = fork();
ASSERT_NE(-1, pid) << strerror(errno);
if (pid == 0) {
// Timers are not inherited by the child.
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_EQ(EINVAL, errno);
_exit(0);
}
int status;
ASSERT_EQ(pid, waitpid(pid, &status, 0));
ASSERT_TRUE(WIFEXITED(status));
ASSERT_EQ(0, WEXITSTATUS(status));
ASSERT_EQ(0, timer_delete(timer_id));
}
static int timer_create_SIGEV_SIGNAL_signal_handler_invocation_count = 0;
static void timer_create_SIGEV_SIGNAL_signal_handler(int signal_number) {
++timer_create_SIGEV_SIGNAL_signal_handler_invocation_count;
ASSERT_EQ(SIGUSR1, signal_number);
}
TEST(time, timer_create_SIGEV_SIGNAL) {
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_SIGNAL;
se.sigev_signo = SIGUSR1;
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
ScopedSignalHandler ssh(SIGUSR1, timer_create_SIGEV_SIGNAL_signal_handler);
ASSERT_EQ(0, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count);
itimerspec ts;
ts.it_value.tv_sec = 0;
ts.it_value.tv_nsec = 1;
ts.it_interval.tv_sec = 0;
ts.it_interval.tv_nsec = 0;
ASSERT_EQ(0, timer_settime(timer_id, TIMER_ABSTIME, &ts, NULL));
usleep(500000);
ASSERT_EQ(1, timer_create_SIGEV_SIGNAL_signal_handler_invocation_count);
}
struct Counter {
volatile int value;
timer_t timer_id;
sigevent_t se;
Counter(void (*fn)(sigval_t)) : value(0) {
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = fn;
se.sigev_value.sival_ptr = this;
}
void Create() {
ASSERT_EQ(0, timer_create(CLOCK_REALTIME, &se, &timer_id));
}
~Counter() {
if (timer_delete(timer_id) != 0) {
abort();
}
}
static void CountNotifyFunction(sigval_t value) {
Counter* cd = reinterpret_cast<Counter*>(value.sival_ptr);
++cd->value;
}
static void CountAndDisarmNotifyFunction(sigval_t value) {
Counter* cd = reinterpret_cast<Counter*>(value.sival_ptr);
++cd->value;
// Setting the initial expiration time to 0 disarms the timer.
SetTime(cd->timer_id, 0, 0, 1, 0);
}
};
TEST(time, timer_settime_0) {
Counter counter(Counter::CountAndDisarmNotifyFunction);
counter.Create();
ASSERT_EQ(0, counter.value);
SetTime(counter.timer_id, 0, 1, 1, 0);
usleep(500000);
// The count should just be 1 because we disarmed the timer the first time it fired.
ASSERT_EQ(1, counter.value);
}
TEST(time, timer_settime_repeats) {
Counter counter(Counter::CountNotifyFunction);
counter.Create();
ASSERT_EQ(0, counter.value);
SetTime(counter.timer_id, 0, 1, 0, 10);
usleep(500000);
// The count should just be > 1 because we let the timer repeat.
ASSERT_GT(counter.value, 1);
}
static int timer_create_NULL_signal_handler_invocation_count = 0;
static void timer_create_NULL_signal_handler(int signal_number) {
++timer_create_NULL_signal_handler_invocation_count;
ASSERT_EQ(SIGALRM, signal_number);
}
TEST(time, timer_create_NULL) {
// A NULL sigevent* is equivalent to asking for SIGEV_SIGNAL for SIGALRM.
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, NULL, &timer_id));
ScopedSignalHandler ssh(SIGALRM, timer_create_NULL_signal_handler);
ASSERT_EQ(0, timer_create_NULL_signal_handler_invocation_count);
SetTime(timer_id, 0, 1, 0, 0);
usleep(500000);
ASSERT_EQ(1, timer_create_NULL_signal_handler_invocation_count);
}
TEST(time, timer_create_EINVAL) {
clockid_t invalid_clock = 16;
// A SIGEV_SIGNAL timer is easy; the kernel does all that.
timer_t timer_id;
ASSERT_EQ(-1, timer_create(invalid_clock, NULL, &timer_id));
ASSERT_EQ(EINVAL, errno);
// A SIGEV_THREAD timer is more interesting because we have stuff to clean up.
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
ASSERT_EQ(-1, timer_create(invalid_clock, &se, &timer_id));
ASSERT_EQ(EINVAL, errno);
}
TEST(time, timer_delete_multiple) {
timer_t timer_id;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, NULL, &timer_id));
ASSERT_EQ(0, timer_delete(timer_id));
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_EQ(EINVAL, errno);
sigevent_t se;
memset(&se, 0, sizeof(se));
se.sigev_notify = SIGEV_THREAD;
se.sigev_notify_function = NoOpNotifyFunction;
ASSERT_EQ(0, timer_create(CLOCK_MONOTONIC, &se, &timer_id));
ASSERT_EQ(0, timer_delete(timer_id));
ASSERT_EQ(-1, timer_delete(timer_id));
ASSERT_EQ(EINVAL, errno);
}
TEST(time, timer_create_multiple) {
Counter counter1(Counter::CountNotifyFunction);
counter1.Create();
Counter counter2(Counter::CountNotifyFunction);
counter2.Create();
Counter counter3(Counter::CountNotifyFunction);
counter3.Create();
ASSERT_EQ(0, counter1.value);
ASSERT_EQ(0, counter2.value);
ASSERT_EQ(0, counter3.value);
SetTime(counter2.timer_id, 0, 1, 0, 0);
usleep(500000);
EXPECT_EQ(0, counter1.value);
EXPECT_EQ(1, counter2.value);
EXPECT_EQ(0, counter3.value);
}