Edouard DUPIN 078fc33309 [LICENCE] change ZLib to MPL-2 with athoriqzation of author:
Email exchange:

On 29.09.2017 14:35 Edouard DUPIN wrote:
Hello,

I have fork your physic engine and update it to fit better with my 3d
game engine and my framework.

I do many change:
  - on assert policy (I do not like it)
  - the back-end use of the vector3D and quaternion, that I have
already an other implementation...
  - Log management
  - Other build system (lutin)
  - organisation of doxygen (all in the header)
  - remove dependency of the STL (in progress)
  - some bugs ...
  - ...

And I have a problem with the licence. You use BSD-3 that is a good
point, but this licence does not force the user to send your their
modification. Then I ask you to permit me to change the licence of the
FORK in MPL-2 that have the benefit to force developer to publish the
modification and permit to use the software in a proprietary
application without contamination.

Best regards

Edouard DUPIN

https://github.com/HeeroYui
https://github.com/atria-soft
https://github.com/musicdsp

answers from chappuis.daniel@XXXXXXX.yyy
Hello,

I am glad that you have found the ReactPhysics3D library to be useful.
You said that you have found bugs. Maybe I have already found and fixed some of them but do not hesitate to report them
here (https://github.com/DanielChappuis/reactphysics3d/issues) if not done yet.

Concerning the license. The library is not under the BSD-3 license but under the zlib license (https://opensource.org/licenses/Zlib).
With this license, it is allowed to use the software in a proprietary application without contamination. Regarding your request to
change the license to the MPL-2, you can do it with the following condition : You need to add the following text in all the source files
of ReactPhysics3D where the license will change. It must always be clear where the original code is coming from.

--------------- TEXT TO ADD TO THE LICENSE IN EACH FILE -------------------------
Original ReactPhysics3D C++ library by Daniel Chappuis <http://www.reactphysics3d.com/>
This code is re-licensed with permission from ReactPhysics3D author.
---------------------------------------------------------------------------------

For example, you can see here how the flow/react library (java port of ReactPhysics3D) has been re-licensed from
ReactPhysics3D (https://github.com/flow/react/blob/develop/src/main/java/com/flowpowered/react/constraint/ContactPoint.java)

I hope it fits your needs.

Best Regards,

Daniel Chappuis
2018-06-19 21:24:54 +02:00

369 lines
11 KiB
C++

/** @file
* Original ReactPhysics3D C++ library by Daniel Chappuis <http://www.reactphysics3d.com/> This code is re-licensed with permission from ReactPhysics3D author.
* @author Daniel CHAPPUIS
* @author Edouard DUPIN
* @copyright 2010-2016, Daniel Chappuis
* @copyright 2017, Edouard DUPIN
* @license MPL v2.0 (see license file)
*/
#include <ephysics/collision/narrowphase/GJK/Simplex.hpp>
using namespace ephysics;
Simplex::Simplex() : mBitsCurrentSimplex(0x0), mAllBits(0x0) {
}
// Add a new support point of (A-B) int32_to the simplex
/// suppPointA : support point of object A in a direction -v
/// suppPointB : support point of object B in a direction v
/// point : support point of object (A-B) => point = suppPointA - suppPointB
void Simplex::addPoint(const vec3& point, const vec3& suppPointA, const vec3& suppPointB) {
assert(!isFull());
mLastFound = 0;
mLastFoundBit = 0x1;
// Look for the bit corresponding to one of the four point that is not in
// the current simplex
while (overlap(mBitsCurrentSimplex, mLastFoundBit)) {
mLastFound++;
mLastFoundBit <<= 1;
}
assert(mLastFound < 4);
// Add the point int32_to the simplex
mPoints[mLastFound] = point;
mPointsLengthSquare[mLastFound] = point.dot(point);
mAllBits = mBitsCurrentSimplex | mLastFoundBit;
// Update the cached values
updateCache();
// Compute the cached determinant values
computeDeterminants();
// Add the support points of objects A and B
mSuppPointsA[mLastFound] = suppPointA;
mSuppPointsB[mLastFound] = suppPointB;
}
// Return true if the point is in the simplex
bool Simplex::isPointInSimplex(const vec3& point) const {
int32_t i;
Bits bit;
// For each four possible points in the simplex
for (i=0, bit = 0x1; i<4; i++, bit <<= 1) {
// Check if the current point is in the simplex
if (overlap(mAllBits, bit) && point == mPoints[i]) return true;
}
return false;
}
// Update the cached values used during the GJK algorithm
void Simplex::updateCache() {
int32_t i;
Bits bit;
// For each of the four possible points of the simplex
for (i=0, bit = 0x1; i<4; i++, bit <<= 1) {
// If the current points is in the simplex
if (overlap(mBitsCurrentSimplex, bit)) {
// Compute the distance between two points in the possible simplex set
mDiffLength[i][mLastFound] = mPoints[i] - mPoints[mLastFound];
mDiffLength[mLastFound][i] = -mDiffLength[i][mLastFound];
// Compute the squared length of the vector
// distances from points in the possible simplex set
mNormSquare[i][mLastFound] = mNormSquare[mLastFound][i] =
mDiffLength[i][mLastFound].dot(mDiffLength[i][mLastFound]);
}
}
}
// Return the points of the simplex
uint32_t Simplex::getSimplex(vec3* suppPointsA, vec3* suppPointsB,
vec3* points) const {
uint32_t nbVertices = 0;
int32_t i;
Bits bit;
// For each four point in the possible simplex
for (i=0, bit=0x1; i<4; i++, bit <<=1) {
// If the current point is in the simplex
if (overlap(mBitsCurrentSimplex, bit)) {
// Store the points
suppPointsA[nbVertices] = this->mSuppPointsA[nbVertices];
suppPointsB[nbVertices] = this->mSuppPointsB[nbVertices];
points[nbVertices] = this->mPoints[nbVertices];
nbVertices++;
}
}
// Return the number of points in the simplex
return nbVertices;
}
// Compute the cached determinant values
void Simplex::computeDeterminants() {
mDet[mLastFoundBit][mLastFound] = 1.0;
// If the current simplex is not empty
if (!isEmpty()) {
int32_t i;
Bits bitI;
// For each possible four points in the simplex set
for (i=0, bitI = 0x1; i<4; i++, bitI <<= 1) {
// If the current point is in the simplex
if (overlap(mBitsCurrentSimplex, bitI)) {
Bits bit2 = bitI | mLastFoundBit;
mDet[bit2][i] = mDiffLength[mLastFound][i].dot(mPoints[mLastFound]);
mDet[bit2][mLastFound] = mDiffLength[i][mLastFound].dot(mPoints[i]);
int32_t j;
Bits bitJ;
for (j=0, bitJ = 0x1; j<i; j++, bitJ <<= 1) {
if (overlap(mBitsCurrentSimplex, bitJ)) {
int32_t k;
Bits bit3 = bitJ | bit2;
k = mNormSquare[i][j] < mNormSquare[mLastFound][j] ? i : mLastFound;
mDet[bit3][j] = mDet[bit2][i] * mDiffLength[k][j].dot(mPoints[i]) +
mDet[bit2][mLastFound] *
mDiffLength[k][j].dot(mPoints[mLastFound]);
k = mNormSquare[j][i] < mNormSquare[mLastFound][i] ? j : mLastFound;
mDet[bit3][i] = mDet[bitJ | mLastFoundBit][j] *
mDiffLength[k][i].dot(mPoints[j]) +
mDet[bitJ | mLastFoundBit][mLastFound] *
mDiffLength[k][i].dot(mPoints[mLastFound]);
k = mNormSquare[i][mLastFound] < mNormSquare[j][mLastFound] ? i : j;
mDet[bit3][mLastFound] = mDet[bitJ | bitI][j] *
mDiffLength[k][mLastFound].dot(mPoints[j]) +
mDet[bitJ | bitI][i] *
mDiffLength[k][mLastFound].dot(mPoints[i]);
}
}
}
}
if (mAllBits == 0xf) {
int32_t k;
k = mNormSquare[1][0] < mNormSquare[2][0] ?
(mNormSquare[1][0] < mNormSquare[3][0] ? 1 : 3) :
(mNormSquare[2][0] < mNormSquare[3][0] ? 2 : 3);
mDet[0xf][0] = mDet[0xe][1] * mDiffLength[k][0].dot(mPoints[1]) +
mDet[0xe][2] * mDiffLength[k][0].dot(mPoints[2]) +
mDet[0xe][3] * mDiffLength[k][0].dot(mPoints[3]);
k = mNormSquare[0][1] < mNormSquare[2][1] ?
(mNormSquare[0][1] < mNormSquare[3][1] ? 0 : 3) :
(mNormSquare[2][1] < mNormSquare[3][1] ? 2 : 3);
mDet[0xf][1] = mDet[0xd][0] * mDiffLength[k][1].dot(mPoints[0]) +
mDet[0xd][2] * mDiffLength[k][1].dot(mPoints[2]) +
mDet[0xd][3] * mDiffLength[k][1].dot(mPoints[3]);
k = mNormSquare[0][2] < mNormSquare[1][2] ?
(mNormSquare[0][2] < mNormSquare[3][2] ? 0 : 3) :
(mNormSquare[1][2] < mNormSquare[3][2] ? 1 : 3);
mDet[0xf][2] = mDet[0xb][0] * mDiffLength[k][2].dot(mPoints[0]) +
mDet[0xb][1] * mDiffLength[k][2].dot(mPoints[1]) +
mDet[0xb][3] * mDiffLength[k][2].dot(mPoints[3]);
k = mNormSquare[0][3] < mNormSquare[1][3] ?
(mNormSquare[0][3] < mNormSquare[2][3] ? 0 : 2) :
(mNormSquare[1][3] < mNormSquare[2][3] ? 1 : 2);
mDet[0xf][3] = mDet[0x7][0] * mDiffLength[k][3].dot(mPoints[0]) +
mDet[0x7][1] * mDiffLength[k][3].dot(mPoints[1]) +
mDet[0x7][2] * mDiffLength[k][3].dot(mPoints[2]);
}
}
}
// Return true if the subset is a proper subset.
/// A proper subset X is a subset where for all point "y_i" in X, we have
/// detX_i value bigger than zero
bool Simplex::isProperSubset(Bits subset) const {
int32_t i;
Bits bit;
// For each four point of the possible simplex set
for (i=0, bit=0x1; i<4; i++, bit <<=1) {
if (overlap(subset, bit) && mDet[subset][i] <= 0.0) {
return false;
}
}
return true;
}
// Return true if the set is affinely dependent.
/// A set if affinely dependent if a point of the set
/// is an affine combination of other points in the set
bool Simplex::isAffinelyDependent() const {
float sum = 0.0;
int32_t i;
Bits bit;
// For each four point of the possible simplex set
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
if (overlap(mAllBits, bit)) {
sum += mDet[mAllBits][i];
}
}
return (sum <= 0.0);
}
// Return true if the subset is a valid one for the closest point computation.
/// A subset X is valid if :
/// 1. delta(X)_i > 0 for each "i" in I_x and
/// 2. delta(X U {y_j})_j <= 0 for each "j" not in I_x_
bool Simplex::isValidSubset(Bits subset) const {
int32_t i;
Bits bit;
// For each four point in the possible simplex set
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
if (overlap(mAllBits, bit)) {
// If the current point is in the subset
if (overlap(subset, bit)) {
// If one delta(X)_i is smaller or equal to zero
if (mDet[subset][i] <= 0.0) {
// The subset is not valid
return false;
}
}
// If the point is not in the subset and the value delta(X U {y_j})_j
// is bigger than zero
else if (mDet[subset | bit][i] > 0.0) {
// The subset is not valid
return false;
}
}
}
return true;
}
// Compute the closest points "pA" and "pB" of object A and B.
/// The points are computed as follows :
/// pA = sum(lambda_i * a_i) where "a_i" are the support points of object A
/// pB = sum(lambda_i * b_i) where "b_i" are the support points of object B
/// with lambda_i = deltaX_i / deltaX
void Simplex::computeClosestPointsOfAandB(vec3& pA, vec3& pB) const {
float deltaX = 0.0;
pA.setValue(0.0, 0.0, 0.0);
pB.setValue(0.0, 0.0, 0.0);
int32_t i;
Bits bit;
// For each four points in the possible simplex set
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
// If the current point is part of the simplex
if (overlap(mBitsCurrentSimplex, bit)) {
deltaX += mDet[mBitsCurrentSimplex][i];
pA += mDet[mBitsCurrentSimplex][i] * mSuppPointsA[i];
pB += mDet[mBitsCurrentSimplex][i] * mSuppPointsB[i];
}
}
assert(deltaX > 0.0);
float factor = 1.0f / deltaX;
pA *= factor;
pB *= factor;
}
// Compute the closest point "v" to the origin of the current simplex.
/// This method executes the Jonhnson's algorithm for computing the point
/// "v" of simplex that is closest to the origin. The method returns true
/// if a closest point has been found.
bool Simplex::computeClosestPoint(vec3& v) {
Bits subset;
// For each possible simplex set
for (subset=mBitsCurrentSimplex; subset != 0x0; subset--) {
// If the simplex is a subset of the current simplex and is valid for the Johnson's
// algorithm test
if (isSubset(subset, mBitsCurrentSimplex) && isValidSubset(subset | mLastFoundBit)) {
mBitsCurrentSimplex = subset | mLastFoundBit; // Add the last added point to the current simplex
v = computeClosestPointForSubset(mBitsCurrentSimplex); // Compute the closest point in the simplex
return true;
}
}
// If the simplex that contains only the last added point is valid for the Johnson's algorithm test
if (isValidSubset(mLastFoundBit)) {
mBitsCurrentSimplex = mLastFoundBit; // Set the current simplex to the set that contains only the last added point
mMaxLengthSquare = mPointsLengthSquare[mLastFound]; // Update the maximum square length
v = mPoints[mLastFound]; // The closest point of the simplex "v" is the last added point
return true;
}
// The algorithm failed to found a point
return false;
}
// Backup the closest point
void Simplex::backupClosestPointInSimplex(vec3& v) {
float minDistSquare = FLT_MAX;
Bits bit;
for (bit = mAllBits; bit != 0x0; bit--) {
if (isSubset(bit, mAllBits) && isProperSubset(bit)) {
vec3 u = computeClosestPointForSubset(bit);
float distSquare = u.dot(u);
if (distSquare < minDistSquare) {
minDistSquare = distSquare;
mBitsCurrentSimplex = bit;
v = u;
}
}
}
}
// Return the closest point "v" in the convex hull of the points in the subset
// represented by the bits "subset"
vec3 Simplex::computeClosestPointForSubset(Bits _subset) {
vec3 v(0.0, 0.0, 0.0); // Closet point v = sum(lambda_i * points[i])
mMaxLengthSquare = 0.0;
float deltaX = 0.0; // deltaX = sum of all det[subset][i]
int32_t i;
Bits bit;
// For each four point in the possible simplex set
for (i=0, bit=0x1; i<4; i++, bit <<= 1) {
// If the current point is in the subset
if (overlap(_subset, bit)) {
// deltaX = sum of all det[subset][i]
deltaX += mDet[_subset][i];
if (mMaxLengthSquare < mPointsLengthSquare[i]) {
mMaxLengthSquare = mPointsLengthSquare[i];
}
// Closest point v = sum(lambda_i * points[i])
v += mDet[_subset][i] * mPoints[i];
}
}
assert(deltaX > 0.0);
// Return the closet point "v" in the convex hull for the given subset
return (1.0f / deltaX) * v;
}