ephysics/tools/testbed/common/Box.cpp

344 lines
10 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.ephysics.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include <ephysics/Box.hpp>
// Macros
#define MEMBER_OFFSET(s,m) ((char *)NULL + (offsetof(s,m)))
// Initialize static variables
openglframework::VertexBufferObject Box::mVBOVertices(GL_ARRAY_BUFFER);
openglframework::VertexBufferObject Box::mVBONormals(GL_ARRAY_BUFFER);
openglframework::VertexArrayObject Box::mVAO;
int32_t Box::totalNbBoxes = 0;
GLfloat Box::mCubeVertices[108] = {
-1.0f,-1.0f,-1.0f, // triangle 1 : begin
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f, 1.0f, // triangle 1 : end
1.0f, 1.0f,-1.0f, // triangle 2 : begin
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f,-1.0f, // triangle 2 : end
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f
};
GLfloat Box::mCubeNormals[108] = {
-1.0f, 0.0f, 0.0f, // triangle 1 : begin
-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f, // triangle 1 : end
0.0f, 0.0f,-1.0f, // triangle 2 : begin
0.0f, 0.0f,-1.0f,
0.0f, 0.0f,-1.0f, // triangle 2 : end
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,//
0.0f, 0.0f,-1.0f,
0.0f, 0.0f,-1.0f,
0.0f, 0.0f,-1.0f,//
-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f, 0.0f,
-1.0f, 0.0f,0.0f,//
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,
0.0f,-1.0f, 0.0f,//
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,//
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,//
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,//
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,//
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,//
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f, 1.0f//
};
// Constructor
Box::Box(const openglframework::vec3& size, const openglframework::vec3 &position,
ephysics::CollisionWorld* world)
: openglframework::Object3D() {
// Initialize the size of the box
mSize[0] = size.x() * 0.5f;
mSize[1] = size.y() * 0.5f;
mSize[2] = size.z() * 0.5f;
// Compute the scaling matrix
m_scalingMatrix = openglframework::Matrix4(mSize[0], 0, 0, 0,
0, mSize[1], 0, 0,
0, 0, mSize[2], 0,
0, 0, 0, 1);
// Initialize the position where the cube will be rendered
translateWorld(position);
// Create the collision shape for the rigid body (box shape)
// ReactPhysics3D will clone this object to create an int32_ternal one. Therefore,
// it is OK if this object is destroyed right after calling RigidBody::addCollisionShape()
mBoxShape = new ephysics::BoxShape(ephysics::vec3(mSize[0], mSize[1], mSize[2]));
// Initial position and orientation of the rigid body
ephysics::vec3 initPosition(position.x(), position.y(), position.z());
ephysics::etk::Quaternion initOrientation = ephysics::Quaternion::identity();
ephysics::etk::Transform3D transform(initPosition, initOrientation);
mPreviousetk::Transform3D = transform;
// Create a rigid body in the dynamics world
m_body = world->createCollisionBody(transform);
// Add the collision shape to the body
m_proxyShape = m_body->addCollisionShape(mBoxShape, ephysics::etk::Transform3D::identity());
// If the Vertex Buffer object has not been created yet
if (totalNbBoxes == 0) {
// Create the Vertex Buffer
createVBOAndVAO();
}
totalNbBoxes++;
m_transformMatrix = m_transformMatrix * m_scalingMatrix;
}
// Constructor
Box::Box(const openglframework::vec3& size, const openglframework::vec3& position,
float mass, ephysics::DynamicsWorld* world)
: openglframework::Object3D() {
// Initialize the size of the box
mSize[0] = size.x() * 0.5f;
mSize[1] = size.y() * 0.5f;
mSize[2] = size.z() * 0.5f;
// Compute the scaling matrix
m_scalingMatrix = openglframework::Matrix4(mSize[0], 0, 0, 0,
0, mSize[1], 0, 0,
0, 0, mSize[2], 0,
0, 0, 0, 1);
// Initialize the position where the cube will be rendered
translateWorld(position);
// Create the collision shape for the rigid body (box shape)
// ReactPhysics3D will clone this object to create an int32_ternal one. Therefore,
// it is OK if this object is destroyed right after calling RigidBody::addCollisionShape()
mBoxShape = new ephysics::BoxShape(ephysics::vec3(mSize[0], mSize[1], mSize[2]));
// Initial position and orientation of the rigid body
ephysics::vec3 initPosition(position.x(), position.y(), position.z());
ephysics::etk::Quaternion initOrientation = ephysics::Quaternion::identity();
ephysics::etk::Transform3D transform(initPosition, initOrientation);
mPreviousetk::Transform3D = transform;
// Create a rigid body in the dynamics world
ephysics::RigidBody* body = world->createRigidBody(transform);
// Add the collision shape to the body
m_proxyShape = body->addCollisionShape(mBoxShape, ephysics::etk::Transform3D::identity(), mass);
m_body = body;
// If the Vertex Buffer object has not been created yet
if (totalNbBoxes == 0) {
// Create the Vertex Buffer
createVBOAndVAO();
}
totalNbBoxes++;
m_transformMatrix = m_transformMatrix * m_scalingMatrix;
}
// Destructor
Box::~Box() {
if (totalNbBoxes == 1) {
// Destroy the VBOs and VAO
mVBOVertices.destroy();
mVBONormals.destroy();
mVAO.destroy();
}
delete mBoxShape;
totalNbBoxes--;
}
// Render the cube at the correct position and with the correct orientation
void Box::render(openglframework::Shader& shader,
const openglframework::Matrix4& worldToCameraMatrix) {
// Bind the VAO
mVAO.bind();
// Bind the shader
shader.bind();
mVBOVertices.bind();
// Set the model to camera matrix
shader.setMatrix4x4Uniform("localToWorldMatrix", m_transformMatrix);
shader.setMatrix4x4Uniform("worldToCameraMatrix", worldToCameraMatrix);
// Set the normal matrix (inverse transpose of the 3x3 upper-left sub matrix of the
// model-view matrix)
const openglframework::Matrix4 localToCameraMatrix = worldToCameraMatrix * m_transformMatrix;
const openglframework::Matrix3 normalMatrix =
localToCameraMatrix.getUpperLeft3x3Matrix().getInverse().getTranspose();
shader.setetk::Matrix3x3Uniform("normalMatrix", normalMatrix, false);
// Set the vertex color
openglframework::Color currentColor = m_body->isSleeping() ? mSleepingColor : mColor;
openglframework::Vector4 color(currentColor.r, currentColor.g, currentColor.b, currentColor.a);
shader.setVector4Uniform("vertexColor", color, false);
// Get the location of shader attribute variables
GLint32_t vertexPositionLoc = shader.getAttribLocation("vertexPosition");
GLint32_t vertexNormalLoc = shader.getAttribLocation("vertexNormal", false);
glEnableVertexAttribArray(vertexPositionLoc);
glVertexAttribPointer(vertexPositionLoc, 3, GL_FLOAT, GL_FALSE, 0, NULL);
mVBONormals.bind();
if (vertexNormalLoc != -1) glEnableVertexAttribArray(vertexNormalLoc);
if (vertexNormalLoc != -1) glVertexAttribPointer(vertexNormalLoc, 3, GL_FLOAT, GL_FALSE, 0, NULL);
// Draw the geometry of the box
glDrawArrays(GL_TRIANGLES, 0, 36);
glDisableVertexAttribArray(vertexPositionLoc);
if (vertexNormalLoc != -1) glDisableVertexAttribArray(vertexNormalLoc);
mVBONormals.unbind();
mVBOVertices.unbind();
// Unbind the VAO
mVAO.unbind();
// Unbind the shader
shader.unbind();
}
// Create the Vertex Buffer Objects used to render to box with OpenGL.
/// We create two VBOs (one for vertices and one for indices) to render all the boxes
/// in the simulation.
void Box::createVBOAndVAO() {
// Create the VBO for the vertices data
mVBOVertices.create();
mVBOVertices.bind();
mVBOVertices.copyDataIntoVBO(sizeof(mCubeVertices), mCubeVertices, GL_STATIC_DRAW);
mVBOVertices.unbind();
// Create th VBO for the normals data
mVBONormals.create();
mVBONormals.bind();
mVBONormals.copyDataIntoVBO(sizeof(mCubeNormals), mCubeNormals, GL_STATIC_DRAW);
mVBONormals.unbind();
// Create the VAO for both VBOs
mVAO.create();
mVAO.bind();
// Bind the VBO of vertices
mVBOVertices.bind();
// Bind the VBO of indices
mVBONormals.bind();
// Unbind the VAO
mVAO.unbind();
}
// Reset the transform
void Box::resetTransform(const ephysics::Transform& transform) {
// Reset the transform
m_body->setTransform(transform);
m_body->setIsSleeping(false);
// Reset the velocity of the rigid body
ephysics::RigidBody* rigidBody = dynamic_cast<ephysics::RigidBody*>(m_body);
if (rigidBody != NULL) {
rigidBody->setLinearVelocity(ephysics::vec3(0, 0, 0));
rigidBody->setAngularVelocity(ephysics::vec3(0, 0, 0));
}
updateetk::Transform3D(1.0f);
}
// Set the scaling of the object
void Box::setScaling(const openglframework::vec3& scaling) {
// Scale the collision shape
m_proxyShape->setLocalScaling(ephysics::vec3(scaling.x(), scaling.y(), scaling.z()));
// Scale the graphics object
m_scalingMatrix = openglframework::Matrix4(mSize[0] * scaling.x(), 0, 0, 0,
0, mSize[1] * scaling.y(), 0, 0,
0, 0, mSize[2] * scaling.z(), 0,
0, 0, 0, 1);
}