implement pthread mutex deadlock detection
this works by building a directed graph of acquired pthread mutexes and making sure there are no loops in that graph. this feature is enabled with: setprop debug.libc.pthread 1 when a potential deadlock is detected, a large warning is output to the log with appropriate back traces. currently disabled at compile-time. set PTHREAD_DEBUG_ENABLED=1 to enable. Change-Id: I916eed2319599e8aaf8f229d3f18a8ddbec3aa8a
This commit is contained in:
parent
022d303116
commit
7c0c379372
@ -682,7 +682,13 @@ include $(BUILD_STATIC_LIBRARY)
|
||||
# ========================================================
|
||||
include $(CLEAR_VARS)
|
||||
|
||||
LOCAL_CFLAGS := $(libc_common_cflags)
|
||||
# pthread deadlock prediction:
|
||||
# set -DPTHREAD_DEBUG -DPTHREAD_DEBUG_ENABLED=1 to enable support for
|
||||
# pthread deadlock prediction.
|
||||
# Since this code is experimental it is disabled by default.
|
||||
# see libc/bionic/pthread_debug.c for details
|
||||
|
||||
LOCAL_CFLAGS := $(libc_common_cflags) -DPTHREAD_DEBUG -DPTHREAD_DEBUG_ENABLED=0
|
||||
LOCAL_C_INCLUDES := $(libc_common_c_includes)
|
||||
|
||||
LOCAL_SRC_FILES := \
|
||||
@ -690,6 +696,7 @@ LOCAL_SRC_FILES := \
|
||||
$(libc_static_common_src_files) \
|
||||
bionic/dlmalloc.c \
|
||||
bionic/malloc_debug_common.c \
|
||||
bionic/pthread_debug.c \
|
||||
bionic/libc_init_dynamic.c
|
||||
|
||||
LOCAL_MODULE:= libc
|
||||
@ -760,7 +767,7 @@ LOCAL_SRC_FILES := \
|
||||
|
||||
LOCAL_MODULE:= libc_malloc_debug_qemu
|
||||
|
||||
LOCAL_SHARED_LIBRARIES := libc
|
||||
LOCAL_SHARED_LIBRARIES := libc libdl
|
||||
LOCAL_WHOLE_STATIC_LIBRARIES := libc_common
|
||||
LOCAL_SYSTEM_SHARED_LIBRARIES :=
|
||||
|
||||
|
@ -76,6 +76,12 @@ void __libc_preinit(void)
|
||||
|
||||
__libc_init_common(elfdata);
|
||||
|
||||
/* Setup pthread routines accordingly to the environment.
|
||||
* Requires system properties
|
||||
*/
|
||||
extern void pthread_debug_init(void);
|
||||
pthread_debug_init();
|
||||
|
||||
/* Setup malloc routines accordingly to the environment.
|
||||
* Requires system properties
|
||||
*/
|
||||
|
@ -51,6 +51,9 @@
|
||||
#include <stdio.h>
|
||||
#include <bionic_pthread.h>
|
||||
|
||||
extern void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex);
|
||||
extern void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex);
|
||||
|
||||
extern int __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
|
||||
extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
|
||||
extern void _exit_thread(int retCode);
|
||||
@ -897,20 +900,6 @@ int pthread_mutex_init(pthread_mutex_t *mutex,
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_mutex_destroy(pthread_mutex_t *mutex)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* use trylock to ensure that the mutex value is
|
||||
* valid and is not already locked. */
|
||||
ret = pthread_mutex_trylock(mutex);
|
||||
if (ret != 0)
|
||||
return ret;
|
||||
|
||||
mutex->value = 0xdead10cc;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Lock a non-recursive mutex.
|
||||
@ -1073,7 +1062,8 @@ _recursive_unlock(void)
|
||||
_normal_unlock(&__recursive_lock, 0);
|
||||
}
|
||||
|
||||
int pthread_mutex_lock(pthread_mutex_t *mutex)
|
||||
__LIBC_HIDDEN__
|
||||
int pthread_mutex_lock_impl(pthread_mutex_t *mutex)
|
||||
{
|
||||
int mvalue, mtype, tid, new_lock_type, shared;
|
||||
|
||||
@ -1134,8 +1124,21 @@ int pthread_mutex_lock(pthread_mutex_t *mutex)
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_mutex_lock(pthread_mutex_t *mutex)
|
||||
{
|
||||
int err = pthread_mutex_lock_impl(mutex);
|
||||
#ifdef PTHREAD_DEBUG
|
||||
if (PTHREAD_DEBUG_ENABLED) {
|
||||
if (!err) {
|
||||
pthread_debug_mutex_lock_check(mutex);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return err;
|
||||
}
|
||||
|
||||
int pthread_mutex_unlock(pthread_mutex_t *mutex)
|
||||
__LIBC_HIDDEN__
|
||||
int pthread_mutex_unlock_impl(pthread_mutex_t *mutex)
|
||||
{
|
||||
int mvalue, mtype, tid, oldv, shared;
|
||||
|
||||
@ -1175,8 +1178,18 @@ int pthread_mutex_unlock(pthread_mutex_t *mutex)
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_mutex_unlock(pthread_mutex_t *mutex)
|
||||
{
|
||||
#ifdef PTHREAD_DEBUG
|
||||
if (PTHREAD_DEBUG_ENABLED) {
|
||||
pthread_debug_mutex_unlock_check(mutex);
|
||||
}
|
||||
#endif
|
||||
return pthread_mutex_unlock_impl(mutex);
|
||||
}
|
||||
|
||||
int pthread_mutex_trylock(pthread_mutex_t *mutex)
|
||||
__LIBC_HIDDEN__
|
||||
int pthread_mutex_trylock_impl(pthread_mutex_t *mutex)
|
||||
{
|
||||
int mvalue, mtype, tid, oldv, shared;
|
||||
|
||||
@ -1219,6 +1232,18 @@ int pthread_mutex_trylock(pthread_mutex_t *mutex)
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_mutex_trylock(pthread_mutex_t *mutex)
|
||||
{
|
||||
int err = pthread_mutex_trylock_impl(mutex);
|
||||
#ifdef PTHREAD_DEBUG
|
||||
if (PTHREAD_DEBUG_ENABLED) {
|
||||
if (!err) {
|
||||
pthread_debug_mutex_lock_check(mutex);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return err;
|
||||
}
|
||||
|
||||
/* initialize 'ts' with the difference between 'abstime' and the current time
|
||||
* according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
|
||||
@ -1254,7 +1279,8 @@ __timespec_to_relative_msec(struct timespec* abstime, unsigned msecs, clockid_
|
||||
}
|
||||
}
|
||||
|
||||
int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
|
||||
__LIBC_HIDDEN__
|
||||
int pthread_mutex_lock_timeout_np_impl(pthread_mutex_t *mutex, unsigned msecs)
|
||||
{
|
||||
clockid_t clock = CLOCK_MONOTONIC;
|
||||
struct timespec abstime;
|
||||
@ -1339,6 +1365,35 @@ int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
|
||||
return 0;
|
||||
}
|
||||
|
||||
int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
|
||||
{
|
||||
int err = pthread_mutex_lock_timeout_np_impl(mutex, msecs);
|
||||
#ifdef PTHREAD_DEBUG
|
||||
if (PTHREAD_DEBUG_ENABLED) {
|
||||
if (!err) {
|
||||
pthread_debug_mutex_lock_check(mutex);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
return err;
|
||||
}
|
||||
|
||||
int pthread_mutex_destroy(pthread_mutex_t *mutex)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/* use trylock to ensure that the mutex value is
|
||||
* valid and is not already locked. */
|
||||
ret = pthread_mutex_trylock_impl(mutex);
|
||||
if (ret != 0)
|
||||
return ret;
|
||||
|
||||
mutex->value = 0xdead10cc;
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
int pthread_condattr_init(pthread_condattr_t *attr)
|
||||
{
|
||||
if (attr == NULL)
|
||||
|
903
libc/bionic/pthread_debug.c
Normal file
903
libc/bionic/pthread_debug.c
Normal file
@ -0,0 +1,903 @@
|
||||
/*
|
||||
* Copyright (C) 2011 The Android Open Source Project
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in
|
||||
* the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||||
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||||
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||||
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||||
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
||||
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
||||
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <sys/types.h>
|
||||
#include <sys/atomics.h>
|
||||
#include <sys/system_properties.h>
|
||||
#include <sys/mman.h>
|
||||
|
||||
#if HAVE_DLADDR
|
||||
#include <dlfcn.h>
|
||||
#endif
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <errno.h>
|
||||
#include <pthread.h>
|
||||
#include <unwind.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "logd.h"
|
||||
#include "bionic_tls.h"
|
||||
|
||||
/*
|
||||
* ===========================================================================
|
||||
* Deadlock prediction
|
||||
* ===========================================================================
|
||||
*/
|
||||
/*
|
||||
The idea is to predict the possibility of deadlock by recording the order
|
||||
in which locks are acquired. If we see an attempt to acquire a lock
|
||||
out of order, we can identify the locks and offending code.
|
||||
|
||||
To make this work, we need to keep track of the locks held by each thread,
|
||||
and create history trees for each lock. When a thread tries to acquire
|
||||
a new lock, we walk through the "history children" of the lock, looking
|
||||
for a match with locks the thread already holds. If we find a match,
|
||||
it means the thread has made a request that could result in a deadlock.
|
||||
|
||||
To support recursive locks, we always allow re-locking a currently-held
|
||||
lock, and maintain a recursion depth count.
|
||||
|
||||
An ASCII-art example, where letters represent locks:
|
||||
|
||||
A
|
||||
/|\
|
||||
/ | \
|
||||
B | D
|
||||
\ |
|
||||
\|
|
||||
C
|
||||
|
||||
The above is the tree we'd have after handling lock synchronization
|
||||
sequences "ABC", "AC", "AD". A has three children, {B, C, D}. C is also
|
||||
a child of B. (The lines represent pointers between parent and child.
|
||||
Every node can have multiple parents and multiple children.)
|
||||
|
||||
If we hold AC, and want to lock B, we recursively search through B's
|
||||
children to see if A or C appears. It does, so we reject the attempt.
|
||||
(A straightforward way to implement it: add a link from C to B, then
|
||||
determine whether the graph starting at B contains a cycle.)
|
||||
|
||||
If we hold AC and want to lock D, we would succeed, creating a new link
|
||||
from C to D.
|
||||
|
||||
Updates to MutexInfo structs are only allowed for the thread that holds
|
||||
the lock, so we actually do most of our deadlock prediction work after
|
||||
the lock has been acquired.
|
||||
*/
|
||||
|
||||
// =============================================================================
|
||||
// log functions
|
||||
// =============================================================================
|
||||
|
||||
#define LOGD(format, ...) \
|
||||
__libc_android_log_print(ANDROID_LOG_DEBUG, \
|
||||
"pthread_debug", (format), ##__VA_ARGS__ )
|
||||
|
||||
#define LOGW(format, ...) \
|
||||
__libc_android_log_print(ANDROID_LOG_WARN, \
|
||||
"pthread_debug", (format), ##__VA_ARGS__ )
|
||||
|
||||
#define LOGE(format, ...) \
|
||||
__libc_android_log_print(ANDROID_LOG_ERROR, \
|
||||
"pthread_debug", (format), ##__VA_ARGS__ )
|
||||
|
||||
#define LOGI(format, ...) \
|
||||
__libc_android_log_print(ANDROID_LOG_INFO, \
|
||||
"pthread_debug", (format), ##__VA_ARGS__ )
|
||||
|
||||
static const char* const kStartBanner =
|
||||
"===============================================================";
|
||||
|
||||
static const char* const kEndBanner =
|
||||
"===============================================================";
|
||||
|
||||
extern char* __progname;
|
||||
|
||||
// =============================================================================
|
||||
// map info functions
|
||||
// =============================================================================
|
||||
|
||||
typedef struct mapinfo {
|
||||
struct mapinfo *next;
|
||||
unsigned start;
|
||||
unsigned end;
|
||||
char name[];
|
||||
} mapinfo;
|
||||
|
||||
static mapinfo* sMapInfo = NULL;
|
||||
|
||||
static mapinfo *parse_maps_line(char *line)
|
||||
{
|
||||
mapinfo *mi;
|
||||
int len = strlen(line);
|
||||
|
||||
if(len < 1) return 0;
|
||||
line[--len] = 0;
|
||||
|
||||
if(len < 50) return 0;
|
||||
if(line[20] != 'x') return 0;
|
||||
|
||||
mi = malloc(sizeof(mapinfo) + (len - 47));
|
||||
if(mi == 0) return 0;
|
||||
|
||||
mi->start = strtoul(line, 0, 16);
|
||||
mi->end = strtoul(line + 9, 0, 16);
|
||||
/* To be filled in parse_elf_info if the mapped section starts with
|
||||
* elf_header
|
||||
*/
|
||||
mi->next = 0;
|
||||
strcpy(mi->name, line + 49);
|
||||
|
||||
return mi;
|
||||
}
|
||||
|
||||
static mapinfo *init_mapinfo(int pid)
|
||||
{
|
||||
struct mapinfo *milist = NULL;
|
||||
char data[1024];
|
||||
sprintf(data, "/proc/%d/maps", pid);
|
||||
FILE *fp = fopen(data, "r");
|
||||
if(fp) {
|
||||
while(fgets(data, sizeof(data), fp)) {
|
||||
mapinfo *mi = parse_maps_line(data);
|
||||
if(mi) {
|
||||
mi->next = milist;
|
||||
milist = mi;
|
||||
}
|
||||
}
|
||||
fclose(fp);
|
||||
}
|
||||
|
||||
return milist;
|
||||
}
|
||||
|
||||
static void deinit_mapinfo(mapinfo *mi)
|
||||
{
|
||||
mapinfo *del;
|
||||
while(mi) {
|
||||
del = mi;
|
||||
mi = mi->next;
|
||||
free(del);
|
||||
}
|
||||
}
|
||||
|
||||
/* Find the containing map info for the pc */
|
||||
static const mapinfo *pc_to_mapinfo(mapinfo *mi, unsigned pc, unsigned *rel_pc)
|
||||
{
|
||||
*rel_pc = pc;
|
||||
while(mi) {
|
||||
if((pc >= mi->start) && (pc < mi->end)){
|
||||
// Only calculate the relative offset for shared libraries
|
||||
if (strstr(mi->name, ".so")) {
|
||||
*rel_pc -= mi->start;
|
||||
}
|
||||
return mi;
|
||||
}
|
||||
mi = mi->next;
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// =============================================================================
|
||||
// stack trace functions
|
||||
// =============================================================================
|
||||
|
||||
#define STACK_TRACE_DEPTH 16
|
||||
|
||||
typedef struct
|
||||
{
|
||||
size_t count;
|
||||
intptr_t* addrs;
|
||||
} stack_crawl_state_t;
|
||||
|
||||
/* depends how the system includes define this */
|
||||
#ifdef HAVE_UNWIND_CONTEXT_STRUCT
|
||||
typedef struct _Unwind_Context __unwind_context;
|
||||
#else
|
||||
typedef _Unwind_Context __unwind_context;
|
||||
#endif
|
||||
|
||||
static _Unwind_Reason_Code trace_function(__unwind_context *context, void *arg)
|
||||
{
|
||||
stack_crawl_state_t* state = (stack_crawl_state_t*)arg;
|
||||
if (state->count) {
|
||||
intptr_t ip = (intptr_t)_Unwind_GetIP(context);
|
||||
if (ip) {
|
||||
state->addrs[0] = ip;
|
||||
state->addrs++;
|
||||
state->count--;
|
||||
return _URC_NO_REASON;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* If we run out of space to record the address or 0 has been seen, stop
|
||||
* unwinding the stack.
|
||||
*/
|
||||
return _URC_END_OF_STACK;
|
||||
}
|
||||
|
||||
static inline
|
||||
int get_backtrace(intptr_t* addrs, size_t max_entries)
|
||||
{
|
||||
stack_crawl_state_t state;
|
||||
state.count = max_entries;
|
||||
state.addrs = (intptr_t*)addrs;
|
||||
_Unwind_Backtrace(trace_function, (void*)&state);
|
||||
return max_entries - state.count;
|
||||
}
|
||||
|
||||
static void log_backtrace(intptr_t* addrs, size_t c)
|
||||
{
|
||||
int index = 0;
|
||||
size_t i;
|
||||
for (i=0 ; i<c; i++) {
|
||||
unsigned int relpc;
|
||||
void* offset = 0;
|
||||
const char* symbol = NULL;
|
||||
|
||||
#if HAVE_DLADDR
|
||||
Dl_info info;
|
||||
if (dladdr((void*)addrs[i], &info)) {
|
||||
offset = info.dli_saddr;
|
||||
symbol = info.dli_sname;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (symbol || index>0 || !HAVE_DLADDR) {
|
||||
/*
|
||||
* this test is a bit sketchy, but it allows us to skip the
|
||||
* stack trace entries due to this debugging code. it works
|
||||
* because those don't have a symbol (they're not exported)
|
||||
*/
|
||||
mapinfo const* mi = pc_to_mapinfo(sMapInfo, addrs[i], &relpc);
|
||||
char const* soname = mi ? mi->name : NULL;
|
||||
#if HAVE_DLADDR
|
||||
if (!soname)
|
||||
soname = info.dli_fname;
|
||||
#endif
|
||||
if (!soname)
|
||||
soname = "unknown";
|
||||
|
||||
if (symbol) {
|
||||
LOGW(" "
|
||||
"#%02d pc %08lx %s (%s+0x%x)",
|
||||
index, relpc, soname, symbol,
|
||||
addrs[i] - (intptr_t)offset);
|
||||
} else {
|
||||
LOGW(" "
|
||||
"#%02d pc %08lx %s",
|
||||
index, relpc, soname);
|
||||
}
|
||||
index++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
/*
|
||||
* level <= 0 : deadlock prediction disabled
|
||||
* level 1 : deadlock prediction enabled, w/o call stacks
|
||||
* level 2 : deadlock prediction enabled w/ call stacks
|
||||
*/
|
||||
#define CAPTURE_CALLSTACK 2
|
||||
static int sPthreadDebugLevel = 0;
|
||||
static pid_t sPthreadDebugDisabledThread = -1;
|
||||
static pthread_mutex_t sDbgLock = PTHREAD_MUTEX_INITIALIZER;
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
/* some simple/lame malloc replacement
|
||||
* NOT thread-safe and leaks everything
|
||||
*/
|
||||
|
||||
#define DBG_ALLOC_BLOCK_SIZE PAGESIZE
|
||||
static size_t sDbgAllocOffset = DBG_ALLOC_BLOCK_SIZE;
|
||||
static char* sDbgAllocPtr = NULL;
|
||||
|
||||
static void* DbgAllocLocked(size_t size) {
|
||||
if ((sDbgAllocOffset + size) > DBG_ALLOC_BLOCK_SIZE) {
|
||||
sDbgAllocOffset = 0;
|
||||
sDbgAllocPtr = mmap(NULL, DBG_ALLOC_BLOCK_SIZE, PROT_READ|PROT_WRITE,
|
||||
MAP_ANON | MAP_PRIVATE, 0, 0);
|
||||
if (sDbgAllocPtr == MAP_FAILED) {
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
void* addr = sDbgAllocPtr + sDbgAllocOffset;
|
||||
sDbgAllocOffset += size;
|
||||
return addr;
|
||||
}
|
||||
|
||||
static void* debug_realloc(void *ptr, size_t size, size_t old_size) {
|
||||
void* addr = mmap(NULL, size, PROT_READ|PROT_WRITE,
|
||||
MAP_ANON | MAP_PRIVATE, 0, 0);
|
||||
if (addr != MAP_FAILED) {
|
||||
if (ptr) {
|
||||
memcpy(addr, ptr, old_size);
|
||||
munmap(ptr, old_size);
|
||||
}
|
||||
} else {
|
||||
addr = NULL;
|
||||
}
|
||||
return addr;
|
||||
}
|
||||
|
||||
/*****************************************************************************/
|
||||
|
||||
struct MutexInfo;
|
||||
|
||||
typedef struct CallStack {
|
||||
intptr_t depth;
|
||||
intptr_t* addrs;
|
||||
} CallStack;
|
||||
|
||||
typedef struct MutexInfo* MutexInfoListEntry;
|
||||
typedef struct CallStack CallStackListEntry;
|
||||
|
||||
typedef struct GrowingList {
|
||||
int alloc;
|
||||
int count;
|
||||
union {
|
||||
void* data;
|
||||
MutexInfoListEntry* list;
|
||||
CallStackListEntry* stack;
|
||||
};
|
||||
} GrowingList;
|
||||
|
||||
typedef GrowingList MutexInfoList;
|
||||
typedef GrowingList CallStackList;
|
||||
|
||||
typedef struct MutexInfo {
|
||||
// thread currently holding the lock or 0
|
||||
pid_t owner;
|
||||
|
||||
// most-recently-locked doubly-linked list
|
||||
struct MutexInfo* prev;
|
||||
struct MutexInfo* next;
|
||||
|
||||
// for reentrant locks
|
||||
int lockCount;
|
||||
// when looking for loops in the graph, marks visited nodes
|
||||
int historyMark;
|
||||
// the actual mutex
|
||||
pthread_mutex_t* mutex;
|
||||
// list of locks directly acquired AFTER this one in the same thread
|
||||
MutexInfoList children;
|
||||
// list of locks directly acquired BEFORE this one in the same thread
|
||||
MutexInfoList parents;
|
||||
// list of call stacks when a new link is established to this lock form its parent
|
||||
CallStackList stacks;
|
||||
// call stack when this lock was acquired last
|
||||
int stackDepth;
|
||||
intptr_t stackTrace[STACK_TRACE_DEPTH];
|
||||
} MutexInfo;
|
||||
|
||||
static void growingListInit(GrowingList* list) {
|
||||
list->alloc = 0;
|
||||
list->count = 0;
|
||||
list->data = NULL;
|
||||
}
|
||||
|
||||
static void growingListAdd(GrowingList* pList, size_t objSize) {
|
||||
if (pList->count == pList->alloc) {
|
||||
size_t oldsize = pList->alloc * objSize;
|
||||
pList->alloc += PAGESIZE / objSize;
|
||||
size_t size = pList->alloc * objSize;
|
||||
pList->data = debug_realloc(pList->data, size, oldsize);
|
||||
}
|
||||
pList->count++;
|
||||
}
|
||||
|
||||
static void initMutexInfo(MutexInfo* object, pthread_mutex_t* mutex) {
|
||||
object->owner = 0;
|
||||
object->prev = 0;
|
||||
object->next = 0;
|
||||
object->lockCount = 0;
|
||||
object->historyMark = 0;
|
||||
object->mutex = mutex;
|
||||
growingListInit(&object->children);
|
||||
growingListInit(&object->parents);
|
||||
growingListInit(&object->stacks);
|
||||
object->stackDepth = 0;
|
||||
}
|
||||
|
||||
typedef struct ThreadInfo {
|
||||
pid_t pid;
|
||||
MutexInfo* mrl;
|
||||
} ThreadInfo;
|
||||
|
||||
static void initThreadInfo(ThreadInfo* object, pid_t pid) {
|
||||
object->pid = pid;
|
||||
object->mrl = NULL;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static MutexInfo* get_mutex_info(pthread_mutex_t *mutex);
|
||||
static void mutex_lock_checked(MutexInfo* mrl, MutexInfo* object);
|
||||
static void mutex_unlock_checked(MutexInfo* object);
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
extern int pthread_mutex_lock_impl(pthread_mutex_t *mutex);
|
||||
extern int pthread_mutex_unlock_impl(pthread_mutex_t *mutex);
|
||||
|
||||
static int pthread_mutex_lock_unchecked(pthread_mutex_t *mutex) {
|
||||
return pthread_mutex_lock_impl(mutex);
|
||||
}
|
||||
|
||||
static int pthread_mutex_unlock_unchecked(pthread_mutex_t *mutex) {
|
||||
return pthread_mutex_unlock_impl(mutex);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static void dup_backtrace(CallStack* stack, int count, intptr_t const* addrs) {
|
||||
stack->depth = count;
|
||||
stack->addrs = DbgAllocLocked(count * sizeof(intptr_t));
|
||||
memcpy(stack->addrs, addrs, count * sizeof(intptr_t));
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static int historyListHas(
|
||||
const MutexInfoList* list, MutexInfo const * obj) {
|
||||
int i;
|
||||
for (i=0; i<list->count; i++) {
|
||||
if (list->list[i] == obj) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void historyListAdd(MutexInfoList* pList, MutexInfo* obj) {
|
||||
growingListAdd(pList, sizeof(MutexInfoListEntry));
|
||||
pList->list[pList->count - 1] = obj;
|
||||
}
|
||||
|
||||
static int historyListRemove(MutexInfoList* pList, MutexInfo* obj) {
|
||||
int i;
|
||||
for (i = pList->count-1; i >= 0; i--) {
|
||||
if (pList->list[i] == obj) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (i < 0) {
|
||||
// not found!
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (i != pList->count-1) {
|
||||
// copy the last entry to the new free slot
|
||||
pList->list[i] = pList->list[pList->count-1];
|
||||
}
|
||||
pList->count--;
|
||||
memset(&pList->list[pList->count], 0, sizeof(MutexInfoListEntry));
|
||||
return 1;
|
||||
}
|
||||
|
||||
static void linkParentToChild(MutexInfo* parent, MutexInfo* child) {
|
||||
historyListAdd(&parent->children, child);
|
||||
historyListAdd(&child->parents, parent);
|
||||
}
|
||||
|
||||
static void unlinkParentFromChild(MutexInfo* parent, MutexInfo* child) {
|
||||
historyListRemove(&parent->children, child);
|
||||
historyListRemove(&child->parents, parent);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static void callstackListAdd(CallStackList* pList,
|
||||
int count, intptr_t const* addrs) {
|
||||
growingListAdd(pList, sizeof(CallStackListEntry));
|
||||
dup_backtrace(&pList->stack[pList->count - 1], count, addrs);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
/*
|
||||
* Recursively traverse the object hierarchy starting at "obj". We mark
|
||||
* ourselves on entry and clear the mark on exit. If we ever encounter
|
||||
* a marked object, we have a cycle.
|
||||
*
|
||||
* Returns "true" if all is well, "false" if we found a cycle.
|
||||
*/
|
||||
|
||||
static int traverseTree(MutexInfo* obj, MutexInfo const* objParent)
|
||||
{
|
||||
/*
|
||||
* Have we been here before?
|
||||
*/
|
||||
if (obj->historyMark) {
|
||||
int stackDepth;
|
||||
intptr_t addrs[STACK_TRACE_DEPTH];
|
||||
|
||||
/* Turn off prediction temporarily in this thread while logging */
|
||||
sPthreadDebugDisabledThread = gettid();
|
||||
|
||||
if (sMapInfo == NULL) {
|
||||
// note: we're protected by sDbgLock
|
||||
sMapInfo = init_mapinfo(getpid());
|
||||
}
|
||||
|
||||
LOGW("%s\n", kStartBanner);
|
||||
LOGW("pid: %d, tid: %d >>> %s <<<", getpid(), gettid(), __progname);
|
||||
LOGW("Illegal lock attempt:\n");
|
||||
LOGW("--- pthread_mutex_t at %p\n", obj->mutex);
|
||||
stackDepth = get_backtrace(addrs, STACK_TRACE_DEPTH);
|
||||
log_backtrace(addrs, stackDepth);
|
||||
|
||||
LOGW("+++ Currently held locks in this thread (in reverse order):");
|
||||
MutexInfo* cur = obj;
|
||||
pid_t ourtid = gettid();
|
||||
int i;
|
||||
for (i=0 ; i<cur->parents.count ; i++) {
|
||||
MutexInfo* parent = cur->parents.list[i];
|
||||
if (parent->owner == ourtid) {
|
||||
LOGW("--- pthread_mutex_t at %p\n", parent->mutex);
|
||||
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
||||
log_backtrace(parent->stackTrace, parent->stackDepth);
|
||||
}
|
||||
cur = parent;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
LOGW("+++ Earlier, the following lock order (from last to first) was established\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
obj->historyMark = 1;
|
||||
|
||||
MutexInfoList* pList = &obj->children;
|
||||
int result = 1;
|
||||
int i;
|
||||
for (i = pList->count-1; i >= 0; i--) {
|
||||
MutexInfo* child = pList->list[i];
|
||||
if (!traverseTree(child, obj)) {
|
||||
LOGW("--- pthread_mutex_t at %p\n", obj->mutex);
|
||||
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
||||
int index = historyListHas(&obj->parents, objParent);
|
||||
if ((size_t)index < (size_t)obj->stacks.count) {
|
||||
log_backtrace(
|
||||
obj->stacks.stack[index].addrs,
|
||||
obj->stacks.stack[index].depth);
|
||||
} else {
|
||||
log_backtrace(
|
||||
obj->stackTrace,
|
||||
obj->stackDepth);
|
||||
}
|
||||
}
|
||||
result = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
obj->historyMark = 0;
|
||||
return result;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static void mutex_lock_checked(MutexInfo* mrl, MutexInfo* object)
|
||||
{
|
||||
pid_t tid = gettid();
|
||||
if (object->owner == tid) {
|
||||
object->lockCount++;
|
||||
return;
|
||||
}
|
||||
|
||||
object->owner = tid;
|
||||
object->lockCount = 0;
|
||||
|
||||
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
||||
// always record the call stack when acquiring a lock.
|
||||
// it's not efficient, but is useful during diagnostics
|
||||
object->stackDepth = get_backtrace(object->stackTrace, STACK_TRACE_DEPTH);
|
||||
}
|
||||
|
||||
// no other locks held in this thread -- no deadlock possible!
|
||||
if (mrl == NULL)
|
||||
return;
|
||||
|
||||
// check if the lock we're trying to acquire is a direct descendant of
|
||||
// the most recently locked mutex in this thread, in which case we're
|
||||
// in a good situation -- no deadlock possible
|
||||
if (historyListHas(&mrl->children, object) >= 0)
|
||||
return;
|
||||
|
||||
pthread_mutex_lock_unchecked(&sDbgLock);
|
||||
|
||||
linkParentToChild(mrl, object);
|
||||
if (!traverseTree(object, mrl)) {
|
||||
deinit_mapinfo(sMapInfo);
|
||||
sMapInfo = NULL;
|
||||
LOGW("%s\n", kEndBanner);
|
||||
unlinkParentFromChild(mrl, object);
|
||||
// reenable pthread debugging for this thread
|
||||
sPthreadDebugDisabledThread = -1;
|
||||
} else {
|
||||
// record the call stack for this link
|
||||
// NOTE: the call stack is added at the same index
|
||||
// as mrl in object->parents[]
|
||||
// ie: object->parents.count == object->stacks.count, which is
|
||||
// also the index.
|
||||
if (sPthreadDebugLevel >= CAPTURE_CALLSTACK) {
|
||||
callstackListAdd(&object->stacks,
|
||||
object->stackDepth, object->stackTrace);
|
||||
}
|
||||
}
|
||||
|
||||
pthread_mutex_unlock_unchecked(&sDbgLock);
|
||||
}
|
||||
|
||||
static void mutex_unlock_checked(MutexInfo* object)
|
||||
{
|
||||
pid_t tid = gettid();
|
||||
if (object->owner == tid) {
|
||||
if (object->lockCount == 0) {
|
||||
object->owner = 0;
|
||||
} else {
|
||||
object->lockCount--;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// =============================================================================
|
||||
// Hash Table functions
|
||||
// =============================================================================
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
#define HASHTABLE_SIZE 256
|
||||
|
||||
typedef struct HashEntry HashEntry;
|
||||
struct HashEntry {
|
||||
size_t slot;
|
||||
HashEntry* prev;
|
||||
HashEntry* next;
|
||||
void* data;
|
||||
};
|
||||
|
||||
typedef struct HashTable HashTable;
|
||||
struct HashTable {
|
||||
HashEntry* slots[HASHTABLE_SIZE];
|
||||
};
|
||||
|
||||
static HashTable sMutexMap;
|
||||
static HashTable sThreadMap;
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static uint32_t get_hashcode(void const * key, size_t keySize)
|
||||
{
|
||||
uint32_t h = keySize;
|
||||
char const* data = (char const*)key;
|
||||
size_t i;
|
||||
for (i = 0; i < keySize; i++) {
|
||||
h = h * 31 + *data;
|
||||
data++;
|
||||
}
|
||||
return (uint32_t)h;
|
||||
}
|
||||
|
||||
static size_t get_index(uint32_t h)
|
||||
{
|
||||
// We apply this secondary hashing discovered by Doug Lea to defend
|
||||
// against bad hashes.
|
||||
h += ~(h << 9);
|
||||
h ^= (((unsigned int) h) >> 14);
|
||||
h += (h << 4);
|
||||
h ^= (((unsigned int) h) >> 10);
|
||||
return (size_t)h & (HASHTABLE_SIZE - 1);
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static void hashmap_init(HashTable* table) {
|
||||
memset(table, 0, sizeof(HashTable));
|
||||
}
|
||||
|
||||
static void hashmap_removeEntry(HashTable* table, HashEntry* entry)
|
||||
{
|
||||
HashEntry* prev = entry->prev;
|
||||
HashEntry* next = entry->next;
|
||||
if (prev != NULL) entry->prev->next = next;
|
||||
if (next != NULL) entry->next->prev = prev;
|
||||
if (prev == NULL) {
|
||||
// we are the head of the list. set the head to be next
|
||||
table->slots[entry->slot] = entry->next;
|
||||
}
|
||||
}
|
||||
|
||||
static HashEntry* hashmap_lookup(HashTable* table,
|
||||
void const* key, size_t ksize,
|
||||
int (*equals)(void const* data, void const* key))
|
||||
{
|
||||
const uint32_t hash = get_hashcode(key, ksize);
|
||||
const size_t slot = get_index(hash);
|
||||
|
||||
HashEntry* entry = table->slots[slot];
|
||||
while (entry) {
|
||||
if (equals(entry->data, key)) {
|
||||
break;
|
||||
}
|
||||
entry = entry->next;
|
||||
}
|
||||
|
||||
if (entry == NULL) {
|
||||
// create a new entry
|
||||
entry = (HashEntry*)DbgAllocLocked(sizeof(HashEntry));
|
||||
entry->data = NULL;
|
||||
entry->slot = slot;
|
||||
entry->prev = NULL;
|
||||
entry->next = table->slots[slot];
|
||||
if (entry->next != NULL) {
|
||||
entry->next->prev = entry;
|
||||
}
|
||||
table->slots[slot] = entry;
|
||||
}
|
||||
return entry;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static int MutexInfo_equals(void const* data, void const* key) {
|
||||
return ((MutexInfo const *)data)->mutex == *(pthread_mutex_t **)key;
|
||||
}
|
||||
|
||||
static MutexInfo* get_mutex_info(pthread_mutex_t *mutex)
|
||||
{
|
||||
pthread_mutex_lock_unchecked(&sDbgLock);
|
||||
|
||||
HashEntry* entry = hashmap_lookup(&sMutexMap,
|
||||
&mutex, sizeof(mutex),
|
||||
&MutexInfo_equals);
|
||||
if (entry->data == NULL) {
|
||||
entry->data = (MutexInfo*)DbgAllocLocked(sizeof(MutexInfo));
|
||||
initMutexInfo(entry->data, mutex);
|
||||
}
|
||||
|
||||
pthread_mutex_unlock_unchecked(&sDbgLock);
|
||||
|
||||
return (MutexInfo *)entry->data;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
static int ThreadInfo_equals(void const* data, void const* key) {
|
||||
return ((ThreadInfo const *)data)->pid == *(pid_t *)key;
|
||||
}
|
||||
|
||||
static ThreadInfo* get_thread_info(pid_t pid)
|
||||
{
|
||||
pthread_mutex_lock_unchecked(&sDbgLock);
|
||||
|
||||
HashEntry* entry = hashmap_lookup(&sThreadMap,
|
||||
&pid, sizeof(pid),
|
||||
&ThreadInfo_equals);
|
||||
if (entry->data == NULL) {
|
||||
entry->data = (ThreadInfo*)DbgAllocLocked(sizeof(ThreadInfo));
|
||||
initThreadInfo(entry->data, pid);
|
||||
}
|
||||
|
||||
pthread_mutex_unlock_unchecked(&sDbgLock);
|
||||
|
||||
return (ThreadInfo *)entry->data;
|
||||
}
|
||||
|
||||
static void push_most_recently_locked(MutexInfo* mrl) {
|
||||
ThreadInfo* tinfo = get_thread_info(gettid());
|
||||
mrl->next = NULL;
|
||||
mrl->prev = tinfo->mrl;
|
||||
tinfo->mrl = mrl;
|
||||
}
|
||||
|
||||
static void remove_most_recently_locked(MutexInfo* mrl) {
|
||||
ThreadInfo* tinfo = get_thread_info(gettid());
|
||||
if (mrl->next) {
|
||||
(mrl->next)->prev = mrl->prev;
|
||||
}
|
||||
if (mrl->prev) {
|
||||
(mrl->prev)->next = mrl->next;
|
||||
}
|
||||
if (tinfo->mrl == mrl) {
|
||||
tinfo->mrl = mrl->next;
|
||||
}
|
||||
}
|
||||
|
||||
static MutexInfo* get_most_recently_locked() {
|
||||
ThreadInfo* tinfo = get_thread_info(gettid());
|
||||
return tinfo->mrl;
|
||||
}
|
||||
|
||||
/****************************************************************************/
|
||||
|
||||
/* pthread_debug_init() is called from libc_init_dynamic() just
|
||||
* after system properties have been initialized
|
||||
*/
|
||||
|
||||
__LIBC_HIDDEN__
|
||||
void pthread_debug_init(void) {
|
||||
char env[PROP_VALUE_MAX];
|
||||
if (__system_property_get("debug.libc.pthread", env)) {
|
||||
int level = atoi(env);
|
||||
if (level) {
|
||||
LOGI("pthread deadlock detection level %d enabled for pid %d (%s)",
|
||||
level, getpid(), __progname);
|
||||
hashmap_init(&sMutexMap);
|
||||
sPthreadDebugLevel = level;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* See if we were allowed to grab the lock at this time. We do it
|
||||
* *after* acquiring the lock, rather than before, so that we can
|
||||
* freely update the MutexInfo struct. This seems counter-intuitive,
|
||||
* but our goal is deadlock *prediction* not deadlock *prevention*.
|
||||
* (If we actually deadlock, the situation is easy to diagnose from
|
||||
* a thread dump, so there's no point making a special effort to do
|
||||
* the checks before the lock is held.)
|
||||
*/
|
||||
|
||||
__LIBC_HIDDEN__
|
||||
void pthread_debug_mutex_lock_check(pthread_mutex_t *mutex)
|
||||
{
|
||||
if (sPthreadDebugLevel == 0) return;
|
||||
// prediction disabled for this thread
|
||||
if (sPthreadDebugDisabledThread == gettid())
|
||||
return;
|
||||
MutexInfo* object = get_mutex_info(mutex);
|
||||
MutexInfo* mrl = get_most_recently_locked();
|
||||
mutex_lock_checked(mrl, object);
|
||||
push_most_recently_locked(object);
|
||||
}
|
||||
|
||||
/*
|
||||
* pthread_debug_mutex_unlock_check() must be called with the mutex
|
||||
* still held (ie: before calling the real unlock)
|
||||
*/
|
||||
|
||||
__LIBC_HIDDEN__
|
||||
void pthread_debug_mutex_unlock_check(pthread_mutex_t *mutex)
|
||||
{
|
||||
if (sPthreadDebugLevel == 0) return;
|
||||
// prediction disabled for this thread
|
||||
if (sPthreadDebugDisabledThread == gettid())
|
||||
return;
|
||||
MutexInfo* object = get_mutex_info(mutex);
|
||||
remove_most_recently_locked(object);
|
||||
mutex_unlock_checked(object);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user