audio-river/test/testEchoDelay.h

435 lines
17 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2015, Edouard DUPIN, all right reserved
* @license APACHE v2.0 (see license file)
*/
#ifndef __RIVER_TEST_ECHO_DELAY_H__
#define __RIVER_TEST_ECHO_DELAY_H__
#include <audio/river/debug.h>
#undef __class__
#define __class__ "test_echo_delay"
namespace river_test_echo_delay {
class TestClass {
private:
std11::shared_ptr<audio::river::Manager> m_manager;
std11::shared_ptr<audio::river::Interface> m_interfaceOut;
std11::shared_ptr<audio::river::Interface> m_interfaceIn;
std11::shared_ptr<audio::river::Interface> m_interfaceFB;
double m_phase;
double m_freq;
int32_t m_nextSampleCount;
std11::chrono::milliseconds m_delayBetweenEvent;
std11::chrono::system_clock::time_point m_nextTick;
std11::chrono::system_clock::time_point m_currentTick;
int32_t m_stateFB;
int32_t m_stateMic;
std::vector<uint64_t> m_delayListMic;
bool m_estimateVolumeInput;
int16_t m_volumeInputMax;
int16_t m_volumeInputMin;
float m_gain;
public:
TestClass(std11::shared_ptr<audio::river::Manager> _manager) :
m_manager(_manager),
m_phase(0),
m_freq(400),
m_nextSampleCount(0),
m_delayBetweenEvent(400),
m_stateFB(3),
m_stateMic(0),
m_estimateVolumeInput(true),
m_gain(-40) {
//Set stereo output:
std::vector<audio::channel> channelMap;
m_interfaceOut = m_manager->createOutput(48000,
channelMap,
audio::format_int16,
"speaker");
if(m_interfaceOut == nullptr) {
APPL_ERROR("nullptr interface");
return;
}
// set callback mode ...
m_interfaceOut->setOutputCallback(std11::bind(&TestClass::onDataNeeded,
this,
std11::placeholders::_1,
std11::placeholders::_2,
std11::placeholders::_3,
std11::placeholders::_4,
std11::placeholders::_5,
std11::placeholders::_6));
m_interfaceOut->addVolumeGroup("FLOW");
m_interfaceOut->setParameter("volume", "FLOW", etk::to_string(m_gain) + "dB");
m_interfaceIn = m_manager->createInput(48000,
channelMap,
audio::format_int16,
"microphone");
if(m_interfaceIn == nullptr) {
APPL_ERROR("nullptr interface");
return;
}
// set callback mode ...
m_interfaceIn->setInputCallback(std11::bind(&TestClass::onDataReceived,
this,
std11::placeholders::_1,
std11::placeholders::_2,
std11::placeholders::_3,
std11::placeholders::_4,
std11::placeholders::_5,
std11::placeholders::_6));
m_interfaceFB = m_manager->createFeedback(48000,
channelMap,
audio::format_int16,
"speaker");
if(m_interfaceFB == nullptr) {
APPL_ERROR("nullptr interface");
return;
}
// set callback mode ...
m_interfaceFB->setInputCallback(std11::bind(&TestClass::onDataReceivedFeedBack,
this,
std11::placeholders::_1,
std11::placeholders::_2,
std11::placeholders::_3,
std11::placeholders::_4,
std11::placeholders::_5,
std11::placeholders::_6));
m_manager->generateDotAll("activeProcess.dot");
}
void onDataNeeded(void* _data,
const std11::chrono::system_clock::time_point& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const std::vector<audio::channel>& _map) {
int16_t* data = static_cast<int16_t*>(_data);
double baseCycle = 2.0*M_PI/(double)48000 * m_freq;
if (m_estimateVolumeInput == true) {
for (int32_t iii=0; iii<_nbChunk; iii++) {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = sin(m_phase) * 30000;
}
m_phase += baseCycle;
if (m_phase >= 2*M_PI) {
m_phase -= 2*M_PI;
}
}
} else {
if (_time == std11::chrono::system_clock::time_point()) {
for (int32_t iii=0; iii<_nbChunk; iii++) {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = 0;
}
}
return;
}
if (m_nextTick == std11::chrono::system_clock::time_point()) {
m_nextTick = _time + m_delayBetweenEvent;
m_nextSampleCount = m_delayBetweenEvent.count()*int64_t(_frequency)/1000;
m_phase = -1;
}
//APPL_INFO("sample : " << m_nextSampleCount);
for (int32_t iii=0; iii<_nbChunk; iii++) {
if (m_nextSampleCount > 0) {
m_nextSampleCount--;
} else {
m_phase = 0;
m_nextSampleCount = m_delayBetweenEvent.count()*int64_t(_frequency)/1000;
m_currentTick = m_nextTick;
m_nextTick += m_delayBetweenEvent;
}
if (m_phase >= 0) {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = sin(m_phase) * 30000;
}
double newPhase = m_phase+baseCycle;
if ( m_phase < M_PI
&& newPhase >= M_PI) {
// the zero crossing position :
m_currentTick = getInterpolateTime(_time, iii, sin(m_phase) * 30000, sin(newPhase) * 30000, _frequency);
// start detection ...
m_stateFB = 0;
m_stateMic = 0;
APPL_WARNING("Time Pulse zero crossing: " << m_currentTick << " id=" << iii);
}
m_phase = newPhase;
if (m_phase >= 2*M_PI) {
m_phase = -1;
//m_freq += 50.0;
if (m_freq>20000.0) {
m_freq = 400.0;
}
}
} else {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = 0;
}
}
}
}
}
std11::chrono::system_clock::time_point getInterpolateTime(std11::chrono::system_clock::time_point _time, int32_t _pos, int16_t _val1, int16_t _val2, uint32_t _frequency) {
if (_val1 == 0) {
return _time + std11::chrono::nanoseconds(int64_t(_pos)*1000000000LL/int64_t(_frequency));
} else if (_val2 == 0) {
return _time + std11::chrono::nanoseconds(int64_t(_pos+1)*1000000000LL/int64_t(_frequency));
}
double xxx = double(-_val1) / double(_val2 - _val1);
APPL_VERBOSE("deltaPos:" << xxx);
return _time + std11::chrono::nanoseconds(int64_t((double(_pos)+xxx)*1000000000.0)/int64_t(_frequency));
}
void onDataReceivedFeedBack(const void* _data,
const std11::chrono::system_clock::time_point& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const std::vector<audio::channel>& _map) {
if (_format != audio::format_int16) {
APPL_ERROR("call wrong type ... (need int16_t)");
}
RIVER_SAVE_FILE_MACRO(int16_t, "REC_FeedBack.raw", _data, _nbChunk*_map.size());
if (m_estimateVolumeInput == true) {
// nothing to do ...
} else {
const int16_t* data = static_cast<const int16_t*>(_data);
// Detect Zero crossing after a max/min ...
for (size_t iii=0; iii<_nbChunk; ++iii) {
//for (size_t jjj=0; jjj<_map.size(); ++jjj) {
size_t jjj=0; {
if (m_stateFB == 0) {
if (data[iii*_map.size() + jjj] > INT16_MAX/5) {
m_stateFB = 1;
APPL_VERBOSE("FB: detect Normal " << iii);
} else if (data[iii*_map.size() + jjj] < -INT16_MAX/5) {
m_stateFB = 2;
APPL_VERBOSE("FB: detect inverse " << iii);
}
} else if (m_stateFB == 1) {
// normale phase
if (data[iii*_map.size() + jjj] <= 0) {
// detect inversion of signe ...
m_stateFB = 3;
std11::chrono::system_clock::time_point time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
APPL_VERBOSE("FB: 1 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
APPL_VERBOSE("FB: 1 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
APPL_WARNING("FB: 1 time detected: " << time << " delay = " << float((time-m_currentTick).count())/1000.0f << "µs");
}
} else if (m_stateFB == 2) {
// inverse phase
if (data[iii*_map.size() + jjj] >= 0) {
// detect inversion of signe ...
m_stateFB = 3;
std11::chrono::system_clock::time_point time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
APPL_VERBOSE("FB: 2 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
APPL_VERBOSE("FB: 2 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
APPL_WARNING("FB: 2 time detected: " << time << " delay = " << float((time-m_currentTick).count())/1000.0f << "µs");
}
} else if (m_stateFB == 3) {
// TODO : Detect the pic ...
// do nothing ...
}
}
}
}
}
void onDataReceived(const void* _data,
const std11::chrono::system_clock::time_point& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const std::vector<audio::channel>& _map) {
if (_format != audio::format_int16) {
APPL_ERROR("call wrong type ... (need int16_t)");
}
RIVER_SAVE_FILE_MACRO(int16_t, "REC_Microphone.raw", _data, _nbChunk*_map.size());
const int16_t* data = static_cast<const int16_t*>(_data);
if (m_estimateVolumeInput == true) {
m_stateMic ++;
const int16_t* data = static_cast<const int16_t*>(_data);
if (m_stateMic <= 40) {
for (size_t iii=0; iii<_nbChunk*_map.size(); ++iii) {
//APPL_INFO("value=" << data[iii]);
m_volumeInputMax = std::max(int16_t(data[iii]), m_volumeInputMax);
m_volumeInputMin = std::min(int16_t(data[iii]), m_volumeInputMin);
}
if (m_stateMic == 40) {
m_volumeInputMax *= 2;
m_volumeInputMin *= 2;
}
} else if (m_stateMic <= 10000) {
int16_t valueMax = 0;
int16_t valueMin = 0;
for (size_t iii=0; iii<_nbChunk*_map.size(); ++iii) {
//APPL_INFO("value=" << data[iii]);
valueMax = std::max(int16_t(data[iii]), valueMax);
valueMin = std::min(int16_t(data[iii]), valueMin);
}
if ( valueMax > m_volumeInputMax
&& valueMin < m_volumeInputMin
&& ( m_gain == 0.0
|| ( valueMax > INT16_MAX*2/3
&& valueMin < INT16_MIN*2/3
)
)
) {
m_gain += 3.0f;
m_gain = std::min(m_gain, 0.0f);
m_interfaceOut->setParameter("volume", "FLOW", etk::to_string(m_gain) + "dB");
APPL_INFO("Set detection volume : " << m_gain << " m_stateMic=" << m_stateMic);
m_stateMic = 3;
m_phase = -1;
m_estimateVolumeInput = false;
return;
} else {
if (m_stateMic%2 == 0) {
if (m_gain == 0.0f) {
APPL_CRITICAL("Can not find the basicVolume ...");
}
// just update volume
m_gain += 1.0f;
m_gain = std::min(m_gain, 0.0f);
m_interfaceOut->setParameter("volume", "FLOW", etk::to_string(m_gain) + "dB");
}
}
}
} else {
// Detect Zero crossing after a max/min ...
for (size_t iii=0; iii<_nbChunk; ++iii) {
//for (size_t jjj=0; jjj<_map.size(); ++jjj) {
size_t jjj=0; {
if (m_stateMic == 0) {
if (data[iii*_map.size() + jjj] > m_volumeInputMax) {
m_stateMic = 1;
APPL_VERBOSE("Mic: detect Normal " << iii);
} else if (data[iii*_map.size() + jjj] < m_volumeInputMin) {
m_stateMic = 2;
APPL_VERBOSE("Mic: detect inverse " << iii);
}
} else if (m_stateMic == 1) {
// normale phase
if (data[iii*_map.size() + jjj] <= 0) {
// detect inversion of signe ...
m_stateMic = 3;
std11::chrono::system_clock::time_point time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
APPL_VERBOSE("MIC: 1 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
APPL_VERBOSE("MIC: 1 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
std11::chrono::nanoseconds delay = time-m_currentTick;
int32_t sampleDalay = (delay.count()*_frequency)/1000000000LL;
APPL_WARNING("MIC: 1 time detected: " << time << " delay = " << float(delay.count())/1000.0f << "µs samples=" << sampleDalay);
m_delayListMic.push_back(delay.count());
}
} else if (m_stateMic == 2) {
// inverse phase
if (data[iii*_map.size() + jjj] >= 0) {
// detect inversion of signe ...
m_stateMic = 3;
std11::chrono::system_clock::time_point time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
APPL_VERBOSE("MIC: 2 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
APPL_VERBOSE("MIC: 2 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
std11::chrono::nanoseconds delay = time-m_currentTick;
int32_t sampleDalay = (delay.count()*_frequency)/1000000000LL;
APPL_WARNING("MIC: 2 time detected: " << time << " delay = " << float(delay.count())/1000.0f << "µs samples=" << sampleDalay);
m_delayListMic.push_back(delay.count());
}
} else if (m_stateMic == 3) {
// TODO : Detect the pic ...
// do nothing ...
}
}
}
}
}
void run() {
if(m_interfaceIn == nullptr) {
APPL_ERROR("nullptr interface");
return;
}
if(m_interfaceOut == nullptr) {
APPL_ERROR("nullptr interface");
return;
}
if(m_interfaceFB == nullptr) {
APPL_ERROR("nullptr interface");
return;
}
m_interfaceOut->start();
m_interfaceIn->start();
//m_interfaceFB->start();
while (m_estimateVolumeInput == true) {
usleep(10000);
}
usleep(10000000);
//m_interfaceFB->stop();
m_interfaceIn->stop();
m_interfaceOut->stop();
int64_t delayAverage = 0;
if (m_delayListMic.size() > 0) {
for (size_t iii=0; iii<m_delayListMic.size(); ++iii) {
delayAverage += m_delayListMic[iii];
}
delayAverage /= m_delayListMic.size();
}
int32_t sampleDalay = (delayAverage*48000)/1000000000LL;
APPL_ERROR("Average delay in ns : " << delayAverage << " nbSample=" << sampleDalay);
}
};
static const std::string configurationRiver =
"{\n"
" speaker:{\n"
" io:'output',\n"
" map-on:{\n"
" interface:'auto',\n"
" name:'default',\n"
//" name:'hw:0,0',\n"
" timestamp-mode:'trigered',\n"
" },\n"
//" group:'groupSynchro',\n"
" frequency:0,\n"
" channel-map:['front-left', 'front-right'],\n"
" type:'auto',\n"
" nb-chunk:1024,\n"
" },\n"
" microphone:{\n"
" io:'input',\n"
" map-on:{\n"
" interface:'auto',\n"
" name:'default',\n"
//" name:'hw:0,0',\n"
" timestamp-mode:'trigered',\n"
" },\n"
//" group:'groupSynchro',\n"
" frequency:0,\n"
" channel-map:['front-left', 'front-right'],\n"
" type:'auto',\n"
" nb-chunk:1024\n"
" }\n"
"}\n";
TEST(TestTime, testDelay) {
audio::river::initString(configurationRiver);
std11::shared_ptr<audio::river::Manager> manager;
manager = audio::river::Manager::create("testApplication");
std11::shared_ptr<TestClass> process = std11::make_shared<TestClass>(manager);
process->run();
process.reset();
usleep(500000);
audio::river::unInit();
}
};
#undef __class__
#define __class__ nullptr
#endif