164 lines
5.1 KiB
C++
164 lines
5.1 KiB
C++
/** @file
|
|
* @author Daniel Chappuis
|
|
* @copyright 2010-2016 Daniel Chappuis
|
|
* @license BSD 3 clauses (see license file)
|
|
*/
|
|
#pragma once
|
|
|
|
// Libraries
|
|
#include <ephysics/collision/shapes/ConvexShape.h>
|
|
#include <ephysics/body/CollisionBody.h>
|
|
#include <ephysics/mathematics/mathematics.h>
|
|
|
|
/// ReactPhysics3D namespace
|
|
namespace reactphysics3d {
|
|
|
|
// Class ConeShape
|
|
/**
|
|
* This class represents a cone collision shape centered at the
|
|
* origin and alligned with the Y axis. The cone is defined
|
|
* by its height and by the radius of its base. The center of the
|
|
* cone is at the half of the height. The "transform" of the
|
|
* corresponding rigid body gives an orientation and a position
|
|
* to the cone. This collision shape uses an extra margin distance around
|
|
* it for collision detection purpose. The default margin is 4cm (if your
|
|
* units are meters, which is recommended). In case, you want to simulate small
|
|
* objects (smaller than the margin distance), you might want to reduce the margin
|
|
* by specifying your own margin distance using the "margin" parameter in the
|
|
* constructor of the cone shape. Otherwise, it is recommended to use the
|
|
* default margin distance by not using the "margin" parameter in the constructor.
|
|
*/
|
|
class ConeShape : public ConvexShape {
|
|
|
|
protected :
|
|
|
|
// -------------------- Attributes -------------------- //
|
|
|
|
/// Radius of the base
|
|
float mRadius;
|
|
|
|
/// Half height of the cone
|
|
float m_halfHeight;
|
|
|
|
/// sine of the semi angle at the apex point
|
|
float mSinTheta;
|
|
|
|
// -------------------- Methods -------------------- //
|
|
|
|
/// Private copy-constructor
|
|
ConeShape(const ConeShape& shape);
|
|
|
|
/// Private assignment operator
|
|
ConeShape& operator=(const ConeShape& shape);
|
|
|
|
/// Return a local support point in a given direction without the object margin
|
|
virtual vec3 getLocalSupportPointWithoutMargin(const vec3& direction,
|
|
void** cachedCollisionData) const;
|
|
|
|
/// Return true if a point is inside the collision shape
|
|
virtual bool testPointInside(const vec3& localPoint, ProxyShape* proxyShape) const;
|
|
|
|
/// Raycast method with feedback information
|
|
virtual bool raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const;
|
|
|
|
/// Return the number of bytes used by the collision shape
|
|
virtual size_t getSizeInBytes() const;
|
|
|
|
public :
|
|
|
|
// -------------------- Methods -------------------- //
|
|
|
|
/// Constructor
|
|
ConeShape(float mRadius, float height, float margin = OBJECT_MARGIN);
|
|
|
|
/// Destructor
|
|
virtual ~ConeShape();
|
|
|
|
/// Return the radius
|
|
float getRadius() const;
|
|
|
|
/// Return the height
|
|
float getHeight() const;
|
|
|
|
/// Set the scaling vector of the collision shape
|
|
virtual void setLocalScaling(const vec3& scaling);
|
|
|
|
/// Return the local bounds of the shape in x, y and z directions
|
|
virtual void getLocalBounds(vec3& min, vec3& max) const;
|
|
|
|
/// Return the local inertia tensor of the collision shape
|
|
virtual void computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const;
|
|
};
|
|
|
|
// Return the radius
|
|
/**
|
|
* @return Radius of the cone (in meters)
|
|
*/
|
|
inline float ConeShape::getRadius() const {
|
|
return mRadius;
|
|
}
|
|
|
|
// Return the height
|
|
/**
|
|
* @return Height of the cone (in meters)
|
|
*/
|
|
inline float ConeShape::getHeight() const {
|
|
return float(2.0) * m_halfHeight;
|
|
}
|
|
|
|
// Set the scaling vector of the collision shape
|
|
inline void ConeShape::setLocalScaling(const vec3& scaling) {
|
|
|
|
m_halfHeight = (m_halfHeight / m_scaling.y()) * scaling.y();
|
|
mRadius = (mRadius / m_scaling.x()) * scaling.x();
|
|
|
|
CollisionShape::setLocalScaling(scaling);
|
|
}
|
|
|
|
// Return the number of bytes used by the collision shape
|
|
inline size_t ConeShape::getSizeInBytes() const {
|
|
return sizeof(ConeShape);
|
|
}
|
|
|
|
// Return the local bounds of the shape in x, y and z directions
|
|
/**
|
|
* @param min The minimum bounds of the shape in local-space coordinates
|
|
* @param max The maximum bounds of the shape in local-space coordinates
|
|
*/
|
|
inline void ConeShape::getLocalBounds(vec3& min, vec3& max) const {
|
|
|
|
// Maximum bounds
|
|
max.setX(mRadius + m_margin);
|
|
max.setY(m_halfHeight + m_margin);
|
|
max.setZ(max.x());
|
|
|
|
// Minimum bounds
|
|
min.setX(-max.x());
|
|
min.setY(-max.y());
|
|
min.setZ(min.x());
|
|
}
|
|
|
|
// Return the local inertia tensor of the collision shape
|
|
/**
|
|
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
|
|
* coordinates
|
|
* @param mass Mass to use to compute the inertia tensor of the collision shape
|
|
*/
|
|
inline void ConeShape::computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const {
|
|
float rSquare = mRadius * mRadius;
|
|
float diagXZ = float(0.15) * mass * (rSquare + m_halfHeight);
|
|
tensor.setValue(diagXZ, 0.0, 0.0,
|
|
0.0, float(0.3) * mass * rSquare,
|
|
0.0, 0.0, 0.0, diagXZ);
|
|
}
|
|
|
|
// Return true if a point is inside the collision shape
|
|
inline bool ConeShape::testPointInside(const vec3& localPoint, ProxyShape* proxyShape) const {
|
|
const float radiusHeight = mRadius * (-localPoint.y() + m_halfHeight) /
|
|
(m_halfHeight * float(2.0));
|
|
return (localPoint.y() < m_halfHeight && localPoint.y() > -m_halfHeight) &&
|
|
(localPoint.x() * localPoint.x() + localPoint.z() * localPoint.z() < radiusHeight *radiusHeight);
|
|
}
|
|
|
|
}
|