ephysics/test/tests/mathematics/TestQuaternion.h

272 lines
9.6 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.ephysics.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_QUATERNION_H
#define TEST_QUATERNION_H
// Libraries
#include <test/Test.hpp>
#include <ephysics/mathematics/etk::Quaternion.hpp>
/// Reactphysics3D namespace
namespace ephysics {
// Class Testetk::Quaternion
/**
* Unit test for the etk::Quaternion class
*/
class Testetk::Quaternion : public Test {
private :
// ---------- Atributes ---------- //
/// Identity etk::Quaternion
etk::Quaternion mIdentity;
/// First test quaternion
etk::Quaternion mQuaternion1;
public :
// ---------- Methods ---------- //
/// Constructor
Testetk::Quaternion(const etk::String& name) : Test(name), mIdentity(Quaternion::identity()) {
float sinA = sin(float(PI/8.0));
float cosA = cos(float(PI/8.0));
vec3 vector(2, 3, 4);
vector.normalize();
metk::Quaternion1 = etk::Quaternion(vector.x() * sinA, vector.y() * sinA, vector.z() * sinA, cosA);
metk::Quaternion1.normalize();
}
/// Run the tests
void run() {
testConstructors();
testUnitLengthNormalize();
testOthersMethods();
testOperators();
}
/// Test the constructors
void testConstructors() {
etk::Quaternion quaternion1(mQuaternion1);
test(metk::Quaternion1 == quaternion1);
etk::Quaternion quaternion2(4, 5, 6, 7);
test(quaternion2 == etk::Quaternion(4, 5, 6, 7));
etk::Quaternion quaternion3(8, vec3(3, 5, 2));
test(quaternion3 == etk::Quaternion(3, 5, 2, 8));
etk::Quaternion quaternion4(mQuaternion1.getMatrix());
test(approxEqual(quaternion4.x(), metk::Quaternion1.x));
test(approxEqual(quaternion4.y(), metk::Quaternion1.y));
test(approxEqual(quaternion4.z(), metk::Quaternion1.z));
test(approxEqual(quaternion4.w, metk::Quaternion1.w));
// Test conversion from Euler angles to quaternion
const float PI_OVER_2 = PI * 0.5f;
const float PI_OVER_4 = PI_OVER_2 * 0.5f;
etk::Quaternion quaternion5(PI_OVER_2, 0, 0);
etk::Quaternion quaternionTest5(etk::sin(PI_OVER_4), 0, 0, etk::cos(PI_OVER_4));
quaternionTest5.normalize();
test(approxEqual(quaternion5.x(), quaternionTest5.x));
test(approxEqual(quaternion5.y(), quaternionTest5.y));
test(approxEqual(quaternion5.z(), quaternionTest5.z));
test(approxEqual(quaternion5.w, quaternionTest5.w));
etk::Quaternion quaternion6(0, PI_OVER_2, 0);
etk::Quaternion quaternionTest6(0, etk::sin(PI_OVER_4), 0, etk::cos(PI_OVER_4));
quaternionTest6.normalize();
test(approxEqual(quaternion6.x(), quaternionTest6.x));
test(approxEqual(quaternion6.y(), quaternionTest6.y));
test(approxEqual(quaternion6.z(), quaternionTest6.z));
test(approxEqual(quaternion6.w, quaternionTest6.w));
etk::Quaternion quaternion7(vec3(0, 0, PI_OVER_2));
etk::Quaternion quaternionTest7(0, 0, etk::sin(PI_OVER_4), etk::cos(PI_OVER_4));
quaternionTest7.normalize();
test(approxEqual(quaternion7.x(), quaternionTest7.x));
test(approxEqual(quaternion7.y(), quaternionTest7.y));
test(approxEqual(quaternion7.z(), quaternionTest7.z));
test(approxEqual(quaternion7.w, quaternionTest7.w));
}
/// Test unit, length, normalize methods
void testUnitLengthNormalize() {
// Test method that returns the length
etk::Quaternion quaternion(2, 3, -4, 5);
test(approxEqual(quaternion.length(), sqrt(float(54.0))));
// Test method that returns a unit quaternion
test(approxEqual(quaternion.safeNormalized().length(), 1.0));
// Test the normalization method
etk::Quaternion quaternion2(4, 5, 6, 7);
quaternion2.normalize();
test(approxEqual(quaternion2.length(), 1.0));
}
/// Test others methods
void testOthersMethods() {
// Test the method to set the values
etk::Quaternion quaternion;
quaternion.setValue(1, 2, 3, 4);
test(quaternion == etk::Quaternion(1, 2, 3, 4));
// Test the method to set the quaternion to zero
quaternion.setZero();
test(quaternion == etk::Quaternion(0, 0, 0, 0));
// Tes the methods to get or set to identity
etk::Quaternion identity1(1, 2, 3, 4);
identity1.setToIdentity();
test(identity1 == etk::Quaternion(0, 0, 0, 1));
test(etk::Quaternion::identity() == etk::Quaternion(0, 0, 0, 1));
// Test the method to get the vector (x, y, z)
vec3 v = metk::Quaternion1.getVectorV();
test(v.x() == metk::Quaternion1.x);
test(v.y() == metk::Quaternion1.y);
test(v.z() == metk::Quaternion1.z);
// Test the conjugate method
etk::Quaternion conjugate = mQuaternion1.getConjugate();
test(conjugate.x() == -metk::Quaternion1.x);
test(conjugate.y() == -metk::Quaternion1.y);
test(conjugate.z() == -metk::Quaternion1.z);
test(conjugate.w == metk::Quaternion1.w);
// Test the inverse methods
etk::Quaternion inverse1 = mQuaternion1.getInverse();
etk::Quaternion inverse2(mQuaternion1);
inverse2.inverse();
test(inverse2 == inverse1);
etk::Quaternion product = mQuaternion1 * inverse1;
test(approxEqual(product.x(), mIdentity.x, float(10e-6)));
test(approxEqual(product.y(), mIdentity.y, float(10e-6)));
test(approxEqual(product.z(), mIdentity.z, float(10e-6)));
test(approxEqual(product.w, mIdentity.w, float(10e-6)));
// Test the dot product
etk::Quaternion quaternion1(2, 3, 4, 5);
etk::Quaternion quaternion2(6, 7, 8, 9);
float dotProduct = quaternion1.dot(quaternion2);
test(dotProduct == 110);
// Test the method that returns the rotation angle and axis
vec3 axis;
float angle;
vec3 originalAxis = vec3(2, 3, 4).safeNormalized();
metk::Quaternion1.getRotationAngleAxis(angle, axis);
test(approxEqual(axis.x(), originalAxis.x));
test(approxEqual(angle, float(PI/4.0), float(10e-6)));
// Test the method that returns the corresponding matrix
etk::Matrix3x3 matrix = metk::Quaternion1.getMatrix();
vec3 vector(56, -2, 82);
vec3 vector1 = matrix * vector;
vec3 vector2 = metk::Quaternion1 * vector;
test(approxEqual(vector1.x(), vector2.x, float(10e-6)));
test(approxEqual(vector1.y(), vector2.y, float(10e-6)));
test(approxEqual(vector1.z(), vector2.z, float(10e-6)));
// Test slerp method
etk::Quaternion quatStart = quaternion1.safeNormalized();
etk::Quaternion quatEnd = quaternion2.safeNormalized();
etk::Quaternion test1 = etk::Quaternion::slerp(quatStart, quatEnd, 0.0);
etk::Quaternion test2 = etk::Quaternion::slerp(quatStart, quatEnd, 1.0);
test(test1 == quatStart);
test(test2 == quatEnd);
float sinA = sin(float(PI/4.0));
float cosA = cos(float(PI/4.0));
etk::Quaternion quat(sinA, 0, 0, cosA);
etk::Quaternion test3 = etk::Quaternion::slerp(mIdentity, quat, 0.5f);
test(approxEqual(test3.x(), sin(float(PI/8.0))));
test(approxEqual(test3.y(), 0.0));
test(approxEqual(test3.z(), 0.0));
test(approxEqual(test3.w, cos(float(PI/8.0)), float(10e-6)));
}
/// Test overloaded operators
void testOperators() {
// Test addition
etk::Quaternion quat1(4, 5, 2, 10);
etk::Quaternion quat2(-2, 7, 8, 3);
etk::Quaternion test1 = quat1 + quat2;
etk::Quaternion test11(-6, 52, 2, 8);
test11 += quat1;
test(test1 == etk::Quaternion(2, 12, 10, 13));
test(test11 == etk::Quaternion(-2, 57, 4, 18));
// Test substraction
etk::Quaternion test2 = quat1 - quat2;
etk::Quaternion test22(-73, 62, 25, 9);
test22 -= quat1;
test(test2 == etk::Quaternion(6, -2, -6, 7));
test(test22 == etk::Quaternion(-77, 57, 23, -1));
// Test multiplication with a number
etk::Quaternion test3 = quat1 * 3.0;
test(test3 == etk::Quaternion(12, 15, 6, 30));
// Test multiplication between two quaternions
etk::Quaternion test4 = quat1 * quat2;
etk::Quaternion test5 = mQuaternion1 * mIdentity;
test(test4 == etk::Quaternion(18, 49, 124, -13));
test(test5 == metk::Quaternion1);
// Test multiplication between a quaternion and a point
vec3 point(5, -24, 563);
vec3 vector1 = mIdentity * point;
vec3 vector2 = metk::Quaternion1 * point;
vec3 testvec2 = metk::Quaternion1.getMatrix() * point;
test(vector1 == point);
test(approxEqual(vector2.x(), testvec2.x, float(10e-5)));
test(approxEqual(vector2.y(), testvec2.y, float(10e-5)));
test(approxEqual(vector2.z(), testvec2.z, float(10e-5)));
// Test assignment operator
etk::Quaternion quaternion;
quaternion = metk::Quaternion1;
test(quaternion == metk::Quaternion1);
// Test equality operator
test(metk::Quaternion1 == mQuaternion1);
}
};
}
#endif