audio-river/river/CircularBuffer.cpp

280 lines
9.0 KiB
C++
Raw Normal View History

2015-02-17 21:08:15 +01:00
/** @file
* @author Edouard DUPIN
* @copyright 2011, Edouard DUPIN, all right reserved
* @license APACHE v2.0 (see license file)
*/
#include <river/CircularBuffer.h>
#include <river/debug.h>
river::CircularBuffer::CircularBuffer(const river::CircularBuffer& _obj) :
m_data(),
m_write(nullptr),
m_read(nullptr),
m_timeRead(),
m_capacity(0),
m_sizeChunk(0),
m_size(0) {
RIVER_CRITICAL("error");
};
/**
* @brief copy operator.
*/
river::CircularBuffer& river::CircularBuffer::operator=(const river::CircularBuffer& _obj) {
RIVER_CRITICAL("error");
return *this;
};
river::CircularBuffer::CircularBuffer() :
m_data(),
m_write(nullptr),
m_read(nullptr),
m_timeRead(),
m_capacity(0),
m_sizeChunk(0),
m_size(0) {
// nothing to do ...
}
river::CircularBuffer::~CircularBuffer() {
m_data.clear();
m_read = nullptr;
m_write = nullptr;
}
void river::CircularBuffer::setCapacity(size_t _capacity, size_t _chunkSize, uint32_t _frequency) {
if ( _chunkSize == m_sizeChunk
&& _capacity == m_capacity) {
clear();
return;
}
RIVER_DEBUG("buffer setCapacity(" << _capacity << "," << _chunkSize << ")");
m_data.clear();
m_write = nullptr;
m_read = nullptr;
m_frequency = _frequency;
m_capacity = _capacity;
m_sizeChunk = _chunkSize;
m_size = 0;
if ( _capacity == 0
|| _chunkSize == 0) {
m_capacity = 0;
m_sizeChunk = 0;
return;
}
m_data.resize(m_capacity*m_sizeChunk, 0);
m_read = &m_data[0];
m_write = &m_data[0];
}
2015-02-24 22:20:11 +01:00
void river::CircularBuffer::setCapacity(std11::chrono::milliseconds _capacity, size_t _chunkSize, uint32_t _frequency) {
2015-02-17 21:08:15 +01:00
uint32_t nbSampleNeeded = _frequency*_capacity.count()/1000;
RIVER_DEBUG("buffer setCapacity(" << _capacity.count() << "ms ," << _chunkSize << ")");
setCapacity(nbSampleNeeded, _chunkSize, _frequency);
}
size_t river::CircularBuffer::getUsedSizeBeforEnd() const {
size_t size;
if (m_read < m_write) {
size = static_cast<uint8_t*>(m_write) - static_cast<uint8_t*>(m_read);
// the size result is in bytes we need to have it in element
size /= m_sizeChunk;
} else if ( m_read == m_write
&& m_size == 0) {
// no element in the buffer
size = 0;
} else {
size = &m_data[0] + (m_capacity*m_sizeChunk) - static_cast<uint8_t*>(m_read);
// the size result is in bytes we need to have it in element
size /= m_sizeChunk;
}
return size;
}
size_t river::CircularBuffer::getFreeSizeBeforEnd() const {
size_t size;
size = &m_data[0]
+ (m_capacity*m_sizeChunk)
- static_cast<uint8_t*>(m_write);
// the size result is in Octet we need to have it in element
size /= m_sizeChunk;
return size;
}
2015-02-24 22:20:11 +01:00
size_t river::CircularBuffer::write(const void* _data, size_t _nbChunk, const std11::chrono::system_clock::time_point& _time) {
2015-02-17 21:08:15 +01:00
size_t nbElementDrop = 0;
size_t freeSizeBeforeEnd = getFreeSizeBeforEnd();
size_t freeSize = m_capacity - m_size;
// Write element in all case
// calculate the number of element that are overwritten
if (freeSize < _nbChunk) {
nbElementDrop = _nbChunk - freeSize;
}
// if User Request a write more important than the size of the buffer ==> update the pointer to feet only on the buffer size
if (m_capacity < _nbChunk) {
RIVER_WARNING("CircularBuffer Write too BIG " << _nbChunk << " buffer max size : " << m_capacity << " (keep last Elements)");
// Move data pointer
_data = static_cast<const uint8_t*>(_data) + (_nbChunk - m_capacity) * m_sizeChunk;
// update size
_nbChunk = m_capacity;
}
// if no element in the FIFO ==> first time write or no more data inside ==> start set the file of the read data ...
if (m_size == 0) {
m_timeRead = _time;
}
// TODO : Check time to push continuous data ...
if (freeSizeBeforeEnd >= _nbChunk) {
// all Data will be copy
memcpy(m_write, _data, _nbChunk * m_sizeChunk);
// update Writing pointer
if (freeSizeBeforeEnd == _nbChunk) {
// update to the end of FIFO ==> update to the start
m_write = &m_data[0];
} else {
m_write = static_cast<uint8_t*>(m_write) + _nbChunk * m_sizeChunk;
}
// Update the number of element in the buffer.
m_size += _nbChunk;
} else {
// copy data to the end of buffer
memcpy(m_write, _data, freeSizeBeforeEnd * m_sizeChunk);
// update Writing pointer ==> end of buffer ==> go to the start
m_write = &m_data[0];
// update data pointer
_data = static_cast<const uint8_t*>(_data) + freeSizeBeforeEnd * m_sizeChunk;
m_size += freeSizeBeforeEnd;
// get the number of element we need to write
_nbChunk -= freeSizeBeforeEnd;
// Copy the las data if needed
if (_nbChunk != 0) {
memcpy(m_write, _data, _nbChunk * m_sizeChunk);
// update Writing pointer
m_write = static_cast<uint8_t*>(m_write) + _nbChunk * m_sizeChunk;
m_size += _nbChunk;
}
}
if (nbElementDrop > 0) {
// if drop element we need to update the reading pointer
m_read = m_write;
m_size = m_capacity;
}
// return the number of element Overwrite
return nbElementDrop;
}
size_t river::CircularBuffer::read(void* _data, size_t _nbChunk) {
return read(_data, _nbChunk, m_timeRead);
}
2015-02-24 22:20:11 +01:00
size_t river::CircularBuffer::read(void* _data, size_t _nbChunk, const std11::chrono::system_clock::time_point& _time) {
2015-02-17 21:08:15 +01:00
size_t nbElementDrop = 0;
// Critical section (theoriquely protected by Mutex)
size_t usedSizeBeforeEnd = getUsedSizeBeforEnd();
// verify if we have elements in the Buffer
if (0 < m_size) {
// check the time of the read :
2015-02-24 22:20:11 +01:00
std11::chrono::nanoseconds deltaTime = m_timeRead - _time;
2015-02-17 21:08:15 +01:00
if (deltaTime.count() == 0) {
// nothing to do ==> just copy data ...
} else if (deltaTime.count() > 0) {
// Add empty sample in the output buffer ...
size_t nbSampleEmpty = m_frequency*deltaTime.count()/100000000;
nbSampleEmpty = std::min(nbSampleEmpty, _nbChunk);
RIVER_WARNING("add Empty sample in the output buffer " << nbSampleEmpty << " / " << _nbChunk);
memset(_data, 0, nbSampleEmpty * m_sizeChunk);
if (nbSampleEmpty == _nbChunk) {
return 0;
}
_nbChunk -= nbSampleEmpty;
} else {
// Remove data from the FIFO
setReadPosition(_time);
}
if (m_size < _nbChunk) {
nbElementDrop = _nbChunk - m_size;
_nbChunk = m_size;
}
2015-02-24 22:20:11 +01:00
m_timeRead += std11::chrono::microseconds(_nbChunk*1000000/m_frequency);
2015-02-17 21:08:15 +01:00
if (usedSizeBeforeEnd >= _nbChunk) {
// all Data will be copy
memcpy(_data, m_read, _nbChunk * m_sizeChunk);
// update Writing pointer
m_read = static_cast<uint8_t*>(m_read) + _nbChunk * m_sizeChunk;
m_size -= _nbChunk;
// update output pointer in case of flush with 0 data
_data = static_cast<uint8_t*>(_data) + _nbChunk * m_sizeChunk;
} else {
// copy data to the end of buffer
memcpy(_data, m_read, usedSizeBeforeEnd * m_sizeChunk);
// update Writing pointer ==> end of buffer ==> go to the start
m_read = &m_data[0];
_data = static_cast<uint8_t*>(_data) + usedSizeBeforeEnd * m_sizeChunk;
m_size -= usedSizeBeforeEnd;
// get the number of element we need to write
_nbChunk -= usedSizeBeforeEnd;
// Copy the last data if needed
if (0 != _nbChunk) {
memcpy(_data, m_read, _nbChunk * m_sizeChunk);
// update Writing pointer
m_read = static_cast<uint8_t*>(m_read) + _nbChunk * m_sizeChunk;
m_size -= _nbChunk;
// update output pointer in case of flush with 0 data
_data = static_cast<uint8_t*>(_data) + _nbChunk * m_sizeChunk;
}
}
} else {
nbElementDrop = _nbChunk;
}
if (0 < nbElementDrop) {
// set 0 in last element of the output
memset(_data, 0, m_sizeChunk * nbElementDrop);
}
// return the number of element droped
return nbElementDrop;
}
2015-02-24 22:20:11 +01:00
void river::CircularBuffer::setReadPosition(const std11::chrono::system_clock::time_point& _time) {
2015-02-17 21:08:15 +01:00
// Critical section (theoriquely protected by Mutex)
size_t usedSizeBeforeEnd = getUsedSizeBeforEnd();
if (0 < m_size) {
// check the time of the read :
2015-02-24 22:20:11 +01:00
std11::chrono::nanoseconds deltaTime = _time - m_timeRead;
size_t nbSampleToRemove = int64_t(m_frequency)*int64_t(deltaTime.count())/1000000000LL;
2015-02-17 21:08:15 +01:00
nbSampleToRemove = std::min(nbSampleToRemove, m_size);
RIVER_VERBOSE("Remove sample in the buffer " << nbSampleToRemove << " / " << m_size);
std11::chrono::nanoseconds updateTime((int64_t(nbSampleToRemove)*1000000000LL)/int64_t(m_frequency));
RIVER_VERBOSE(" add time : " << updateTime.count() << "ns / " << deltaTime.count() << "ns");
2015-02-17 21:08:15 +01:00
if (usedSizeBeforeEnd >= nbSampleToRemove) {
usedSizeBeforeEnd -= nbSampleToRemove;
m_size -= nbSampleToRemove;
m_read = static_cast<uint8_t*>(m_read) + nbSampleToRemove * m_sizeChunk;
} else {
nbSampleToRemove -= usedSizeBeforeEnd;
m_size -= nbSampleToRemove;
m_read = &m_data[0] + nbSampleToRemove*m_sizeChunk;
}
2015-02-18 15:22:48 +01:00
m_timeRead += updateTime;
//m_timeRead += deltaTime;
2015-02-17 21:08:15 +01:00
} else {
2015-02-24 22:20:11 +01:00
m_timeRead = std11::chrono::system_clock::time_point();
2015-02-17 21:08:15 +01:00
}
}
2015-02-17 21:08:15 +01:00
size_t river::CircularBuffer::getFreeSize() const {
return m_capacity - m_size;
}
void river::CircularBuffer::clear() {
RIVER_DEBUG("buffer clear()");
// set pointer to the start
m_read = &m_data[0];
m_write = &m_data[0];
// Clean the number of element in the buffer
m_size = 0;
// Clean all element inside :
memset(&m_data[0], 0, m_sizeChunk * m_capacity);
}