CppHeaderParser (version 2.4)
index
/home/senex/workspace/cppheaderparser/CppHeaderParser/CppHeaderParser.py

Parse C++ header files and generate a data structure
representing the class

 
Modules
       
inspect
ply.lex
os
re
sys

 
Classes
       
_CppEnum(__builtin__.dict)
CppEnum
_CppHeader(Resolver)
CppHeader
_CppMethod(__builtin__.dict)
CppMethod
_CppVariable(__builtin__.dict)
CppVariable
__builtin__.dict(__builtin__.object)
CppClass
CppUnion
CppStruct
__builtin__.object
Resolver
__builtin__.str(__builtin__.basestring)
TagStr
exceptions.Exception(exceptions.BaseException)
CppParseError

 
class CppClass(__builtin__.dict)
    Takes a name stack and turns it into a class
 
Contains the following Keys:
self['name'] - Name of the class
self['doxygen'] - Doxygen comments associated with the class if they exist
self['inherits'] - List of Classes that this one inherits where the values
    are of the form {"access": Anything in supportedAccessSpecifier
                              "class": Name of the class
self['methods'] - Dictionary where keys are from supportedAccessSpecifier
    and values are a lists of CppMethod's
self['properties'] - Dictionary where keys are from supportedAccessSpecifier
    and values are lists of CppVariable's 
self['enums'] - Dictionary where keys are from supportedAccessSpecifier and
    values are lists of CppEnum's
self['structs'] - Dictionary where keys are from supportedAccessSpecifier and
    values are lists of nested Struct's
 
An example of how this could look is as follows:
#self =
{
    'name': ""
    'inherits':[]
    'methods':
    {
        'public':[],
        'protected':[], 
        'private':[]
    }, 
    'properties':
    {
        'public':[],
        'protected':[], 
        'private':[]
    },
    'enums':
    {
        'public':[],
        'protected':[], 
        'private':[]
    }
}
 
 
Method resolution order:
CppClass
__builtin__.dict
__builtin__.object

Methods defined here:
__init__(self, nameStack)
__repr__(self)
Convert class to a string
get_all_method_names(self)
get_all_methods(self)
get_all_pure_virtual_methods(self)
get_method_names(self, type='public')
get_pure_virtual_methods(self, type='public')
show(self)
Convert class to a string

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods inherited from __builtin__.dict:
__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
copy(...)
D.copy() -> a shallow copy of D
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Data and other attributes inherited from __builtin__.dict:
__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class CppEnum(_CppEnum)
    Takes a name stack and turns it into an Enum
 
Contains the following Keys:
self['name'] - Name of the enum (ex. "ItemState")
self['namespace'] - Namespace containing the enum
self['values'] - List of values where the values are a dictionary of the
    form {"name": name of the key (ex. "PARSING_HEADER"),
              "value": Specified value of the enum, this key will only exist
                if a value for a given enum value was defined
            }
 
 
Method resolution order:
CppEnum
_CppEnum
__builtin__.dict
__builtin__.object

Methods defined here:
__init__(self, nameStack)

Methods inherited from _CppEnum:
resolve_enum_values(self, values)
Evaluates the values list of dictionaries passed in and figures out what the enum value
for each enum is editing in place:
 
Example:
From: [{'name': 'ORANGE'},
       {'name': 'RED'},
       {'name': 'GREEN', 'value': '8'}]
To:   [{'name': 'ORANGE', 'value': 0},
       {'name': 'RED', 'value': 1},
       {'name': 'GREEN', 'value': 8}]

Data descriptors inherited from _CppEnum:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods inherited from __builtin__.dict:
__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__ne__(...)
x.__ne__(y) <==> x!=y
__repr__(...)
x.__repr__() <==> repr(x)
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
copy(...)
D.copy() -> a shallow copy of D
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Data and other attributes inherited from __builtin__.dict:
__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class CppHeader(_CppHeader)
    Parsed C++ class header
 
Variables produced:
self.classes - Dictionary of classes found in a given header file where the
    key is the name of the class
 
 
Method resolution order:
CppHeader
_CppHeader
Resolver
__builtin__.object

Methods defined here:
__init__(self, headerFileName, argType='file', **kwargs)
Create the parsed C++ header file parse tree
 
headerFileName - Name of the file to parse OR actual file contents (depends on argType)
argType - Indicates how to interpret headerFileName as a file string or file name
kwargs - Supports the following keywords
__repr__(self)
evaluate_enum_stack(self)
Create an Enum out of the name stack
evaluate_stack(self, token=None)
Evaluates the current name stack
show(self)

Data and other attributes defined here:
IGNORE_NAMES = ['__extension__']

Methods inherited from _CppHeader:
evaluate_class_stack(self)
Create a Class out of the name stack (but not its parts)
evaluate_method_stack(self)
Create a method out of the name stack
evaluate_property_stack(self)
Create a Property out of the name stack
evaluate_struct_stack(self)
Create a Struct out of the name stack (but not its parts)
evaluate_typedef(self)
evalute_forward_decl(self)
finalize(self)
parse_method_type(self, stack)

Methods inherited from Resolver:
concrete_typedef(self, key)
cur_namespace(self, add_double_colon=False)
current_namespace(self)
finalize_vars(self)
guess_ctypes_type(self, string)
initextra(self)
resolve_type(self, string, result)
keeps track of useful things like: how many pointers, number of typedefs, is fundamental or a class, etc...

Data descriptors inherited from Resolver:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Data and other attributes inherited from Resolver:
CLASSES = {}
C_FUNDAMENTAL = ['size_t', 'unsigned', 'signed', 'bool', 'char', 'wchar', 'short', 'int', 'float', 'double', 'long', 'void', 'struct', 'union', 'enum']
NAMESPACES = []
STRUCTS = {}
SubTypedefs = {}

 
class CppMethod(_CppMethod)
    Takes a name stack and turns it into a method
 
Contains the following Keys:
self['rtnType'] - Return type of the method (ex. "int")
self['name'] - Name of the method (ex. "getSize")
self['doxygen'] - Doxygen comments associated with the method if they exist
self['parameters'] - List of CppVariables
 
 
Method resolution order:
CppMethod
_CppMethod
__builtin__.dict
__builtin__.object

Methods defined here:
__init__(self, nameStack, curClass, methinfo)
__repr__(self)
show(self)

Data descriptors inherited from _CppMethod:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods inherited from __builtin__.dict:
__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
copy(...)
D.copy() -> a shallow copy of D
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Data and other attributes inherited from __builtin__.dict:
__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class CppParseError(exceptions.Exception)
    
Method resolution order:
CppParseError
exceptions.Exception
exceptions.BaseException
__builtin__.object

Data descriptors defined here:
__weakref__
list of weak references to the object (if defined)

Methods inherited from exceptions.Exception:
__init__(...)
x.__init__(...) initializes x; see help(type(x)) for signature

Data and other attributes inherited from exceptions.Exception:
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

Methods inherited from exceptions.BaseException:
__delattr__(...)
x.__delattr__('name') <==> del x.name
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__getslice__(...)
x.__getslice__(i, j) <==> x[i:j]
 
Use of negative indices is not supported.
__reduce__(...)
__repr__(...)
x.__repr__() <==> repr(x)
__setattr__(...)
x.__setattr__('name', value) <==> x.name = value
__setstate__(...)
__str__(...)
x.__str__() <==> str(x)
__unicode__(...)

Data descriptors inherited from exceptions.BaseException:
__dict__
args
message

 
class CppStruct(__builtin__.dict)
    
Method resolution order:
CppStruct
__builtin__.dict
__builtin__.object

Methods defined here:
__init__(self, nameStack)

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
Structs = []

Methods inherited from __builtin__.dict:
__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__ne__(...)
x.__ne__(y) <==> x!=y
__repr__(...)
x.__repr__() <==> repr(x)
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
copy(...)
D.copy() -> a shallow copy of D
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Data and other attributes inherited from __builtin__.dict:
__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class CppUnion(CppClass)
    Takes a name stack and turns it into a union
 
Contains the following Keys:
self['name'] - Name of the union
self['doxygen'] - Doxygen comments associated with the union if they exist
self['members'] - List of members the union has 
 
An example of how this could look is as follows:
#self =
{
    'name': ""
    'members': []
}
 
 
Method resolution order:
CppUnion
CppClass
__builtin__.dict
__builtin__.object

Methods defined here:
__init__(self, nameStack)
__repr__(self)
Convert class to a string
show(self)
Convert class to a string
transform_to_union_keys(self)

Methods inherited from CppClass:
get_all_method_names(self)
get_all_methods(self)
get_all_pure_virtual_methods(self)
get_method_names(self, type='public')
get_pure_virtual_methods(self, type='public')

Data descriptors inherited from CppClass:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods inherited from __builtin__.dict:
__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
copy(...)
D.copy() -> a shallow copy of D
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Data and other attributes inherited from __builtin__.dict:
__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class CppVariable(_CppVariable)
    Takes a name stack and turns it into a method
 
Contains the following Keys:
self['type'] - Type for the variable (ex. "const string &")
self['name'] - Name of the variable (ex. "numItems")
self['namespace'] - Namespace containing the enum
self['desc'] - Description of the variable if part of a method (optional)
self['doxygen'] - Doxygen comments associated with the method if they exist
self['defaltValue'] - Default value of the variable, this key will only
    exist if there is a default value
 
 
Method resolution order:
CppVariable
_CppVariable
__builtin__.dict
__builtin__.object

Methods defined here:
__init__(self, nameStack, **kwargs)
__repr__(self)

Data and other attributes defined here:
Vars = []

Methods inherited from _CppVariable:
init(self)

Data descriptors inherited from _CppVariable:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Methods inherited from __builtin__.dict:
__cmp__(...)
x.__cmp__(y) <==> cmp(x,y)
__contains__(...)
D.__contains__(k) -> True if D has a key k, else False
__delitem__(...)
x.__delitem__(y) <==> del x[y]
__eq__(...)
x.__eq__(y) <==> x==y
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__gt__(...)
x.__gt__(y) <==> x>y
__iter__(...)
x.__iter__() <==> iter(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__ne__(...)
x.__ne__(y) <==> x!=y
__setitem__(...)
x.__setitem__(i, y) <==> x[i]=y
__sizeof__(...)
D.__sizeof__() -> size of D in memory, in bytes
clear(...)
D.clear() -> None.  Remove all items from D.
copy(...)
D.copy() -> a shallow copy of D
fromkeys(...)
dict.fromkeys(S[,v]) -> New dict with keys from S and values equal to v.
v defaults to None.
get(...)
D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.
has_key(...)
D.has_key(k) -> True if D has a key k, else False
items(...)
D.items() -> list of D's (key, value) pairs, as 2-tuples
iteritems(...)
D.iteritems() -> an iterator over the (key, value) items of D
iterkeys(...)
D.iterkeys() -> an iterator over the keys of D
itervalues(...)
D.itervalues() -> an iterator over the values of D
keys(...)
D.keys() -> list of D's keys
pop(...)
D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
If key is not found, d is returned if given, otherwise KeyError is raised
popitem(...)
D.popitem() -> (k, v), remove and return some (key, value) pair as a
2-tuple; but raise KeyError if D is empty.
setdefault(...)
D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D
update(...)
D.update([E, ]**F) -> None.  Update D from dict/iterable E and F.
If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
In either case, this is followed by: for k in F: D[k] = F[k]
values(...)
D.values() -> list of D's values
viewitems(...)
D.viewitems() -> a set-like object providing a view on D's items
viewkeys(...)
D.viewkeys() -> a set-like object providing a view on D's keys
viewvalues(...)
D.viewvalues() -> an object providing a view on D's values

Data and other attributes inherited from __builtin__.dict:
__hash__ = None
__new__ = <built-in method __new__ of type object>
T.__new__(S, ...) -> a new object with type S, a subtype of T

 
class Resolver(__builtin__.object)
     Methods defined here:
concrete_typedef(self, key)
cur_namespace(self, add_double_colon=False)
current_namespace(self)
finalize_vars(self)
guess_ctypes_type(self, string)
initextra(self)
resolve_type(self, string, result)
keeps track of useful things like: how many pointers, number of typedefs, is fundamental or a class, etc...

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)
__weakref__
list of weak references to the object (if defined)

Data and other attributes defined here:
CLASSES = {}
C_FUNDAMENTAL = ['size_t', 'unsigned', 'signed', 'bool', 'char', 'wchar', 'short', 'int', 'float', 'double', 'long', 'void', 'struct', 'union', 'enum']
NAMESPACES = []
STRUCTS = {}
SubTypedefs = {}

 
class TagStr(__builtin__.str)
    Wrapper for a string that allows us to store the line number associated with it
 
 
Method resolution order:
TagStr
__builtin__.str
__builtin__.basestring
__builtin__.object

Methods defined here:
__del__(self)
lineno(self)

Static methods defined here:
__new__(cls, *args, **kw)

Data descriptors defined here:
__dict__
dictionary for instance variables (if defined)

Data and other attributes defined here:
lineno_reg = {}

Methods inherited from __builtin__.str:
__add__(...)
x.__add__(y) <==> x+y
__contains__(...)
x.__contains__(y) <==> y in x
__eq__(...)
x.__eq__(y) <==> x==y
__format__(...)
S.__format__(format_spec) -> string
 
Return a formatted version of S as described by format_spec.
__ge__(...)
x.__ge__(y) <==> x>=y
__getattribute__(...)
x.__getattribute__('name') <==> x.name
__getitem__(...)
x.__getitem__(y) <==> x[y]
__getnewargs__(...)
__getslice__(...)
x.__getslice__(i, j) <==> x[i:j]
 
Use of negative indices is not supported.
__gt__(...)
x.__gt__(y) <==> x>y
__hash__(...)
x.__hash__() <==> hash(x)
__le__(...)
x.__le__(y) <==> x<=y
__len__(...)
x.__len__() <==> len(x)
__lt__(...)
x.__lt__(y) <==> x<y
__mod__(...)
x.__mod__(y) <==> x%y
__mul__(...)
x.__mul__(n) <==> x*n
__ne__(...)
x.__ne__(y) <==> x!=y
__repr__(...)
x.__repr__() <==> repr(x)
__rmod__(...)
x.__rmod__(y) <==> y%x
__rmul__(...)
x.__rmul__(n) <==> n*x
__sizeof__(...)
S.__sizeof__() -> size of S in memory, in bytes
__str__(...)
x.__str__() <==> str(x)
capitalize(...)
S.capitalize() -> string
 
Return a copy of the string S with only its first character
capitalized.
center(...)
S.center(width[, fillchar]) -> string
 
Return S centered in a string of length width. Padding is
done using the specified fill character (default is a space)
count(...)
S.count(sub[, start[, end]]) -> int
 
Return the number of non-overlapping occurrences of substring sub in
string S[start:end].  Optional arguments start and end are interpreted
as in slice notation.
decode(...)
S.decode([encoding[,errors]]) -> object
 
Decodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeDecodeError. Other possible values are 'ignore' and 'replace'
as well as any other name registered with codecs.register_error that is
able to handle UnicodeDecodeErrors.
encode(...)
S.encode([encoding[,errors]]) -> object
 
Encodes S using the codec registered for encoding. encoding defaults
to the default encoding. errors may be given to set a different error
handling scheme. Default is 'strict' meaning that encoding errors raise
a UnicodeEncodeError. Other possible values are 'ignore', 'replace' and
'xmlcharrefreplace' as well as any other name registered with
codecs.register_error that is able to handle UnicodeEncodeErrors.
endswith(...)
S.endswith(suffix[, start[, end]]) -> bool
 
Return True if S ends with the specified suffix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
suffix can also be a tuple of strings to try.
expandtabs(...)
S.expandtabs([tabsize]) -> string
 
Return a copy of S where all tab characters are expanded using spaces.
If tabsize is not given, a tab size of 8 characters is assumed.
find(...)
S.find(sub [,start [,end]]) -> int
 
Return the lowest index in S where substring sub is found,
such that sub is contained within S[start:end].  Optional
arguments start and end are interpreted as in slice notation.
 
Return -1 on failure.
format(...)
S.format(*args, **kwargs) -> string
 
Return a formatted version of S, using substitutions from args and kwargs.
The substitutions are identified by braces ('{' and '}').
index(...)
S.index(sub [,start [,end]]) -> int
 
Like S.find() but raise ValueError when the substring is not found.
isalnum(...)
S.isalnum() -> bool
 
Return True if all characters in S are alphanumeric
and there is at least one character in S, False otherwise.
isalpha(...)
S.isalpha() -> bool
 
Return True if all characters in S are alphabetic
and there is at least one character in S, False otherwise.
isdigit(...)
S.isdigit() -> bool
 
Return True if all characters in S are digits
and there is at least one character in S, False otherwise.
islower(...)
S.islower() -> bool
 
Return True if all cased characters in S are lowercase and there is
at least one cased character in S, False otherwise.
isspace(...)
S.isspace() -> bool
 
Return True if all characters in S are whitespace
and there is at least one character in S, False otherwise.
istitle(...)
S.istitle() -> bool
 
Return True if S is a titlecased string and there is at least one
character in S, i.e. uppercase characters may only follow uncased
characters and lowercase characters only cased ones. Return False
otherwise.
isupper(...)
S.isupper() -> bool
 
Return True if all cased characters in S are uppercase and there is
at least one cased character in S, False otherwise.
join(...)
S.join(iterable) -> string
 
Return a string which is the concatenation of the strings in the
iterable.  The separator between elements is S.
ljust(...)
S.ljust(width[, fillchar]) -> string
 
Return S left-justified in a string of length width. Padding is
done using the specified fill character (default is a space).
lower(...)
S.lower() -> string
 
Return a copy of the string S converted to lowercase.
lstrip(...)
S.lstrip([chars]) -> string or unicode
 
Return a copy of the string S with leading whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
partition(...)
S.partition(sep) -> (head, sep, tail)
 
Search for the separator sep in S, and return the part before it,
the separator itself, and the part after it.  If the separator is not
found, return S and two empty strings.
replace(...)
S.replace(old, new[, count]) -> string
 
Return a copy of string S with all occurrences of substring
old replaced by new.  If the optional argument count is
given, only the first count occurrences are replaced.
rfind(...)
S.rfind(sub [,start [,end]]) -> int
 
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end].  Optional
arguments start and end are interpreted as in slice notation.
 
Return -1 on failure.
rindex(...)
S.rindex(sub [,start [,end]]) -> int
 
Like S.rfind() but raise ValueError when the substring is not found.
rjust(...)
S.rjust(width[, fillchar]) -> string
 
Return S right-justified in a string of length width. Padding is
done using the specified fill character (default is a space)
rpartition(...)
S.rpartition(sep) -> (head, sep, tail)
 
Search for the separator sep in S, starting at the end of S, and return
the part before it, the separator itself, and the part after it.  If the
separator is not found, return two empty strings and S.
rsplit(...)
S.rsplit([sep [,maxsplit]]) -> list of strings
 
Return a list of the words in the string S, using sep as the
delimiter string, starting at the end of the string and working
to the front.  If maxsplit is given, at most maxsplit splits are
done. If sep is not specified or is None, any whitespace string
is a separator.
rstrip(...)
S.rstrip([chars]) -> string or unicode
 
Return a copy of the string S with trailing whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
split(...)
S.split([sep [,maxsplit]]) -> list of strings
 
Return a list of the words in the string S, using sep as the
delimiter string.  If maxsplit is given, at most maxsplit
splits are done. If sep is not specified or is None, any
whitespace string is a separator and empty strings are removed
from the result.
splitlines(...)
S.splitlines(keepends=False) -> list of strings
 
Return a list of the lines in S, breaking at line boundaries.
Line breaks are not included in the resulting list unless keepends
is given and true.
startswith(...)
S.startswith(prefix[, start[, end]]) -> bool
 
Return True if S starts with the specified prefix, False otherwise.
With optional start, test S beginning at that position.
With optional end, stop comparing S at that position.
prefix can also be a tuple of strings to try.
strip(...)
S.strip([chars]) -> string or unicode
 
Return a copy of the string S with leading and trailing
whitespace removed.
If chars is given and not None, remove characters in chars instead.
If chars is unicode, S will be converted to unicode before stripping
swapcase(...)
S.swapcase() -> string
 
Return a copy of the string S with uppercase characters
converted to lowercase and vice versa.
title(...)
S.title() -> string
 
Return a titlecased version of S, i.e. words start with uppercase
characters, all remaining cased characters have lowercase.
translate(...)
S.translate(table [,deletechars]) -> string
 
Return a copy of the string S, where all characters occurring
in the optional argument deletechars are removed, and the
remaining characters have been mapped through the given
translation table, which must be a string of length 256 or None.
If the table argument is None, no translation is applied and
the operation simply removes the characters in deletechars.
upper(...)
S.upper() -> string
 
Return a copy of the string S converted to uppercase.
zfill(...)
S.zfill(width) -> string
 
Pad a numeric string S with zeros on the left, to fill a field
of the specified width.  The string S is never truncated.

 
Functions
       
debug_print(arg)
detect_lineno(s)
Detect the line number for a given token string
error_print(arg)
filter_out_attribute_keyword(stack)
Strips __attribute__ and its parenthetical expression from the stack
is_enum_namestack(nameStack)
Determines if a namestack is an enum namestack
is_function_pointer_stack(stack)
Count how many non-nested paranthesis are in the stack.  Useful for determining if a stack is a function pointer
is_fundamental(s)
is_method_namestack(stack)
is_namespace(nameStack)
Determines if a namespace is being specified
is_property_namestack(nameStack)
lineno()
Returns the current line number in our program.
standardize_fundamental(s)
t_COMMENT_MULTILINE(t)
/\*([^*]|[\r\n]|(\*+([^*/]|[\r\n])))*\*+/
t_COMMENT_SINGLELINE(t)
\/\/.*\n
t_NEWLINE(t)
\n+
t_error(v)
trace_print(*arg)
warning_print(arg)

 
Data
        C99_NONSTANDARD = {'int16': 'short int', 'int32': 'int', 'int64': 'int64_t', 'int8': 'signed char', 'uint': 'unsigned int', 'uint16': 'unsigned short int', 'uint32': 'unsigned int', 'uint64': 'uint64_t', 'uint8': 'unsigned char'}
__version__ = '2.4'
debug = 0
debug_trace = 0
doxygenCommentCache = ''
ignoreSymbols = ['Q_OBJECT']
parseHistory = []
print_errors = 1
print_warnings = 1
supportedAccessSpecifier = ['public', 'protected', 'private']
t_AMPERSTAND = '&'
t_ASTERISK = r'\*'
t_BACKSLASH = r'\\'
t_CARET = r'\^'
t_CHAR_LITERAL = "'.'"
t_CLOSE_BRACE = '}'
t_CLOSE_PAREN = r'\)'
t_CLOSE_SQUARE_BRACKET = r'\]'
t_COLON = ':'
t_COMMA = ','
t_DIVIDE = '/(?!/)'
t_EQUALS = '='
t_EXCLAMATION = '!'
t_MINUS = r'\-'
t_NAME = '[<>A-Za-z_~][A-Za-z0-9_]*'
t_NUMBER = '[0-9][0-9XxA-Fa-f]*'
t_OPEN_BRACE = '{'
t_OPEN_PAREN = r'\('
t_OPEN_SQUARE_BRACKET = r'\['
t_PERCENT = '%'
t_PIPE = r'\|'
t_PLUS = r'\+'
t_PRECOMP_MACRO = r'\#.*'
t_PRECOMP_MACRO_CONT = r'.*\\\n'
t_SEMI_COLON = ';'
t_SQUOTE = "'"
t_STRING_LITERAL = r'"([^"\\]|\\.)*"'
t_TAB = r'\t'
t_ignore = ' \r.?@\x0c'
tokens = ['NUMBER', 'NAME', 'OPEN_PAREN', 'CLOSE_PAREN', 'OPEN_BRACE', 'CLOSE_BRACE', 'OPEN_SQUARE_BRACKET', 'CLOSE_SQUARE_BRACKET', 'COLON', 'SEMI_COLON', 'COMMA', 'TAB', 'BACKSLASH', 'PIPE', 'PERCENT', 'EXCLAMATION', 'CARET', 'COMMENT_SINGLELINE', 'COMMENT_MULTILINE', 'PRECOMP_MACRO', ...]
version = '2.4'