audio-river/test/testEchoDelay.cpp

437 lines
16 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2015, Edouard DUPIN, all right reserved
* @license MPL v2.0 (see license file)
*/
#include <test-debug/debug.hpp>
#include <audio/river/river.hpp>
#include <audio/river/Manager.hpp>
#include <audio/river/Interface.hpp>
#include <etest/etest.hpp>
#include <etk/etk.hpp>
extern "C" {
#include <math.h>
}
#include <ethread/Thread.hpp>
#include <ethread/tools.hpp>
namespace river_test_echo_delay {
class TestClass {
private:
ememory::SharedPtr<audio::river::Manager> m_manager;
ememory::SharedPtr<audio::river::Interface> m_interfaceOut;
ememory::SharedPtr<audio::river::Interface> m_interfaceIn;
ememory::SharedPtr<audio::river::Interface> m_interfaceFB;
double m_phase;
double m_freq;
int32_t m_nextSampleCount;
echrono::milliseconds m_delayBetweenEvent;
audio::Time m_nextTick;
audio::Time m_currentTick;
int32_t m_stateFB;
int32_t m_stateMic;
etk::Vector<uint64_t> m_delayListMic;
bool m_estimateVolumeInput;
int16_t m_volumeInputMax;
int16_t m_volumeInputMin;
float m_gain;
public:
TestClass(ememory::SharedPtr<audio::river::Manager> _manager) :
m_manager(_manager),
m_phase(0),
m_freq(400),
m_nextSampleCount(0),
m_delayBetweenEvent(400),
m_stateFB(3),
m_stateMic(0),
m_estimateVolumeInput(true),
m_gain(-40) {
//Set stereo output:
etk::Vector<audio::channel> channelMap;
m_interfaceOut = m_manager->createOutput(48000,
channelMap,
audio::format_int16,
"speaker");
if(m_interfaceOut == null) {
TEST_ERROR("null interface");
return;
}
// set callback mode ...
m_interfaceOut->setOutputCallback([=](void* _data,
const audio::Time& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const etk::Vector<audio::channel>& _map) {
onDataNeeded(_data, _time, _nbChunk, _format, _frequency, _map);
});
m_interfaceOut->addVolumeGroup("FLOW");
m_interfaceOut->setParameter("volume", "FLOW", etk::toString(m_gain) + "dB");
m_interfaceIn = m_manager->createInput(48000,
channelMap,
audio::format_int16,
"microphone");
if(m_interfaceIn == null) {
TEST_ERROR("null interface");
return;
}
// set callback mode ...
m_interfaceIn->setInputCallback([=](const void* _data,
const audio::Time& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const etk::Vector<audio::channel>& _map) {
onDataReceived(_data, _time, _nbChunk, _format, _frequency, _map);
});
m_interfaceFB = m_manager->createFeedback(48000,
channelMap,
audio::format_int16,
"speaker");
if(m_interfaceFB == null) {
TEST_ERROR("null interface");
return;
}
// set callback mode ...
m_interfaceFB->setInputCallback([=](const void* _data,
const audio::Time& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const etk::Vector<audio::channel>& _map) {
onDataReceivedFeedBack(_data, _time, _nbChunk, _format, _frequency, _map);
});
m_manager->generateDotAll("activeProcess.dot");
}
void onDataNeeded(void* _data,
const audio::Time& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const etk::Vector<audio::channel>& _map) {
int16_t* data = static_cast<int16_t*>(_data);
double baseCycle = 2.0*M_PI/(double)48000 * m_freq;
if (m_estimateVolumeInput == true) {
for (int32_t iii=0; iii<_nbChunk; iii++) {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = sin(m_phase) * 30000;
}
m_phase += baseCycle;
if (m_phase >= 2*M_PI) {
m_phase -= 2*M_PI;
}
}
} else {
if (_time == audio::Time()) {
for (int32_t iii=0; iii<_nbChunk; iii++) {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = 0;
}
}
return;
}
if (m_nextTick == audio::Time()) {
m_nextTick = _time + m_delayBetweenEvent;
m_nextSampleCount = m_delayBetweenEvent.get()*int64_t(_frequency)/1000;
m_phase = -1;
}
//TEST_INFO("sample : " << m_nextSampleCount);
for (int32_t iii=0; iii<_nbChunk; iii++) {
if (m_nextSampleCount > 0) {
m_nextSampleCount--;
} else {
m_phase = 0;
m_nextSampleCount = m_delayBetweenEvent.get()*int64_t(_frequency)/1000;
m_currentTick = m_nextTick;
m_nextTick += m_delayBetweenEvent;
}
if (m_phase >= 0) {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = sin(m_phase) * 30000;
}
double newPhase = m_phase+baseCycle;
if ( m_phase < M_PI
&& newPhase >= M_PI) {
// the zero crossing position :
m_currentTick = getInterpolateTime(_time, iii, sin(m_phase) * 30000, sin(newPhase) * 30000, _frequency);
// start detection ...
m_stateFB = 0;
m_stateMic = 0;
TEST_WARNING("Time Pulse zero crossing: " << m_currentTick << " id=" << iii);
}
m_phase = newPhase;
if (m_phase >= 2*M_PI) {
m_phase = -1;
//m_freq += 50.0;
if (m_freq>20000.0) {
m_freq = 400.0;
}
}
} else {
for (int32_t jjj=0; jjj<_map.size(); jjj++) {
data[_map.size()*iii+jjj] = 0;
}
}
}
}
}
audio::Time getInterpolateTime(audio::Time _time, int32_t _pos, int16_t _val1, int16_t _val2, uint32_t _frequency) {
if (_val1 == 0) {
return _time + audio::Duration(0, int64_t(_pos)*1000000000LL/int64_t(_frequency));
} else if (_val2 == 0) {
return _time + audio::Duration(0, int64_t(_pos+1)*1000000000LL/int64_t(_frequency));
}
double xxx = double(-_val1) / double(_val2 - _val1);
TEST_VERBOSE("deltaPos:" << xxx);
return _time + audio::Duration(0, int64_t((double(_pos)+xxx)*1000000000.0)/int64_t(_frequency));
}
void onDataReceivedFeedBack(const void* _data,
const audio::Time& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const etk::Vector<audio::channel>& _map) {
if (_format != audio::format_int16) {
TEST_ERROR("call wrong type ... (need int16_t)");
}
//TEST_SAVE_FILE_MACRO(int16_t, "REC_FeedBack.raw", _data, _nbChunk*_map.size());
if (m_estimateVolumeInput == true) {
// nothing to do ...
} else {
const int16_t* data = static_cast<const int16_t*>(_data);
// Detect Zero crossing after a max/min ...
for (size_t iii=0; iii<_nbChunk; ++iii) {
//for (size_t jjj=0; jjj<_map.size(); ++jjj) {
size_t jjj=0; {
if (m_stateFB == 0) {
if (data[iii*_map.size() + jjj] > INT16_MAX/5) {
m_stateFB = 1;
TEST_VERBOSE("FB: detect Normal " << iii);
} else if (data[iii*_map.size() + jjj] < -INT16_MAX/5) {
m_stateFB = 2;
TEST_VERBOSE("FB: detect inverse " << iii);
}
} else if (m_stateFB == 1) {
// normale phase
if (data[iii*_map.size() + jjj] <= 0) {
// detect inversion of signe ...
m_stateFB = 3;
audio::Time time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
TEST_VERBOSE("FB: 1 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
TEST_VERBOSE("FB: 1 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
TEST_WARNING("FB: 1 time detected: " << time << " delay = " << float((time-m_currentTick).get())/1000.0f << "µs");
}
} else if (m_stateFB == 2) {
// inverse phase
if (data[iii*_map.size() + jjj] >= 0) {
// detect inversion of signe ...
m_stateFB = 3;
audio::Time time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
TEST_VERBOSE("FB: 2 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
TEST_VERBOSE("FB: 2 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
TEST_WARNING("FB: 2 time detected: " << time << " delay = " << float((time-m_currentTick).get())/1000.0f << "µs");
}
} else if (m_stateFB == 3) {
// TODO : Detect the pic ...
// do nothing ...
}
}
}
}
}
void onDataReceived(const void* _data,
const audio::Time& _time,
size_t _nbChunk,
enum audio::format _format,
uint32_t _frequency,
const etk::Vector<audio::channel>& _map) {
if (_format != audio::format_int16) {
TEST_ERROR("call wrong type ... (need int16_t)");
}
//TEST_SAVE_FILE_MACRO(int16_t, "REC_Microphone.raw", _data, _nbChunk*_map.size());
const int16_t* data = static_cast<const int16_t*>(_data);
if (m_estimateVolumeInput == true) {
m_stateMic ++;
const int16_t* data = static_cast<const int16_t*>(_data);
if (m_stateMic <= 40) {
for (size_t iii=0; iii<_nbChunk*_map.size(); ++iii) {
//TEST_INFO("value=" << data[iii]);
m_volumeInputMax = etk::max(int16_t(data[iii]), m_volumeInputMax);
m_volumeInputMin = etk::min(int16_t(data[iii]), m_volumeInputMin);
}
if (m_stateMic == 40) {
m_volumeInputMax *= 2;
m_volumeInputMin *= 2;
}
} else if (m_stateMic <= 10000) {
int16_t valueMax = 0;
int16_t valueMin = 0;
for (size_t iii=0; iii<_nbChunk*_map.size(); ++iii) {
//TEST_INFO("value=" << data[iii]);
valueMax = etk::max(int16_t(data[iii]), valueMax);
valueMin = etk::min(int16_t(data[iii]), valueMin);
}
if ( valueMax > m_volumeInputMax
&& valueMin < m_volumeInputMin
&& ( m_gain == 0.0
|| ( valueMax > INT16_MAX*2/3
&& valueMin < INT16_MIN*2/3
)
)
) {
m_gain += 3.0f;
m_gain = etk::min(m_gain, 0.0f);
m_interfaceOut->setParameter("volume", "FLOW", etk::toString(m_gain) + "dB");
TEST_INFO("Set detection volume : " << m_gain << " m_stateMic=" << m_stateMic);
m_stateMic = 3;
m_phase = -1;
m_estimateVolumeInput = false;
return;
} else {
if (m_stateMic%2 == 0) {
if (m_gain == 0.0f) {
TEST_CRITICAL("Can not find the basicVolume ...");
}
// just update volume
m_gain += 1.0f;
m_gain = etk::min(m_gain, 0.0f);
m_interfaceOut->setParameter("volume", "FLOW", etk::toString(m_gain) + "dB");
}
}
}
} else {
// Detect Zero crossing after a max/min ...
for (size_t iii=0; iii<_nbChunk; ++iii) {
//for (size_t jjj=0; jjj<_map.size(); ++jjj) {
size_t jjj=0; {
if (m_stateMic == 0) {
if (data[iii*_map.size() + jjj] > m_volumeInputMax) {
m_stateMic = 1;
TEST_VERBOSE("Mic: detect Normal " << iii);
} else if (data[iii*_map.size() + jjj] < m_volumeInputMin) {
m_stateMic = 2;
TEST_VERBOSE("Mic: detect inverse " << iii);
}
} else if (m_stateMic == 1) {
// normale phase
if (data[iii*_map.size() + jjj] <= 0) {
// detect inversion of signe ...
m_stateMic = 3;
audio::Time time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
TEST_VERBOSE("MIC: 1 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
TEST_VERBOSE("MIC: 1 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
audio::Duration delay = time-m_currentTick;
int32_t sampleDalay = (delay.get()*_frequency)/1000000000LL;
TEST_WARNING("MIC: 1 time detected: " << time << " delay = " << float(delay.get())/1000.0f << "µs samples=" << sampleDalay);
m_delayListMic.pushBack(delay.get());
}
} else if (m_stateMic == 2) {
// inverse phase
if (data[iii*_map.size() + jjj] >= 0) {
// detect inversion of signe ...
m_stateMic = 3;
audio::Time time = getInterpolateTime(_time, iii-1, data[(iii-1)*_map.size() + jjj], data[iii*_map.size() + jjj], _frequency);
TEST_VERBOSE("MIC: 2 position -1: " << iii-1 << " " << data[(iii-1)*_map.size() + jjj]);
TEST_VERBOSE("MIC: 2 position 0: " << iii << " " << data[iii*_map.size() + jjj]);
audio::Duration delay = time-m_currentTick;
int32_t sampleDalay = (delay.get()*_frequency)/1000000000LL;
TEST_WARNING("MIC: 2 time detected: " << time << " delay = " << float(delay.get())/1000.0f << "µs samples=" << sampleDalay);
m_delayListMic.pushBack(delay.get());
}
} else if (m_stateMic == 3) {
// TODO : Detect the pic ...
// do nothing ...
}
}
}
}
}
void run() {
if(m_interfaceIn == null) {
TEST_ERROR("null interface");
return;
}
if(m_interfaceOut == null) {
TEST_ERROR("null interface");
return;
}
if(m_interfaceFB == null) {
TEST_ERROR("null interface");
return;
}
m_interfaceOut->start();
m_interfaceIn->start();
//m_interfaceFB->start();
while (m_estimateVolumeInput == true) {
ethread::sleepMilliSeconds((10));
}
ethread::sleepMilliSeconds(1000*(10));
//m_interfaceFB->stop();
m_interfaceIn->stop();
m_interfaceOut->stop();
int64_t delayAverage = 0;
if (m_delayListMic.size() > 0) {
for (size_t iii=0; iii<m_delayListMic.size(); ++iii) {
delayAverage += m_delayListMic[iii];
}
delayAverage /= m_delayListMic.size();
}
int32_t sampleDalay = (delayAverage*48000)/1000000000LL;
TEST_ERROR("Average delay in ns : " << delayAverage << " nbSample=" << sampleDalay);
}
};
static const etk::String configurationRiver =
"{\n"
" speaker:{\n"
" io:'output',\n"
" map-on:{\n"
" interface:'auto',\n"
" name:'default',\n"
//" name:'hw:0,0',\n"
" timestamp-mode:'trigered',\n"
" },\n"
//" group:'groupSynchro',\n"
" frequency:0,\n"
" channel-map:['front-left', 'front-right'],\n"
" type:'auto',\n"
" nb-chunk:1024,\n"
" },\n"
" microphone:{\n"
" io:'input',\n"
" map-on:{\n"
" interface:'auto',\n"
" name:'default',\n"
//" name:'hw:0,0',\n"
" timestamp-mode:'trigered',\n"
" },\n"
//" group:'groupSynchro',\n"
" frequency:0,\n"
" channel-map:['front-left', 'front-right'],\n"
" type:'auto',\n"
" nb-chunk:1024\n"
" }\n"
"}\n";
TEST(TestTime, testDelay) {
audio::river::initString(configurationRiver);
ememory::SharedPtr<audio::river::Manager> manager;
manager = audio::river::Manager::create("testApplication");
ememory::SharedPtr<TestClass> process = ememory::makeShared<TestClass>(manager);
process->run();
process.reset();
ethread::sleepMilliSeconds((500));
audio::river::unInit();
}
};