ephysics/ephysics/engine/CollisionWorld.cpp

248 lines
7.2 KiB
C++

/** @file
* @author Daniel Chappuis
* @copyright 2010-2016 Daniel Chappuis
* @license BSD 3 clauses (see license file)
*/
// Libraries
#include <ephysics/engine/CollisionWorld.hpp>
#include <algorithm>
// Namespaces
using namespace ephysics;
using namespace std;
// Constructor
CollisionWorld::CollisionWorld()
: m_collisionDetection(this, m_memoryAllocator), m_currentBodyID(0),
m_eventListener(NULL) {
}
// Destructor
CollisionWorld::~CollisionWorld() {
// Destroy all the collision bodies that have not been removed
std::set<CollisionBody*>::iterator itBodies;
for (itBodies = m_bodies.begin(); itBodies != m_bodies.end(); ) {
std::set<CollisionBody*>::iterator itToRemove = itBodies;
++itBodies;
destroyCollisionBody(*itToRemove);
}
assert(m_bodies.empty());
}
// Create a collision body and add it to the world
/**
* @param transform etk::Transform3Dation mapping the local-space of the body to world-space
* @return A pointer to the body that has been created in the world
*/
CollisionBody* CollisionWorld::createCollisionBody(const etk::Transform3D& transform) {
// Get the next available body ID
bodyindex bodyID = computeNextAvailableBodyID();
// Largest index cannot be used (it is used for invalid index)
assert(bodyID < std::numeric_limits<ephysics::bodyindex>::max());
// Create the collision body
CollisionBody* collisionBody = new (m_memoryAllocator.allocate(sizeof(CollisionBody)))
CollisionBody(transform, *this, bodyID);
assert(collisionBody != NULL);
// Add the collision body to the world
m_bodies.insert(collisionBody);
// Return the pointer to the rigid body
return collisionBody;
}
// Destroy a collision body
/**
* @param collisionBody Pointer to the body to destroy
*/
void CollisionWorld::destroyCollisionBody(CollisionBody* collisionBody) {
// Remove all the collision shapes of the body
collisionBody->removeAllCollisionShapes();
// Add the body ID to the list of free IDs
m_freeBodiesIDs.push_back(collisionBody->getID());
// Call the destructor of the collision body
collisionBody->~CollisionBody();
// Remove the collision body from the list of bodies
m_bodies.erase(collisionBody);
// Free the object from the memory allocator
m_memoryAllocator.release(collisionBody, sizeof(CollisionBody));
}
// Return the next available body ID
bodyindex CollisionWorld::computeNextAvailableBodyID() {
// Compute the body ID
bodyindex bodyID;
if (!m_freeBodiesIDs.empty()) {
bodyID = m_freeBodiesIDs.back();
m_freeBodiesIDs.pop_back();
}
else {
bodyID = m_currentBodyID;
m_currentBodyID++;
}
return bodyID;
}
// Reset all the contact manifolds linked list of each body
void CollisionWorld::resetContactManifoldListsOfBodies() {
// For each rigid body of the world
for (std::set<CollisionBody*>::iterator it = m_bodies.begin(); it != m_bodies.end(); ++it) {
// Reset the contact manifold list of the body
(*it)->resetContactManifoldsList();
}
}
// Test if the AABBs of two bodies overlap
/**
* @param body1 Pointer to the first body to test
* @param body2 Pointer to the second body to test
* @return True if the AABBs of the two bodies overlap and false otherwise
*/
bool CollisionWorld::testAABBOverlap(const CollisionBody* body1,
const CollisionBody* body2) const {
// If one of the body is not active, we return no overlap
if (!body1->isActive() || !body2->isActive()) return false;
// Compute the AABBs of both bodies
AABB body1AABB = body1->getAABB();
AABB body2AABB = body2->getAABB();
// Return true if the two AABBs overlap
return body1AABB.testCollision(body2AABB);
}
// Test and report collisions between a given shape and all the others
// shapes of the world.
/**
* @param shape Pointer to the proxy shape to test
* @param callback Pointer to the object with the callback method
*/
void CollisionWorld::testCollision(const ProxyShape* shape,
CollisionCallback* callback) {
// Reset all the contact manifolds lists of each body
resetContactManifoldListsOfBodies();
// Create the sets of shapes
std::set<uint32_t> shapes;
shapes.insert(shape->m_broadPhaseID);
std::set<uint32_t> emptySet;
// Perform the collision detection and report contacts
m_collisionDetection.testCollisionBetweenShapes(callback, shapes, emptySet);
}
// Test and report collisions between two given shapes
/**
* @param shape1 Pointer to the first proxy shape to test
* @param shape2 Pointer to the second proxy shape to test
* @param callback Pointer to the object with the callback method
*/
void CollisionWorld::testCollision(const ProxyShape* shape1,
const ProxyShape* shape2,
CollisionCallback* callback) {
// Reset all the contact manifolds lists of each body
resetContactManifoldListsOfBodies();
// Create the sets of shapes
std::set<uint32_t> shapes1;
shapes1.insert(shape1->m_broadPhaseID);
std::set<uint32_t> shapes2;
shapes2.insert(shape2->m_broadPhaseID);
// Perform the collision detection and report contacts
m_collisionDetection.testCollisionBetweenShapes(callback, shapes1, shapes2);
}
// Test and report collisions between a body and all the others bodies of the
// world
/**
* @param body Pointer to the first body to test
* @param callback Pointer to the object with the callback method
*/
void CollisionWorld::testCollision(const CollisionBody* body,
CollisionCallback* callback) {
// Reset all the contact manifolds lists of each body
resetContactManifoldListsOfBodies();
// Create the sets of shapes
std::set<uint32_t> shapes1;
// For each shape of the body
for (const ProxyShape* shape=body->getProxyShapesList(); shape != NULL;
shape = shape->getNext()) {
shapes1.insert(shape->m_broadPhaseID);
}
std::set<uint32_t> emptySet;
// Perform the collision detection and report contacts
m_collisionDetection.testCollisionBetweenShapes(callback, shapes1, emptySet);
}
// Test and report collisions between two bodies
/**
* @param body1 Pointer to the first body to test
* @param body2 Pointer to the second body to test
* @param callback Pointer to the object with the callback method
*/
void CollisionWorld::testCollision(const CollisionBody* body1,
const CollisionBody* body2,
CollisionCallback* callback) {
// Reset all the contact manifolds lists of each body
resetContactManifoldListsOfBodies();
// Create the sets of shapes
std::set<uint32_t> shapes1;
for (const ProxyShape* shape=body1->getProxyShapesList(); shape != NULL;
shape = shape->getNext()) {
shapes1.insert(shape->m_broadPhaseID);
}
std::set<uint32_t> shapes2;
for (const ProxyShape* shape=body2->getProxyShapesList(); shape != NULL;
shape = shape->getNext()) {
shapes2.insert(shape->m_broadPhaseID);
}
// Perform the collision detection and report contacts
m_collisionDetection.testCollisionBetweenShapes(callback, shapes1, shapes2);
}
// Test and report collisions between all shapes of the world
/**
* @param callback Pointer to the object with the callback method
*/
void CollisionWorld::testCollision(CollisionCallback* callback) {
// Reset all the contact manifolds lists of each body
resetContactManifoldListsOfBodies();
std::set<uint32_t> emptySet;
// Perform the collision detection and report contacts
m_collisionDetection.testCollisionBetweenShapes(callback, emptySet, emptySet);
}