[DEV] Rework can be good

This commit is contained in:
Edouard DUPIN 2017-06-23 23:21:45 +02:00
parent 0d7b7b7465
commit 8b4f2f2865
7 changed files with 138 additions and 312 deletions

View File

@ -7,76 +7,33 @@
// Libraries
#include <ephysics/collision/TriangleVertexArray.hpp>
using namespace ephysics;
// Constructor
/// Note that your data will not be copied int32_to the TriangleVertexArray and
/// therefore, you need to make sure that those data are always valid during
/// the lifetime of the TriangleVertexArray.
/**
* @param nbVertices Number of vertices in the array
* @param verticesStart Pointer to the first vertices of the array
* @param verticesStride Number of bytes between the beginning of two consecutive vertices
* @param nbTriangles Number of triangles in the array
* @param indexesStart Pointer to the first triangle index
* @param indexesStride Number of bytes between the beginning of two consecutive triangle indices
* @param vertexDataType Type of data for the vertices (float, double)
* @param indexDataType Type of data for the indices (short, int32_t)
*/
TriangleVertexArray::TriangleVertexArray(uint32_t nbVertices, void* verticesStart, int32_t verticesStride,
uint32_t nbTriangles, void* indexesStart, int32_t indexesStride,
VertexDataType vertexDataType, IndexDataType indexDataType) {
m_numberVertices = nbVertices;
m_verticesStart = reinterpret_cast<unsigned char*>(verticesStart);
m_verticesStride = verticesStride;
m_numberTriangles = nbTriangles;
m_indicesStart = reinterpret_cast<unsigned char*>(indexesStart);
m_indicesStride = indexesStride;
m_vertexDataType = vertexDataType;
m_indexDataType = indexDataType;
}
// Destructor
TriangleVertexArray::~TriangleVertexArray() {
ephysics::TriangleVertexArray::TriangleVertexArray(const std::vector<vec3>& _vertices, std::vector<size_t> _triangles):
m_vertices(_vertices),
m_triangles(_triangles) {
}
// Return the vertex data type
TriangleVertexArray::VertexDataType TriangleVertexArray::getVertexDataType() const {
return m_vertexDataType;
size_t ephysics::TriangleVertexArray::getNbVertices() const {
return m_vertices.size();
}
// Return the index data type
TriangleVertexArray::IndexDataType TriangleVertexArray::getIndexDataType() const {
return m_indexDataType;
size_t ephysics::TriangleVertexArray::getNbTriangles() const {
return m_triangles.size()/3;
}
// Return the number of vertices
uint32_t TriangleVertexArray::getNbVertices() const {
return m_numberVertices;
const std::vector<vec3>& ephysics::TriangleVertexArray::getVertices() const {
return m_vertices;
}
// Return the number of triangles
uint32_t TriangleVertexArray::getNbTriangles() const {
return m_numberTriangles;
const std::vector<size_t>& ephysics::TriangleVertexArray::getIndices() const{
return m_triangles;
}
// Return the vertices stride (number of bytes)
int32_t TriangleVertexArray::getVerticesStride() const {
return m_verticesStride;
}
// Return the indices stride (number of bytes)
int32_t TriangleVertexArray::getIndicesStride() const {
return m_indicesStride;
}
// Return the pointer to the start of the vertices array
unsigned char* TriangleVertexArray::getVerticesStart() const {
return m_verticesStart;
}
// Return the pointer to the start of the indices array
unsigned char* TriangleVertexArray::getIndicesStart() const {
return m_indicesStart;
ephysics::Triangle ephysics::TriangleVertexArray::getTriangle(size_t _id) const {
ephysics::Triangle out;
out[0] = m_vertices[m_triangles[_id*3]];
out[1] = m_vertices[m_triangles[_id*3+1]];
out[2] = m_vertices[m_triangles[_id*3+2]];
return out;
}

View File

@ -6,8 +6,16 @@
#pragma once
#include <ephysics/configuration.hpp>
#include <etk/math/Vector3D.hpp>
namespace ephysics {
class Triangle {
public:
vec3 value[3];
vec3& operator[] (size_t _id) {
return value[_id];
}
};
/**
* This class is used to describe the vertices and faces of a triangular mesh.
* A TriangleVertexArray represents a continuous array of vertices and indexes
@ -18,43 +26,42 @@ namespace ephysics {
* remains valid during the TriangleVertexArray life.
*/
class TriangleVertexArray {
public:
/// Data type for the vertices in the array
enum VertexDataType {VERTEX_FLOAT_TYPE, VERTEX_DOUBLE_TYPE};
/// Data type for the indices in the array
enum IndexDataType {INDEX_INTEGER_TYPE, INDEX_SHORT_TYPE};
protected:
uint32_t m_numberVertices; //!< Number of vertices in the array
unsigned char* m_verticesStart; //!< Pointer to the first vertex value in the array
int32_t m_verticesStride; //!< Stride (number of bytes) between the beginning of two vertices values in the array
uint32_t m_numberTriangles; //!< Number of triangles in the array
unsigned char* m_indicesStart; //!< Pointer to the first vertex index of the array
int32_t m_indicesStride; //!< Stride (number of bytes) between the beginning of two indices in the array
VertexDataType m_vertexDataType; //!< Data type of the vertices in the array
IndexDataType m_indexDataType; //!< Data type of the indices in the array
std::vector<vec3> m_vertices; //!< Vertice list
std::vector<size_t> m_triangles; //!< List of triangle (3 pos for each triangle)
public:
/// Constructor
TriangleVertexArray(uint32_t nbVertices, void* verticesStart, int32_t verticesStride,
uint32_t nbTriangles, void* indexesStart, int32_t indexesStride,
VertexDataType vertexDataType, IndexDataType indexDataType);
/// Destructor
virtual ~TriangleVertexArray();
/// Return the vertex data type
VertexDataType getVertexDataType() const;
/// Return the index data type
IndexDataType getIndexDataType() const;
/// Return the number of vertices
uint32_t getNbVertices() const;
/// Return the number of triangles
uint32_t getNbTriangles() const;
/// Return the vertices stride (number of bytes)
int32_t getVerticesStride() const;
/// Return the indices stride (number of bytes)
int32_t getIndicesStride() const;
/// Return the pointer to the start of the vertices array
unsigned char* getVerticesStart() const;
/// Return the pointer to the start of the indices array
unsigned char* getIndicesStart() const;
/**
* @brief Constructor
* @param[in] _vertices List Of all vertices
* @param[in] _triangles List of all linked points
*/
TriangleVertexArray(const std::vector<vec3>& _vertices,
std::vector<size_t> _triangles);
/**
* @brief Get the number of vertices
* @return Number of vertices
*/
size_t getNbVertices() const;
/**
* @brief Get the number of triangle
* @return Number of triangles
*/
size_t getNbTriangles() const;
/**
* @brief Get The table of the vertices
* @return reference on the vertices
*/
const std::vector<vec3>& getVertices() const;
/**
* @brief Get The table of the triangle indice
* @return reference on the triangle indice
*/
const std::vector<size_t>& getIndices() const;
/**
* @brief Get a triangle at the specific ID
* @return Buffer of 3 points
*/
ephysics::Triangle getTriangle(size_t _id) const;
};

View File

@ -4,153 +4,80 @@
* @license BSD 3 clauses (see license file)
*/
// Libraries
#include <ephysics/collision/shapes/ConcaveMeshShape.hpp>
#include <ephysics/debug.hpp>
#include <iostream>
using namespace ephysics;
// Constructor
ConcaveMeshShape::ConcaveMeshShape(TriangleMesh* triangleMesh):
ConcaveMeshShape::ConcaveMeshShape(TriangleMesh* _triangleMesh):
ConcaveShape(CONCAVE_MESH) {
m_triangleMesh = triangleMesh;
m_triangleMesh = _triangleMesh;
m_raycastTestType = FRONT;
// Insert all the triangles int32_to the dynamic AABB tree
initBVHTree();
}
// Destructor
ConcaveMeshShape::~ConcaveMeshShape() {
}
// Insert all the triangles int32_to the dynamic AABB tree
void ConcaveMeshShape::initBVHTree() {
// TODO : Try to randomly add the triangles int32_to the tree to obtain a better tree
// TODO : Try to randomly add the triangles into the tree to obtain a better tree
// For each sub-part of the mesh
for (uint32_t subPart=0; subPart<m_triangleMesh->getNbSubparts(); subPart++) {
// Get the triangle vertex array of the current sub-part
TriangleVertexArray* triangleVertexArray = m_triangleMesh->getSubpart(subPart);
TriangleVertexArray::VertexDataType vertexType = triangleVertexArray->getVertexDataType();
TriangleVertexArray::IndexDataType indexType = triangleVertexArray->getIndexDataType();
unsigned char* verticesStart = triangleVertexArray->getVerticesStart();
unsigned char* indicesStart = triangleVertexArray->getIndicesStart();
int32_t vertexStride = triangleVertexArray->getVerticesStride();
int32_t indexStride = triangleVertexArray->getIndicesStride();
// For each triangle of the concave mesh
for (uint32_t triangleIndex=0; triangleIndex<triangleVertexArray->getNbTriangles(); triangleIndex++) {
void* vertexIndexPointer = (indicesStart + triangleIndex * 3 * indexStride);
vec3 trianglePoints[3];
// For each vertex of the triangle
for (int32_t k=0; k < 3; k++) {
// Get the index of the current vertex in the triangle
int32_t vertexIndex = 0;
if (indexType == TriangleVertexArray::INDEX_INTEGER_TYPE) {
vertexIndex = ((uint32_t*)vertexIndexPointer)[k];
} else if (indexType == TriangleVertexArray::INDEX_SHORT_TYPE) {
vertexIndex = ((unsigned short*)vertexIndexPointer)[k];
} else {
assert(false);
}
// Get the vertices components of the triangle
if (vertexType == TriangleVertexArray::VERTEX_FLOAT_TYPE) {
const float* vertices = (float*)(verticesStart + vertexIndex * vertexStride);
trianglePoints[k][0] = float(vertices[0]) * m_scaling.x();
trianglePoints[k][1] = float(vertices[1]) * m_scaling.y();
trianglePoints[k][2] = float(vertices[2]) * m_scaling.z();
} else if (vertexType == TriangleVertexArray::VERTEX_DOUBLE_TYPE) {
const double* vertices = (double*)(verticesStart + vertexIndex * vertexStride);
trianglePoints[k][0] = float(vertices[0]) * m_scaling.x();
trianglePoints[k][1] = float(vertices[1]) * m_scaling.y();
trianglePoints[k][2] = float(vertices[2]) * m_scaling.z();
} else {
assert(false);
}
}
for (size_t iii=0; iii<triangleVertexArray->getNbTriangles(); ++iii) {
ephysics::Triangle trianglePoints = triangleVertexArray->getTriangle(iii);
vec3 trianglePoints2[3];
trianglePoints2[0] = trianglePoints[0];
trianglePoints2[1] = trianglePoints[1];
trianglePoints2[2] = trianglePoints[2];
// Create the AABB for the triangle
AABB aabb = AABB::createAABBForTriangle(trianglePoints);
AABB aabb = AABB::createAABBForTriangle(trianglePoints2);
aabb.inflate(m_triangleMargin, m_triangleMargin, m_triangleMargin);
// Add the AABB with the index of the triangle int32_to the dynamic AABB tree
m_dynamicAABBTree.addObject(aabb, subPart, triangleIndex);
m_dynamicAABBTree.addObject(aabb, subPart, iii);
}
}
}
// Return the three vertices coordinates (in the array outTriangleVertices) of a triangle
// given the start vertex index pointer of the triangle
void ConcaveMeshShape::getTriangleVerticesWithIndexPointer(int32_t subPart, int32_t triangleIndex, vec3* outTriangleVertices) const {
void ConcaveMeshShape::getTriangleVerticesWithIndexPointer(int32_t _subPart, int32_t _triangleIndex, vec3* _outTriangleVertices) const {
EPHY_ASSERT(_outTriangleVertices != nullptr, "Input check error");
// Get the triangle vertex array of the current sub-part
TriangleVertexArray* triangleVertexArray = m_triangleMesh->getSubpart(subPart);
TriangleVertexArray* triangleVertexArray = m_triangleMesh->getSubpart(_subPart);
if (triangleVertexArray == nullptr) {
std::cout << "get nullptr ..." << std::endl;
}
TriangleVertexArray::VertexDataType vertexType = triangleVertexArray->getVertexDataType();
TriangleVertexArray::IndexDataType indexType = triangleVertexArray->getIndexDataType();
unsigned char* verticesStart = triangleVertexArray->getVerticesStart();
unsigned char* indicesStart = triangleVertexArray->getIndicesStart();
int32_t vertexStride = triangleVertexArray->getVerticesStride();
int32_t indexStride = triangleVertexArray->getIndicesStride();
void* vertexIndexPointer = (indicesStart + triangleIndex * 3 * indexStride);
// For each vertex of the triangle
for (int32_t k=0; k < 3; k++) {
// Get the index of the current vertex in the triangle
int32_t vertexIndex = 0;
if (indexType == TriangleVertexArray::INDEX_INTEGER_TYPE) {
vertexIndex = ((uint32_t*)vertexIndexPointer)[k];
} else if (indexType == TriangleVertexArray::INDEX_SHORT_TYPE) {
vertexIndex = ((unsigned short*)vertexIndexPointer)[k];
} else {
std::cout << "wrong type of array : " << int32_t(indexType) << std::endl;
assert(false);
}
// Get the vertices components of the triangle
if (vertexType == TriangleVertexArray::VERTEX_FLOAT_TYPE) {
const float* vertices = (float*)(verticesStart + vertexIndex * vertexStride);
outTriangleVertices[k][0] = float(vertices[0]) * m_scaling.x();
outTriangleVertices[k][1] = float(vertices[1]) * m_scaling.y();
outTriangleVertices[k][2] = float(vertices[2]) * m_scaling.z();
} else if (vertexType == TriangleVertexArray::VERTEX_DOUBLE_TYPE) {
const double* vertices = (double*)(verticesStart + vertexIndex * vertexStride);
outTriangleVertices[k][0] = float(vertices[0]) * m_scaling.x();
outTriangleVertices[k][1] = float(vertices[1]) * m_scaling.y();
outTriangleVertices[k][2] = float(vertices[2]) * m_scaling.z();
} else {
assert(false);
}
}
ephysics::Triangle trianglePoints = triangleVertexArray->getTriangle(_triangleIndex);
_outTriangleVertices[0] = trianglePoints[0] * m_scaling;
_outTriangleVertices[1] = trianglePoints[1] * m_scaling;
_outTriangleVertices[2] = trianglePoints[2] * m_scaling;
}
// Use a callback method on all triangles of the concave shape inside a given AABB
void ConcaveMeshShape::testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const {
ConvexTriangleAABBOverlapCallback overlapCallback(callback, *this, m_dynamicAABBTree);
void ConcaveMeshShape::testAllTriangles(TriangleCallback& _callback, const AABB& _localAABB) const {
ConvexTriangleAABBOverlapCallback overlapCallback(_callback, *this, m_dynamicAABBTree);
// Ask the Dynamic AABB Tree to report all the triangles that are overlapping
// with the AABB of the convex shape.
m_dynamicAABBTree.reportAllShapesOverlappingWithAABB(localAABB, overlapCallback);
m_dynamicAABBTree.reportAllShapesOverlappingWithAABB(_localAABB, overlapCallback);
}
// Raycast method with feedback information
/// Note that only the first triangle hit by the ray in the mesh will be returned, even if
/// the ray hits many triangles.
bool ConcaveMeshShape::raycast(const Ray& ray, RaycastInfo& raycastInfo, ProxyShape* proxyShape) const {
bool ConcaveMeshShape::raycast(const Ray& _ray, RaycastInfo& _raycastInfo, ProxyShape* _proxyShape) const {
PROFILE("ConcaveMeshShape::raycast()");
// Create the callback object that will compute ray casting against triangles
ConcaveMeshRaycastCallback raycastCallback(m_dynamicAABBTree, *this, proxyShape, raycastInfo, ray);
ConcaveMeshRaycastCallback raycastCallback(m_dynamicAABBTree, *this, _proxyShape, _raycastInfo, _ray);
// Ask the Dynamic AABB Tree to report all AABB nodes that are hit by the ray.
// The raycastCallback object will then compute ray casting against the triangles
// in the hit AABBs.
m_dynamicAABBTree.raycast(ray, raycastCallback);
m_dynamicAABBTree.raycast(_ray, raycastCallback);
raycastCallback.raycastTriangles();
return raycastCallback.getIsHit();
}
// Collect all the AABB nodes that are hit by the ray in the Dynamic AABB Tree
float ConcaveMeshRaycastCallback::raycastBroadPhaseShape(int32_t nodeId, const Ray& ray) {
float ConcaveMeshRaycastCallback::raycastBroadPhaseShape(int32_t _nodeId, const Ray& _ray) {
// Add the id of the hit AABB node int32_to
m_hitAABBNodes.push_back(nodeId);
return ray.maxFraction;
m_hitAABBNodes.push_back(_nodeId);
return _ray.maxFraction;
}
// Raycast all collision shapes that have been collected
void ConcaveMeshRaycastCallback::raycastTriangles() {
std::vector<int32_t>::const_iterator it;
float smallestHitFraction = m_ray.maxFraction;
@ -183,46 +110,24 @@ void ConcaveMeshRaycastCallback::raycastTriangles() {
}
}
// Return the number of bytes used by the collision shape
size_t ConcaveMeshShape::getSizeInBytes() const {
return sizeof(ConcaveMeshShape);
}
// Return the local bounds of the shape in x, y and z directions.
// This method is used to compute the AABB of the box
/**
* @param min The minimum bounds of the shape in local-space coordinates
* @param max The maximum bounds of the shape in local-space coordinates
*/
void ConcaveMeshShape::getLocalBounds(vec3& min, vec3& max) const {
void ConcaveMeshShape::getLocalBounds(vec3& _min, vec3& _max) const {
// Get the AABB of the whole tree
AABB treeAABB = m_dynamicAABBTree.getRootAABB();
min = treeAABB.getMin();
max = treeAABB.getMax();
_min = treeAABB.getMin();
_max = treeAABB.getMax();
}
// Set the local scaling vector of the collision shape
void ConcaveMeshShape::setLocalScaling(const vec3& scaling) {
CollisionShape::setLocalScaling(scaling);
// Reset the Dynamic AABB Tree
void ConcaveMeshShape::setLocalScaling(const vec3& _scaling) {
CollisionShape::setLocalScaling(_scaling);
m_dynamicAABBTree.reset();
// Rebuild Dynamic AABB Tree here
initBVHTree();
}
// Return the local inertia tensor of the shape
/**
* @param[out] tensor The 3x3 inertia tensor matrix of the shape in local-space
* coordinates
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
void ConcaveMeshShape::computeLocalInertiaTensor(etk::Matrix3x3& _tensor, float _mass) const {
// Default inertia tensor
// Note that this is not very realistic for a concave triangle mesh.
// However, in most cases, it will only be used static bodies and therefore,
@ -232,8 +137,6 @@ void ConcaveMeshShape::computeLocalInertiaTensor(etk::Matrix3x3& _tensor, float
0, 0, _mass);
}
// Called when a overlapping node has been found during the call to
// DynamicAABBTree:reportAllShapesOverlappingWithAABB()
void ConvexTriangleAABBOverlapCallback::notifyOverlappingNode(int32_t _nodeId) {
// Get the node data (triangle index and mesh subpart index)

View File

@ -79,10 +79,8 @@ namespace ephysics {
ConcaveMeshShape(const ConcaveMeshShape& _shape) = delete;
/// Private assignment operator
ConcaveMeshShape& operator=(const ConcaveMeshShape& _shape) = delete;
/// Raycast method with feedback information
virtual bool raycast(const Ray& _ray, RaycastInfo& _raycastInfo, ProxyShape* _proxyShape) const;
/// Return the number of bytes used by the collision shape
virtual size_t getSizeInBytes() const;
virtual bool raycast(const Ray& _ray, RaycastInfo& _raycastInfo, ProxyShape* _proxyShape) const override;
virtual size_t getSizeInBytes() const override;
/// Insert all the triangles int32_to the dynamic AABB tree
void initBVHTree();
/// Return the three vertices coordinates (in the array outTriangleVertices) of a triangle
@ -93,16 +91,11 @@ namespace ephysics {
public:
/// Constructor
ConcaveMeshShape(TriangleMesh* triangleMesh);
/// Destructor
~ConcaveMeshShape();
/// Return the local bounds of the shape in x, y and z directions.
virtual void getLocalBounds(vec3& min, vec3& max) const;
/// Set the local scaling vector of the collision shape
virtual void setLocalScaling(const vec3& scaling);
/// Return the local inertia tensor of the collision shape
virtual void computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const;
virtual void getLocalBounds(vec3& min, vec3& max) const override;
virtual void setLocalScaling(const vec3& scaling) override;
virtual void computeLocalInertiaTensor(etk::Matrix3x3& tensor, float mass) const override;
/// Use a callback method on all triangles of the concave shape inside a given AABB
virtual void testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const;
virtual void testAllTriangles(TriangleCallback& callback, const AABB& localAABB) const override;
friend class ConvexTriangleAABBOverlapCallback;
friend class ConcaveMeshRaycastCallback;
};

View File

@ -38,76 +38,29 @@ ConvexMeshShape::ConvexMeshShape(const float* arrayVertices, uint32_t nbVertices
recalculateBounds();
}
// Constructor to initialize with a triangle mesh
/// This method creates an int32_ternal copy of the input vertices.
/**
* @param triangleVertexArray Array with the vertices and indices of the vertices and triangles of the mesh
* @param isEdgesInformationUsed True if you want to use edges information for collision detection (faster but requires more memory)
* @param margin Collision margin (in meters) around the collision shape
*/
ConvexMeshShape::ConvexMeshShape(TriangleVertexArray* triangleVertexArray, bool isEdgesInformationUsed, float margin)
: ConvexShape(CONVEX_MESH, margin), m_minBounds(0, 0, 0),
m_maxBounds(0, 0, 0), m_isEdgesInformationUsed(isEdgesInformationUsed) {
TriangleVertexArray::VertexDataType vertexType = triangleVertexArray->getVertexDataType();
TriangleVertexArray::IndexDataType indexType = triangleVertexArray->getIndexDataType();
unsigned char* verticesStart = triangleVertexArray->getVerticesStart();
unsigned char* indicesStart = triangleVertexArray->getIndicesStart();
int32_t vertexStride = triangleVertexArray->getVerticesStride();
int32_t indexStride = triangleVertexArray->getIndicesStride();
ConvexMeshShape::ConvexMeshShape(TriangleVertexArray* _triangleVertexArray, bool _isEdgesInformationUsed, float _margin):
ConvexShape(CONVEX_MESH, _margin),
m_minBounds(0, 0, 0),
m_maxBounds(0, 0, 0),
m_isEdgesInformationUsed(_isEdgesInformationUsed) {
// For each vertex of the mesh
for (uint32_t v = 0; v < triangleVertexArray->getNbVertices(); v++) {
// Get the vertices components of the triangle
if (vertexType == TriangleVertexArray::VERTEX_FLOAT_TYPE) {
const float* vertices = (float*)(verticesStart + v * vertexStride);
vec3 vertex(vertices[0], vertices[1], vertices[2] );
vertex = vertex * m_scaling;
m_vertices.push_back(vertex);
for (auto &it: _triangleVertexArray->getVertices()) {
m_vertices.push_back(it*m_scaling);
}
else if (vertexType == TriangleVertexArray::VERTEX_DOUBLE_TYPE) {
const double* vertices = (double*)(verticesStart + v * vertexStride);
vec3 vertex(vertices[0], vertices[1], vertices[2] );
vertex = vertex * m_scaling;
m_vertices.push_back(vertex);
}
}
// If we need to use the edges information of the mesh
if (m_isEdgesInformationUsed) {
// For each triangle of the mesh
for (uint32_t triangleIndex=0; triangleIndex<triangleVertexArray->getNbTriangles(); triangleIndex++) {
void* vertexIndexPointer = (indicesStart + triangleIndex * 3 * indexStride);
for (size_t iii=0; iii<_triangleVertexArray->getNbTriangles(); iii++) {
uint32_t vertexIndex[3] = {0, 0, 0};
// For each vertex of the triangle
for (int32_t k=0; k < 3; k++) {
// Get the index of the current vertex in the triangle
if (indexType == TriangleVertexArray::INDEX_INTEGER_TYPE) {
vertexIndex[k] = ((uint32_t*)vertexIndexPointer)[k];
}
else if (indexType == TriangleVertexArray::INDEX_SHORT_TYPE) {
vertexIndex[k] = ((unsigned short*)vertexIndexPointer)[k];
}
else {
assert(false);
}
}
vertexIndex[0] = _triangleVertexArray->getIndices()[iii*3];
vertexIndex[1] = _triangleVertexArray->getIndices()[iii*3+1];
vertexIndex[2] = _triangleVertexArray->getIndices()[iii*3+2];
// Add information about the edges
addEdge(vertexIndex[0], vertexIndex[1]);
addEdge(vertexIndex[0], vertexIndex[2]);
addEdge(vertexIndex[1], vertexIndex[2]);
}
}
m_numberVertices = m_vertices.size();
recalculateBounds();
}
@ -115,9 +68,12 @@ ConvexMeshShape::ConvexMeshShape(TriangleVertexArray* triangleVertexArray, bool
// Constructor.
/// If you use this constructor, you will need to set the vertices manually one by one using
/// the addVertex() method.
ConvexMeshShape::ConvexMeshShape(float margin)
: ConvexShape(CONVEX_MESH, margin), m_numberVertices(0), m_minBounds(0, 0, 0),
m_maxBounds(0, 0, 0), m_isEdgesInformationUsed(false) {
ConvexMeshShape::ConvexMeshShape(float _margin):
ConvexShape(CONVEX_MESH, _margin),
m_numberVertices(0),
m_minBounds(0, 0, 0),
m_maxBounds(0, 0, 0),
m_isEdgesInformationUsed(false) {
}
// Return a local support point in a given direction without the object margin.

View File

@ -56,7 +56,13 @@ namespace ephysics {
uint32_t _nbVertices,
int32_t _stride,
float _margin = OBJECT_MARGIN);
/// Constructor to initialize with a triangle vertex array
/**
* @brief Constructor to initialize with a triangle mesh
* This method creates an internal copy of the input vertices.
* @param _triangleVertexArray Array with the vertices and indices of the vertices and triangles of the mesh
* @param _isEdgesInformationUsed True if you want to use edges information for collision detection (faster but requires more memory)
* @param _margin Collision margin (in meters) around the collision shape
*/
ConvexMeshShape(TriangleVertexArray* _triangleVertexArray,
bool _isEdgesInformationUsed = true,
float _margin = OBJECT_MARGIN);

View File

@ -111,23 +111,27 @@ namespace ephysics {
ConstraintSolverData m_constraintSolverData; //!< Constraint solver data used to initialize and solve the constraints
public :
/// Constructor
ConstraintSolver(const std::map<RigidBody*, uint32_t>& mapBodyToVelocityIndex);
ConstraintSolver(const std::map<RigidBody*, uint32_t>& _mapBodyToVelocityIndex);
/// Initialize the constraint solver for a given island
void initializeForIsland(float dt, Island* island);
void initializeForIsland(float _dt, Island* _island);
/// Solve the constraints
void solveVelocityConstraints(Island* island);
void solveVelocityConstraints(Island* _island);
/// Solve the position constraints
void solvePositionConstraints(Island* island);
void solvePositionConstraints(Island* _island);
/// Return true if the Non-Linear-Gauss-Seidel position correction technique is active
bool getIsNonLinearGaussSeidelPositionCorrectionActive() const;
bool getIsNonLinearGaussSeidelPositionCorrectionActive() const {
return m_isWarmStartingActive;
}
/// Enable/Disable the Non-Linear-Gauss-Seidel position correction technique.
void setIsNonLinearGaussSeidelPositionCorrectionActive(bool isActive);
void setIsNonLinearGaussSeidelPositionCorrectionActive(bool _isActive) {
m_isWarmStartingActive = _isActive;
}
/// Set the constrained velocities arrays
void setConstrainedVelocitiesArrays(vec3* constrainedLinearVelocities,
vec3* constrainedAngularVelocities);
void setConstrainedVelocitiesArrays(vec3* _constrainedLinearVelocities,
vec3* _constrainedAngularVelocities);
/// Set the constrained positions/orientations arrays
void setConstrainedPositionsArrays(vec3* constrainedPositions,
etk::Quaternion* constrainedOrientations);
void setConstrainedPositionsArrays(vec3* _constrainedPositions,
etk::Quaternion* _constrainedOrientations);
};
}