ephysics/test/tests/collision/TestDynamicAABBTree.h

524 lines
22 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2016 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TEST_DYNAMIC_AABB_TREE_H
#define TEST_DYNAMIC_AABB_TREE_H
// Libraries
#include <test/Test.h>
#include <ephysics/collision/broadphase/DynamicAABBTree.h>
#include <vector>
/// Reactphysics3D namespace
namespace reactphysics3d {
class OverlapCallback : public DynamicAABBTreeOverlapCallback {
public :
std::vector<int> mOverlapNodes;
// Called when a overlapping node has been found during the call to
// DynamicAABBTree:reportAllShapesOverlappingWithAABB()
virtual void notifyOverlappingNode(int nodeId) {
mOverlapNodes.push_back(nodeId);
}
void reset() {
mOverlapNodes.clear();
}
bool isOverlapping(int nodeId) const {
return std::find(mOverlapNodes.begin(), mOverlapNodes.end(), nodeId) != mOverlapNodes.end();
}
};
class DynamicTreeRaycastCallback : public DynamicAABBTreeRaycastCallback {
public:
std::vector<int> mHitNodes;
// Called when the AABB of a leaf node is hit by a ray
virtual decimal raycastBroadPhaseShape(int32 nodeId, const Ray& ray) {
mHitNodes.push_back(nodeId);
return 1.0;
}
void reset() {
mHitNodes.clear();
}
bool isHit(int nodeId) const {
return std::find(mHitNodes.begin(), mHitNodes.end(), nodeId) != mHitNodes.end();
}
};
// Class TestDynamicAABBTree
/**
* Unit test for the dynamic AABB tree
*/
class TestDynamicAABBTree : public Test {
private :
// ---------- Atributes ---------- //
OverlapCallback mOverlapCallback;
DynamicTreeRaycastCallback m_raycastCallback;
public :
// ---------- Methods ---------- //
/// Constructor
TestDynamicAABBTree(const std::string& name): Test(name) {
}
/// Run the tests
void run() {
testBasicsMethods();
testOverlapping();
testRaycast();
}
void testBasicsMethods() {
// ------------ Create tree ---------- //
// Dynamic AABB Tree
DynamicAABBTree tree;
int object1Data = 56;
int object2Data = 23;
int object3Data = 13;
int object4Data = 7;
// First object
AABB aabb1 = AABB(Vector3(-6, 4, -3), Vector3(4, 8, 3));
int object1Id = tree.addObject(aabb1, &object1Data);
// Second object
AABB aabb2 = AABB(Vector3(5, 2, -3), Vector3(10, 7, 3));
int object2Id = tree.addObject(aabb2, &object2Data);
// Third object
AABB aabb3 = AABB(Vector3(-5, 1, -3), Vector3(-2, 3, 3));
int object3Id = tree.addObject(aabb3, &object3Data);
// Fourth object
AABB aabb4 = AABB(Vector3(0, -4, -3), Vector3(3, -2, 3));
int object4Id = tree.addObject(aabb4, &object4Data);
// ----------- Tests ----------- //
// Test root AABB
AABB rootAABB = tree.getRootAABB();
test(rootAABB.getMin().x == -6);
test(rootAABB.getMin().y == -4);
test(rootAABB.getMin().z == -3);
test(rootAABB.getMax().x == 10);
test(rootAABB.getMax().y == 8);
test(rootAABB.getMax().z == 3);
// Test data stored at the nodes of the tree
test(*(int*)(tree.getNodeDataPointer(object1Id)) == object1Data);
test(*(int*)(tree.getNodeDataPointer(object2Id)) == object2Data);
test(*(int*)(tree.getNodeDataPointer(object3Id)) == object3Data);
test(*(int*)(tree.getNodeDataPointer(object4Id)) == object4Data);
}
void testOverlapping() {
// ------------- Create tree ----------- //
// Dynamic AABB Tree
DynamicAABBTree tree;
int object1Data = 56;
int object2Data = 23;
int object3Data = 13;
int object4Data = 7;
// First object
AABB aabb1 = AABB(Vector3(-6, 4, -3), Vector3(4, 8, 3));
int object1Id = tree.addObject(aabb1, &object1Data);
// Second object
AABB aabb2 = AABB(Vector3(5, 2, -3), Vector3(10, 7, 3));
int object2Id = tree.addObject(aabb2, &object2Data);
// Third object
AABB aabb3 = AABB(Vector3(-5, 1, -3), Vector3(-2, 3, 3));
int object3Id = tree.addObject(aabb3, &object3Data);
// Fourth object
AABB aabb4 = AABB(Vector3(0, -4, -3), Vector3(3, -2, 3));
int object4Id = tree.addObject(aabb4, &object4Data);
// ---------- Tests ---------- //
// AABB overlapping nothing
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-10, 12, -4), Vector3(10, 50, 4)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping everything
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-15, -15, -4), Vector3(15, 15, 4)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 1 and 3
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-4, 2, -4), Vector3(-1, 7, 4)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 3 and 4
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-6, -5, -2), Vector3(2, 2, 0)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 2
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(5, -10, -2), Vector3(7, 10, 9)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// ---- Update the object AABBs with the initial AABBs (no reinsertion) ----- //
tree.updateObject(object1Id, aabb1, Vector3::zero(), false);
tree.updateObject(object2Id, aabb2, Vector3::zero(), false);
tree.updateObject(object3Id, aabb3, Vector3::zero(), false);
tree.updateObject(object4Id, aabb4, Vector3::zero(), false);
// AABB overlapping nothing
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-10, 12, -4), Vector3(10, 50, 4)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping everything
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-15, -15, -4), Vector3(15, 15, 4)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 1 and 3
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-4, 2, -4), Vector3(-1, 7, 4)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 3 and 4
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-6, -5, -2), Vector3(2, 2, 0)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 2
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(5, -10, -2), Vector3(7, 10, 9)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// ---- Update the object AABBs with the initial AABBs (with reinsertion) ----- //
tree.updateObject(object1Id, aabb1, Vector3::zero(), true);
tree.updateObject(object2Id, aabb2, Vector3::zero(), true);
tree.updateObject(object3Id, aabb3, Vector3::zero(), true);
tree.updateObject(object4Id, aabb4, Vector3::zero(), true);
// AABB overlapping nothing
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-10, 12, -4), Vector3(10, 50, 4)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping everything
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-15, -15, -4), Vector3(15, 15, 4)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 1 and 3
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-4, 2, -4), Vector3(-1, 7, 4)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 3 and 4
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-6, -5, -2), Vector3(2, 2, 0)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping object 2
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(5, -10, -2), Vector3(7, 10, 9)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// ---- Move objects 2 and 3 ----- //
AABB newAABB2(Vector3(-7, 10, -3), Vector3(1, 13, 3));
tree.updateObject(object2Id, newAABB2, Vector3::zero());
AABB newAABB3(Vector3(7, -6, -3), Vector3(9, 1, 3));
tree.updateObject(object3Id, newAABB3, Vector3::zero());
// AABB overlapping object 3
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(6, -10, -2), Vector3(8, 5, 3)), mOverlapCallback);
test(!mOverlapCallback.isOverlapping(object1Id));
test(!mOverlapCallback.isOverlapping(object2Id));
test(mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
// AABB overlapping objects 1, 2
mOverlapCallback.reset();
tree.reportAllShapesOverlappingWithAABB(AABB(Vector3(-8, 5, -3), Vector3(-2, 11, 3)), mOverlapCallback);
test(mOverlapCallback.isOverlapping(object1Id));
test(mOverlapCallback.isOverlapping(object2Id));
test(!mOverlapCallback.isOverlapping(object3Id));
test(!mOverlapCallback.isOverlapping(object4Id));
}
void testRaycast() {
// ------------- Create tree ----------- //
// Dynamic AABB Tree
DynamicAABBTree tree;
int object1Data = 56;
int object2Data = 23;
int object3Data = 13;
int object4Data = 7;
// First object
AABB aabb1 = AABB(Vector3(-6, 4, -3), Vector3(4, 8, 3));
int object1Id = tree.addObject(aabb1, &object1Data);
// Second object
AABB aabb2 = AABB(Vector3(5, 2, -3), Vector3(10, 7, 3));
int object2Id = tree.addObject(aabb2, &object2Data);
// Third object
AABB aabb3 = AABB(Vector3(-5, 1, -3), Vector3(-2, 3, 3));
int object3Id = tree.addObject(aabb3, &object3Data);
// Fourth object
AABB aabb4 = AABB(Vector3(0, -4, -3), Vector3(3, -2, 3));
int object4Id = tree.addObject(aabb4, &object4Data);
// ---------- Tests ---------- //
// Ray with no hits
m_raycastCallback.reset();
Ray ray1(Vector3(4.5, -10, -5), Vector3(4.5, 10, -5));
tree.raycast(ray1, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 1
m_raycastCallback.reset();
Ray ray2(Vector3(-1, -20, -2), Vector3(-1, 20, -2));
tree.raycast(ray2, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 1 and 2
m_raycastCallback.reset();
Ray ray3(Vector3(-7, 6, -2), Vector3(8, 6, -2));
tree.raycast(ray3, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 3
m_raycastCallback.reset();
Ray ray4(Vector3(-7, 2, 0), Vector3(-1, 2, 0));
tree.raycast(ray4, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// ---- Update the object AABBs with the initial AABBs (no reinsertion) ----- //
tree.updateObject(object1Id, aabb1, Vector3::zero(), false);
tree.updateObject(object2Id, aabb2, Vector3::zero(), false);
tree.updateObject(object3Id, aabb3, Vector3::zero(), false);
tree.updateObject(object4Id, aabb4, Vector3::zero(), false);
// Ray with no hits
m_raycastCallback.reset();
tree.raycast(ray1, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 1
m_raycastCallback.reset();
tree.raycast(ray2, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 1 and 2
m_raycastCallback.reset();
tree.raycast(ray3, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 3
m_raycastCallback.reset();
tree.raycast(ray4, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// ---- Update the object AABBs with the initial AABBs (with reinsertion) ----- //
tree.updateObject(object1Id, aabb1, Vector3::zero(), true);
tree.updateObject(object2Id, aabb2, Vector3::zero(), true);
tree.updateObject(object3Id, aabb3, Vector3::zero(), true);
tree.updateObject(object4Id, aabb4, Vector3::zero(), true);
// Ray with no hits
m_raycastCallback.reset();
tree.raycast(ray1, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 1
m_raycastCallback.reset();
tree.raycast(ray2, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 1 and 2
m_raycastCallback.reset();
tree.raycast(ray3, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 3
m_raycastCallback.reset();
tree.raycast(ray4, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// ---- Move objects 2 and 3 ----- //
AABB newAABB2(Vector3(-7, 10, -3), Vector3(1, 13, 3));
tree.updateObject(object2Id, newAABB2, Vector3::zero());
AABB newAABB3(Vector3(7, -6, -3), Vector3(9, 1, 3));
tree.updateObject(object3Id, newAABB3, Vector3::zero());
// Ray that hits object 1, 2
Ray ray5(Vector3(-4, -5, 0), Vector3(-4, 12, 0));
m_raycastCallback.reset();
tree.raycast(ray5, m_raycastCallback);
test(m_raycastCallback.isHit(object1Id));
test(m_raycastCallback.isHit(object2Id));
test(!m_raycastCallback.isHit(object3Id));
test(!m_raycastCallback.isHit(object4Id));
// Ray that hits object 3 and 4
Ray ray6(Vector3(11, -3, 1), Vector3(-2, -3, 1));
m_raycastCallback.reset();
tree.raycast(ray6, m_raycastCallback);
test(!m_raycastCallback.isHit(object1Id));
test(!m_raycastCallback.isHit(object2Id));
test(m_raycastCallback.isHit(object3Id));
test(m_raycastCallback.isHit(object4Id));
}
};
}
#endif