732 lines
26 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2011, Edouard DUPIN, all right reserved
* @license APACHE v2.0 (see license file)
* @fork from RTAudio
*/
// must run before :
#if defined(ORCHESTRA_BUILD_JACK)
#include <unistd.h>
#include <limits.h>
#include <iostream>
#include <audio/orchestra/Interface.h>
#include <audio/orchestra/debug.h>
#include <string.h>
#include <etk/thread/tools.h>
#undef __class__
#define __class__ "api::Jack"
audio::orchestra::Api* audio::orchestra::api::Jack::create() {
return new audio::orchestra::api::Jack();
}
// JACK is a low-latency audio server, originally written for the
// GNU/Linux operating system and now also ported to OS-X. It can
// connect a number of different applications to an audio device, as
// well as allowing them to share audio between themselves.
//
// When using JACK with RtAudio, "devices" refer to JACK clients that
// have ports connected to the server. The JACK server is typically
// started in a terminal as follows:
//
// .jackd -d alsa -d hw:0
//
// or through an interface program such as qjackctl. Many of the
// parameters normally set for a stream are fixed by the JACK server
// and can be specified when the JACK server is started. In
// particular,
//
// jackd -d alsa -d hw:0 -r 44100 -p 512 -n 4
// jackd -r -d alsa -r 48000
//
// specifies a sample rate of 44100 Hz, a buffer size of 512 sample
// frames, and number of buffers = 4. Once the server is running, it
// is not possible to override these values. If the values are not
// specified in the command-line, the JACK server uses default values.
//
// The JACK server does not have to be running when an instance of
// audio::orchestra::Jack is created, though the function getDeviceCount() will
// report 0 devices found until JACK has been started. When no
// devices are available (i.e., the JACK server is not running), a
// stream cannot be opened.
#include <jack/jack.h>
#include <unistd.h>
#include <cstdio>
namespace audio {
namespace orchestra {
namespace api {
class JackPrivate {
public:
jack_client_t *client;
jack_port_t **ports[2];
std::string deviceName[2];
bool xrun[2];
std11::condition_variable condition;
int32_t drainCounter; // Tracks callback counts when draining
bool internalDrain; // Indicates if stop is initiated from callback or not.
JackPrivate() :
client(0),
drainCounter(0),
internalDrain(false) {
ports[0] = 0;
ports[1] = 0;
xrun[0] = false;
xrun[1] = false;
}
};
}
}
}
audio::orchestra::api::Jack::Jack() :
m_private(new audio::orchestra::api::JackPrivate()) {
// Nothing to do here.
}
audio::orchestra::api::Jack::~Jack() {
if (m_state != audio::orchestra::state_closed) {
closeStream();
}
}
uint32_t audio::orchestra::api::Jack::getDeviceCount() {
// See if we can become a jack client.
jack_options_t options = (jack_options_t) (JackNoStartServer); //JackNullOption;
jack_status_t *status = nullptr;
jack_client_t *client = jack_client_open("orchestraJackCount", options, status);
if (client == nullptr) {
return 0;
}
const char **ports;
std::string port, previousPort;
uint32_t nChannels = 0, nDevices = 0;
ports = jack_get_ports(client, nullptr, nullptr, 0);
if (ports) {
// Parse the port names up to the first colon (:).
size_t iColon = 0;
do {
port = (char *) ports[ nChannels ];
iColon = port.find(":");
if (iColon != std::string::npos) {
port = port.substr(0, iColon + 1);
if (port != previousPort) {
nDevices++;
previousPort = port;
}
}
} while (ports[++nChannels]);
free(ports);
}
jack_client_close(client);
return nDevices*2;
}
audio::orchestra::DeviceInfo audio::orchestra::api::Jack::getDeviceInfo(uint32_t _device) {
audio::orchestra::DeviceInfo info;
jack_options_t options = (jack_options_t) (JackNoStartServer); //JackNullOption
jack_status_t *status = nullptr;
jack_client_t *client = jack_client_open("orchestraJackInfo", options, status);
if (client == nullptr) {
ATA_ERROR("Jack server not found or connection error!");
// TODO : audio::orchestra::error_warning;
return info;
}
const char **ports;
std::string port, previousPort;
uint32_t nPorts = 0, nDevices = 0;
ports = jack_get_ports(client, nullptr, nullptr, 0);
int32_t deviceID = _device/2;
info.input = _device%2==0?true:false; // note that jack sens are inverted
if (ports) {
// Parse the port names up to the first colon (:).
size_t iColon = 0;
do {
port = (char *) ports[nPorts];
iColon = port.find(":");
if (iColon != std::string::npos) {
port = port.substr(0, iColon);
if (port != previousPort) {
if (nDevices == deviceID) {
info.name = port;
}
nDevices++;
previousPort = port;
}
}
} while (ports[++nPorts]);
free(ports);
}
if (deviceID >= nDevices) {
jack_client_close(client);
ATA_ERROR("device ID is invalid!");
// TODO : audio::orchestra::error_invalidUse;
return info;
}
// Get the current jack server sample rate.
info.sampleRates.clear();
info.sampleRates.push_back(jack_get_sample_rate(client));
if (info.input == true) {
ports = jack_get_ports(client, info.name.c_str(), nullptr, JackPortIsOutput);
if (ports) {
int32_t iii=0;
while (ports[iii]) {
ATA_ERROR(" ploppp='" << ports[iii] << "'");
info.channels.push_back(audio::channel_unknow);
iii++;
}
free(ports);
}
} else {
ports = jack_get_ports(client, info.name.c_str(), nullptr, JackPortIsInput);
if (ports) {
int32_t iii=0;
while (ports[iii]) {
ATA_ERROR(" ploppp='" << ports[iii] << "'");
info.channels.push_back(audio::channel_unknow);
iii++;
}
free(ports);
}
}
if (info.channels.size() == 0) {
jack_client_close(client);
ATA_ERROR("error determining Jack input/output channels!");
// TODO : audio::orchestra::error_warning;
return info;
}
// Jack always uses 32-bit floats.
info.nativeFormats.push_back(audio::format_float);
// Jack doesn't provide default devices so we'll use the first available one.
if (deviceID == 0) {
info.isDefault = true;
}
jack_client_close(client);
return info;
}
int32_t audio::orchestra::api::Jack::jackCallbackHandler(jack_nframes_t _nframes, void* _userData) {
ATA_VERBOSE("Jack callback: [BEGIN] " << uint64_t(_userData));
audio::orchestra::api::Jack* myClass = reinterpret_cast<audio::orchestra::api::Jack*>(_userData);
if (myClass->callbackEvent((uint64_t)_nframes) == false) {
ATA_VERBOSE("Jack callback: [END] 1");
return 1;
}
ATA_VERBOSE("Jack callback: [END] 0");
return 0;
}
// This function will be called by a spawned thread when the Jack
// server signals that it is shutting down. It is necessary to handle
// it this way because the jackShutdown() function must return before
// the jack_deactivate() function (in closeStream()) will return.
void audio::orchestra::api::Jack::jackCloseStream(void* _userData) {
etk::thread::setName("Jack_closeStream");
audio::orchestra::api::Jack* myClass = reinterpret_cast<audio::orchestra::api::Jack*>(_userData);
myClass->closeStream();
}
void audio::orchestra::api::Jack::jackShutdown(void* _userData) {
audio::orchestra::api::Jack* myClass = reinterpret_cast<audio::orchestra::api::Jack*>(_userData);
// Check current stream state. If stopped, then we'll assume this
// was called as a result of a call to audio::orchestra::api::Jack::stopStream (the
// deactivation of a client handle causes this function to be called).
// If not, we'll assume the Jack server is shutting down or some
// other problem occurred and we should close the stream.
if (myClass->isStreamRunning() == false) {
return;
}
new std11::thread(&audio::orchestra::api::Jack::jackCloseStream, _userData);
ATA_ERROR("The Jack server is shutting down this client ... stream stopped and closed!!");
}
int32_t audio::orchestra::api::Jack::jackXrun(void* _userData) {
audio::orchestra::api::Jack* myClass = reinterpret_cast<audio::orchestra::api::Jack*>(_userData);
if (myClass->m_private->ports[0]) {
myClass->m_private->xrun[0] = true;
}
if (myClass->m_private->ports[1]) {
myClass->m_private->xrun[1] = true;
}
return 0;
}
bool audio::orchestra::api::Jack::probeDeviceOpen(uint32_t _device,
audio::orchestra::mode _mode,
uint32_t _channels,
uint32_t _firstChannel,
uint32_t _sampleRate,
audio::format _format,
uint32_t* _bufferSize,
const audio::orchestra::StreamOptions& _options) {
// Look for jack server and try to become a client (only do once per stream).
jack_client_t *client = 0;
if ( _mode == audio::orchestra::mode_output
|| ( _mode == audio::orchestra::mode_input
&& m_mode != audio::orchestra::mode_output)) {
jack_options_t jackoptions = (jack_options_t) (JackNoStartServer); //JackNullOption;
jack_status_t *status = nullptr;
if (!_options.streamName.empty()) {
client = jack_client_open(_options.streamName.c_str(), jackoptions, status);
} else {
client = jack_client_open("orchestraJack", jackoptions, status);
}
if (client == 0) {
ATA_ERROR("Jack server not found or connection error!");
return false;
}
} else {
// The handle must have been created on an earlier pass.
client = m_private->client;
}
const char **ports;
std::string port, previousPort, deviceName;
uint32_t nPorts = 0, nDevices = 0;
int32_t deviceID = _device/2;
bool isInput = _device%2==0?true:false;
ports = jack_get_ports(client, nullptr, nullptr, 0);
if (ports) {
// Parse the port names up to the first colon (:).
size_t iColon = 0;
do {
port = (char *) ports[ nPorts ];
iColon = port.find(":");
if (iColon != std::string::npos) {
port = port.substr(0, iColon);
if (port != previousPort) {
if (nDevices == deviceID) {
deviceName = port;
}
nDevices++;
previousPort = port;
}
}
} while (ports[++nPorts]);
free(ports);
}
if (_device >= nDevices) {
ATA_ERROR("device ID is invalid!");
return false;
}
// Count the available ports containing the client name as device
// channels. Jack "input ports" equal RtAudio output channels.
uint32_t nChannels = 0;
uint64_t flag = JackPortIsInput;
if (_mode == audio::orchestra::mode_input) {
flag = JackPortIsOutput;
}
ports = jack_get_ports(client, deviceName.c_str(), nullptr, flag);
if (ports) {
while (ports[ nChannels ]) {
nChannels++;
}
free(ports);
}
// Compare the jack ports for specified client to the requested number of channels.
if (nChannels < (_channels + _firstChannel)) {
ATA_ERROR("requested number of channels (" << _channels << ") + offset (" << _firstChannel << ") not found for specified device (" << _device << ":" << deviceName << ").");
return false;
}
// Check the jack server sample rate.
uint32_t jackRate = jack_get_sample_rate(client);
if (_sampleRate != jackRate) {
jack_client_close(client);
ATA_ERROR("the requested sample rate (" << _sampleRate << ") is different than the JACK server rate (" << jackRate << ").");
return false;
}
m_sampleRate = jackRate;
// Get the latency of the JACK port.
ports = jack_get_ports(client, deviceName.c_str(), nullptr, flag);
if (ports[ _firstChannel ]) {
// Added by Ge Wang
jack_latency_callback_mode_t cbmode = (_mode == audio::orchestra::mode_input ? JackCaptureLatency : JackPlaybackLatency);
// the range (usually the min and max are equal)
jack_latency_range_t latrange; latrange.min = latrange.max = 0;
// get the latency range
jack_port_get_latency_range(jack_port_by_name(client, ports[_firstChannel]), cbmode, &latrange);
// be optimistic, use the min!
m_latency[modeToIdTable(_mode)] = latrange.min;
//m_latency[modeToIdTable(_mode)] = jack_port_get_latency(jack_port_by_name(client, ports[ _firstChannel ]));
}
free(ports);
// The jack server always uses 32-bit floating-point data.
m_deviceFormat[modeToIdTable(_mode)] = audio::format_float;
m_userFormat = _format;
// Jack always uses non-interleaved buffers.
m_deviceInterleaved[modeToIdTable(_mode)] = false;
// Jack always provides host byte-ordered data.
m_doByteSwap[modeToIdTable(_mode)] = false;
// Get the buffer size. The buffer size and number of buffers
// (periods) is set when the jack server is started.
m_bufferSize = (int) jack_get_buffer_size(client);
*_bufferSize = m_bufferSize;
m_nDeviceChannels[modeToIdTable(_mode)] = _channels;
m_nUserChannels[modeToIdTable(_mode)] = _channels;
// Set flags for buffer conversion.
m_doConvertBuffer[modeToIdTable(_mode)] = false;
if (m_userFormat != m_deviceFormat[modeToIdTable(_mode)]) {
m_doConvertBuffer[modeToIdTable(_mode)] = true;
ATA_CRITICAL("Can not update format ==> use RIVER lib for this ...");
}
if ( m_deviceInterleaved[modeToIdTable(_mode)] == false
&& m_nUserChannels[modeToIdTable(_mode)] > 1) {
ATA_ERROR("Reorder channel for the interleaving properties ...");
m_doConvertBuffer[modeToIdTable(_mode)] = true;
}
// Allocate our JackHandle structure for the stream.
m_private->client = client;
m_private->deviceName[modeToIdTable(_mode)] = deviceName;
// Allocate necessary internal buffers.
uint64_t bufferBytes;
bufferBytes = m_nUserChannels[modeToIdTable(_mode)] * *_bufferSize * audio::getFormatBytes(m_deviceFormat[modeToIdTable(_mode)]);
ATA_VERBOSE("allocate : nbChannel=" << m_nUserChannels[modeToIdTable(_mode)] << " bufferSize=" << *_bufferSize << " format=" << m_deviceFormat[modeToIdTable(_mode)] << "=" << audio::getFormatBytes(m_deviceFormat[modeToIdTable(_mode)]));
m_userBuffer[modeToIdTable(_mode)].resize(bufferBytes, 0);
if (m_userBuffer[modeToIdTable(_mode)].size() == 0) {
ATA_ERROR("error allocating user buffer memory.");
goto error;
}
if (m_doConvertBuffer[modeToIdTable(_mode)]) {
bool makeBuffer = true;
if (_mode == audio::orchestra::mode_output) {
bufferBytes = m_nDeviceChannels[0] * audio::getFormatBytes(m_deviceFormat[0]);
} else { // _mode == audio::orchestra::mode_input
bufferBytes = m_nDeviceChannels[1] * audio::getFormatBytes(m_deviceFormat[1]);
if (m_mode == audio::orchestra::mode_output && m_deviceBuffer) {
uint64_t bytesOut = m_nDeviceChannels[0] * audio::getFormatBytes(m_deviceFormat[0]);
if (bufferBytes < bytesOut) {
makeBuffer = false;
}
}
}
if (makeBuffer) {
bufferBytes *= *_bufferSize;
if (m_deviceBuffer) free(m_deviceBuffer);
m_deviceBuffer = (char *) calloc(bufferBytes, 1);
if (m_deviceBuffer == nullptr) {
ATA_ERROR("error allocating device buffer memory.");
goto error;
}
}
}
// Allocate memory for the Jack ports (channels) identifiers.
m_private->ports[modeToIdTable(_mode)] = (jack_port_t **) malloc (sizeof (jack_port_t *) * _channels);
if (m_private->ports[modeToIdTable(_mode)] == nullptr) {
ATA_ERROR("error allocating port memory.");
goto error;
}
m_device[modeToIdTable(_mode)] = _device;
m_channelOffset[modeToIdTable(_mode)] = _firstChannel;
m_state = audio::orchestra::state_stopped;
if ( m_mode == audio::orchestra::mode_output
&& _mode == audio::orchestra::mode_input) {
// We had already set up the stream for output.
m_mode = audio::orchestra::mode_duplex;
} else {
m_mode = _mode;
jack_set_process_callback(m_private->client, &audio::orchestra::api::Jack::jackCallbackHandler, this);
jack_set_xrun_callback(m_private->client, &audio::orchestra::api::Jack::jackXrun, this);
jack_on_shutdown(m_private->client, &audio::orchestra::api::Jack::jackShutdown, this);
}
// Register our ports.
char label[64];
if (_mode == audio::orchestra::mode_output) {
for (uint32_t i=0; i<m_nUserChannels[0]; i++) {
snprintf(label, 64, "outport %d", i);
m_private->ports[0][i] = jack_port_register(m_private->client,
(const char *)label,
JACK_DEFAULT_AUDIO_TYPE,
JackPortIsOutput,
0);
}
} else {
for (uint32_t i=0; i<m_nUserChannels[1]; i++) {
snprintf(label, 64, "inport %d", i);
m_private->ports[1][i] = jack_port_register(m_private->client,
(const char *)label,
JACK_DEFAULT_AUDIO_TYPE,
JackPortIsInput,
0);
}
}
// Setup the buffer conversion information structure. We don't use
// buffers to do channel offsets, so we override that parameter
// here.
if (m_doConvertBuffer[modeToIdTable(_mode)]) {
setConvertInfo(_mode, 0);
}
return true;
error:
jack_client_close(m_private->client);
if (m_private->ports[0] != nullptr) {
free(m_private->ports[0]);
m_private->ports[0] = nullptr;
}
if (m_private->ports[1] != nullptr) {
free(m_private->ports[1]);
m_private->ports[1] = nullptr;
}
for (int32_t iii=0; iii<2; ++iii) {
m_userBuffer[iii].clear();
}
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = nullptr;
}
return false;
}
enum audio::orchestra::error audio::orchestra::api::Jack::closeStream() {
if (m_state == audio::orchestra::state_closed) {
ATA_ERROR("no open stream to close!");
return audio::orchestra::error_warning;
}
if (m_private != nullptr) {
if (m_state == audio::orchestra::state_running) {
jack_deactivate(m_private->client);
}
jack_client_close(m_private->client);
}
if (m_private->ports[0] != nullptr) {
free(m_private->ports[0]);
m_private->ports[0] = nullptr;
}
if (m_private->ports[1] != nullptr) {
free(m_private->ports[1]);
m_private->ports[1] = nullptr;
}
for (int32_t i=0; i<2; i++) {
m_userBuffer[i].clear();
}
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = nullptr;
}
m_mode = audio::orchestra::mode_unknow;
m_state = audio::orchestra::state_closed;
return audio::orchestra::error_none;
}
enum audio::orchestra::error audio::orchestra::api::Jack::startStream() {
// TODO : Check return ...
audio::orchestra::Api::startStream();
if (verifyStream() != audio::orchestra::error_none) {
return audio::orchestra::error_fail;
}
if (m_state == audio::orchestra::state_running) {
ATA_ERROR("the stream is already running!");
return audio::orchestra::error_warning;
}
int32_t result = jack_activate(m_private->client);
if (result) {
ATA_ERROR("unable to activate JACK client!");
goto unlock;
}
const char **ports;
// Get the list of available ports.
if ( m_mode == audio::orchestra::mode_output
|| m_mode == audio::orchestra::mode_duplex) {
result = 1;
ports = jack_get_ports(m_private->client, m_private->deviceName[0].c_str(), nullptr, JackPortIsInput);
if (ports == nullptr) {
ATA_ERROR("error determining available JACK input ports!");
goto unlock;
}
// Now make the port connections. Since RtAudio wasn't designed to
// allow the user to select particular channels of a device, we'll
// just open the first "nChannels" ports with offset.
for (uint32_t i=0; i<m_nUserChannels[0]; i++) {
result = 1;
if (ports[ m_channelOffset[0] + i ])
result = jack_connect(m_private->client, jack_port_name(m_private->ports[0][i]), ports[ m_channelOffset[0] + i ]);
if (result) {
free(ports);
ATA_ERROR("error connecting output ports!");
goto unlock;
}
}
free(ports);
}
if ( m_mode == audio::orchestra::mode_input
|| m_mode == audio::orchestra::mode_duplex) {
result = 1;
ports = jack_get_ports(m_private->client, m_private->deviceName[1].c_str(), nullptr, JackPortIsOutput);
if (ports == nullptr) {
ATA_ERROR("error determining available JACK output ports!");
goto unlock;
}
// Now make the port connections. See note above.
for (uint32_t i=0; i<m_nUserChannels[1]; i++) {
result = 1;
if (ports[ m_channelOffset[1] + i ]) {
result = jack_connect(m_private->client, ports[ m_channelOffset[1] + i ], jack_port_name(m_private->ports[1][i]));
}
if (result) {
free(ports);
ATA_ERROR("error connecting input ports!");
goto unlock;
}
}
free(ports);
}
m_private->drainCounter = 0;
m_private->internalDrain = false;
m_state = audio::orchestra::state_running;
unlock:
if (result == 0) {
return audio::orchestra::error_none;
}
return audio::orchestra::error_systemError;
}
enum audio::orchestra::error audio::orchestra::api::Jack::stopStream() {
if (verifyStream() != audio::orchestra::error_none) {
return audio::orchestra::error_fail;
}
if (m_state == audio::orchestra::state_stopped) {
ATA_ERROR("the stream is already stopped!");
return audio::orchestra::error_warning;
}
if ( m_mode == audio::orchestra::mode_output
|| m_mode == audio::orchestra::mode_duplex) {
if (m_private->drainCounter == 0) {
m_private->drainCounter = 2;
std11::unique_lock<std11::mutex> lck(m_mutex);
m_private->condition.wait(lck);
}
}
jack_deactivate(m_private->client);
m_state = audio::orchestra::state_stopped;
return audio::orchestra::error_none;
}
enum audio::orchestra::error audio::orchestra::api::Jack::abortStream() {
if (verifyStream() != audio::orchestra::error_none) {
return audio::orchestra::error_fail;
}
if (m_state == audio::orchestra::state_stopped) {
ATA_ERROR("the stream is already stopped!");
return audio::orchestra::error_warning;
}
m_private->drainCounter = 2;
return stopStream();
}
// This function will be called by a spawned thread when the user
// callback function signals that the stream should be stopped or
// aborted. It is necessary to handle it this way because the
// callbackEvent() function must return before the jack_deactivate()
// function will return.
static void jackStopStream(void* _userData) {
etk::thread::setName("Jack_stopStream");
audio::orchestra::api::Jack* myClass = reinterpret_cast<audio::orchestra::api::Jack*>(_userData);
myClass->stopStream();
}
bool audio::orchestra::api::Jack::callbackEvent(uint64_t _nframes) {
if ( m_state == audio::orchestra::state_stopped
|| m_state == audio::orchestra::state_stopping) {
return true;
}
if (m_state == audio::orchestra::state_closed) {
ATA_ERROR("the stream is closed ... this shouldn't happen!");
return false;
}
if (m_bufferSize != _nframes) {
ATA_ERROR("the JACK buffer size has changed ... cannot process!");
return false;
}
// Check if we were draining the stream and signal is finished.
if (m_private->drainCounter > 3) {
m_state = audio::orchestra::state_stopping;
if (m_private->internalDrain == true) {
new std11::thread(jackStopStream, this);
} else {
m_private->condition.notify_one();
}
return true;
}
// Invoke user callback first, to get fresh output data.
if (m_private->drainCounter == 0) {
audio::Time streamTime = getStreamTime();
std::vector<enum audio::orchestra::status> status;
if (m_mode != audio::orchestra::mode_input && m_private->xrun[0] == true) {
status.push_back(audio::orchestra::status_underflow);
m_private->xrun[0] = false;
}
if (m_mode != audio::orchestra::mode_output && m_private->xrun[1] == true) {
status.push_back(audio::orchestra::status_overflow);
m_private->xrun[1] = false;
}
int32_t cbReturnValue = m_callback(&m_userBuffer[1][0],
streamTime,
&m_userBuffer[0][0],
streamTime,
m_bufferSize,
status);
if (cbReturnValue == 2) {
m_state = audio::orchestra::state_stopping;
m_private->drainCounter = 2;
new std11::thread(jackStopStream, this);
return true;
}
else if (cbReturnValue == 1) {
m_private->drainCounter = 1;
m_private->internalDrain = true;
}
}
jack_default_audio_sample_t *jackbuffer;
uint64_t bufferBytes = _nframes * sizeof(jack_default_audio_sample_t);
if ( m_mode == audio::orchestra::mode_output
|| m_mode == audio::orchestra::mode_duplex) {
if (m_private->drainCounter > 1) { // write zeros to the output stream
for (uint32_t i=0; i<m_nDeviceChannels[0]; i++) {
jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer(m_private->ports[0][i], (jack_nframes_t) _nframes);
memset(jackbuffer, 0, bufferBytes);
}
} else if (m_doConvertBuffer[0]) {
convertBuffer(m_deviceBuffer, &m_userBuffer[0][0], m_convertInfo[0]);
for (uint32_t i=0; i<m_nDeviceChannels[0]; i++) {
jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer(m_private->ports[0][i], (jack_nframes_t) _nframes);
memcpy(jackbuffer, &m_deviceBuffer[i*bufferBytes], bufferBytes);
}
} else { // no buffer conversion
for (uint32_t i=0; i<m_nUserChannels[0]; i++) {
jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer(m_private->ports[0][i], (jack_nframes_t) _nframes);
memcpy(jackbuffer, &m_userBuffer[0][i*bufferBytes], bufferBytes);
}
}
if (m_private->drainCounter) {
m_private->drainCounter++;
goto unlock;
}
}
if ( m_mode == audio::orchestra::mode_input
|| m_mode == audio::orchestra::mode_duplex) {
if (m_doConvertBuffer[1]) {
for (uint32_t i=0; i<m_nDeviceChannels[1]; i++) {
jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer(m_private->ports[1][i], (jack_nframes_t) _nframes);
memcpy(&m_deviceBuffer[i*bufferBytes], jackbuffer, bufferBytes);
}
convertBuffer(&m_userBuffer[1][0], m_deviceBuffer, m_convertInfo[1]);
} else {
// no buffer conversion
for (uint32_t i=0; i<m_nUserChannels[1]; i++) {
jackbuffer = (jack_default_audio_sample_t *) jack_port_get_buffer(m_private->ports[1][i], (jack_nframes_t) _nframes);
memcpy(&m_userBuffer[1][i*bufferBytes], jackbuffer, bufferBytes);
}
}
}
unlock:
audio::orchestra::Api::tickStreamTime();
return true;
}
#endif