ephysics/ephysics/collision/shapes/HeightFieldShape.hpp

231 lines
7.8 KiB
C++

/** @file
* @author Daniel Chappuis
* @copyright 2010-2016 Daniel Chappuis
* @license BSD 3 clauses (see license file)
*/
#pragma once
// Libraries
#include <ephysics/collision/shapes/ConcaveShape.hpp>
#include <ephysics/collision/shapes/TriangleShape.hpp>
#include <ephysics/engine/Profiler.hpp>
namespace ephysics {
class HeightFieldShape;
/**
* @brief This class is used for testing AABB and triangle overlap for raycasting
*/
class TriangleOverlapCallback : public TriangleCallback {
protected:
const Ray& m_ray;
ProxyShape* m_proxyShape;
RaycastInfo& m_raycastInfo;
bool m_isHit;
float m_smallestHitFraction;
const HeightFieldShape& m_heightFieldShape;
public:
TriangleOverlapCallback(const Ray& _ray,
ProxyShape* _proxyShape,
RaycastInfo& _raycastInfo,
const HeightFieldShape& _heightFieldShape):
m_ray(_ray),
m_proxyShape(_proxyShape),
m_raycastInfo(_raycastInfo),
m_heightFieldShape(_heightFieldShape) {
m_isHit = false;
m_smallestHitFraction = m_ray.maxFraction;
}
bool getIsHit() const {
return m_isHit;
}
/// Raycast test between a ray and a triangle of the heightfield
virtual void testTriangle(const vec3* _trianglePoints);
};
/**
* @brief This class represents a static height field that can be used to represent
* a terrain. The height field is made of a grid with rows and columns with a
* height value at each grid point. Note that the height values are not copied int32_to the shape
* but are shared instead. The height values can be of type int32_teger, float or double.
* When creating a HeightFieldShape, you need to specify the minimum and maximum height value of
* your height field. Note that the HeightFieldShape will be re-centered based on its AABB. It means
* that for instance, if the minimum height value is -200 and the maximum value is 400, the final
* minimum height of the field in the simulation will be -300 and the maximum height will be 300.
*/
class HeightFieldShape : public ConcaveShape {
public:
/// Data type for the height data of the height field
enum HeightDataType {HEIGHT_FLOAT_TYPE, HEIGHT_DOUBLE_TYPE, HEIGHT_INT_TYPE};
protected:
// -------------------- Attributes -------------------- //
/// Number of columns in the grid of the height field
int32_t m_numberColumns;
/// Number of rows in the grid of the height field
int32_t m_numberRows;
/// Height field width
float m_width;
/// Height field length
float m_length;
/// Minimum height of the height field
float m_minHeight;
/// Maximum height of the height field
float m_maxHeight;
/// Up axis direction (0 => x, 1 => y, 2 => z)
int32_t m_upAxis;
/// Height values scale for height field with int32_teger height values
float m_integerHeightScale;
/// Data type of the height values
HeightDataType m_heightDataType;
/// Array of data with all the height values of the height field
const void* m_heightFieldData;
/// Local AABB of the height field (without scaling)
AABB m_AABB;
// -------------------- Methods -------------------- //
/// Private copy-constructor
HeightFieldShape(const HeightFieldShape& shape);
/// Private assignment operator
HeightFieldShape& operator=(const HeightFieldShape& shape);
/// Raycast method with feedback information
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const;
/// Insert all the triangles int32_to the dynamic AABB tree
void initBVHTree();
/// Return the three vertices coordinates (in the array outTriangleVertices) of a triangle
/// given the start vertex index pointer of the triangle.
void getTriangleVerticesWithIndexPointer(int32_t subPart, int32_t triangleIndex,
vec3* outTriangleVertices) const;
/// Return the vertex (local-coordinates) of the height field at a given (x,y) position
vec3 getVertexAt(int32_t x, int32_t y) const;
/// Return the height of a given (x,y) point in the height field
float getHeightAt(int32_t x, int32_t y) const;
/// Return the closest inside int32_teger grid value of a given floating grid value
int32_t computeIntegerGridValue(float value) const;
/// Compute the min/max grid coords corresponding to the int32_tersection of the AABB of the height field and the AABB to collide
void computeMinMaxGridCoordinates(int32_t* minCoords, int32_t* maxCoords, const AABB& aabbToCollide) const;
public:
/// Constructor
HeightFieldShape(int32_t nbGridColumns, int32_t nbGridRows, float minHeight, float maxHeight,
const void* heightFieldData, HeightDataType dataType,
int32_t upAxis = 1, float int32_tegerHeightScale = 1.0f);
/// Destructor
~HeightFieldShape();
/// Return the number of rows in the height field
int32_t getNbRows() const;
/// Return the number of columns in the height field
int32_t getNbColumns() const;
/// Return the type of height value in the height field
HeightDataType getHeightDataType() const;
/// Return the local bounds of the shape in x, y and z directions.
virtual void getLocalBounds(vec3& min, vec3& max) const;
/// Set the local scaling vector of the collision shape
virtual void setLocalScaling(const vec3& scaling);
/// Return the local inertia tensor of the collision shape
virtual void computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const;
/// Use a callback method on all triangles of the concave shape inside a given AABB
virtual void testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const;
// ---------- Friendship ----------- //
friend class ConvexTriangleAABBOverlapCallback;
friend class ConcaveMeshRaycastCallback;
};
// Return the number of rows in the height field
inline int32_t HeightFieldShape::getNbRows() const {
return m_numberRows;
}
// Return the number of columns in the height field
inline int32_t HeightFieldShape::getNbColumns() const {
return m_numberColumns;
}
// Return the type of height value in the height field
inline HeightFieldShape::HeightDataType HeightFieldShape::getHeightDataType() const {
return m_heightDataType;
}
// Return the number of bytes used by the collision shape
inline size_t HeightFieldShape::getSizeInBytes() const {
return sizeof(HeightFieldShape);
}
// Set the local scaling vector of the collision shape
inline void HeightFieldShape::setLocalScaling(const vec3& scaling) {
CollisionShape::setLocalScaling(scaling);
}
// Return the height of a given (x,y) point in the height field
inline float HeightFieldShape::getHeightAt(int32_t x, int32_t y) const {
switch(m_heightDataType) {
case HEIGHT_FLOAT_TYPE : return ((float*)m_heightFieldData)[y * m_numberColumns + x];
case HEIGHT_DOUBLE_TYPE : return ((double*)m_heightFieldData)[y * m_numberColumns + x];
case HEIGHT_INT_TYPE : return ((int32_t*)m_heightFieldData)[y * m_numberColumns + x] * m_integerHeightScale;
default: assert(false); return 0;
}
}
// Return the closest inside int32_teger grid value of a given floating grid value
inline int32_t HeightFieldShape::computeIntegerGridValue(float value) const {
return (value < 0.0f) ? value - 0.5f : value + float(0.5);
}
// Return the local inertia tensor
/**
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
* coordinates
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
inline void HeightFieldShape::computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const {
// Default inertia tensor
// Note that this is not very realistic for a concave triangle mesh.
// However, in most cases, it will only be used static bodies and therefore,
// the inertia tensor is not used.
tensor.setValue(mass, 0, 0,
0, mass, 0,
0, 0, mass);
}
}