849 lines
27 KiB
C++

/**
* @author Gary P. SCAVONE
*
* @copyright 2001-2013 Gary P. Scavone, all right reserved
*
* @license like MIT (see license file)
*/
#if defined(__LINUX_OSS__)
#include <airtaudio/Interface.h>
#include <airtaudio/debug.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <fcntl.h>
#include "soundcard.h"
#include <errno.h>
#include <math.h>
airtaudio::Api* airtaudio::api::Oss::Create(void) {
return new airtaudio::api::Oss();
}
static void *ossCallbackHandler(void* _ptr);
// A structure to hold various information related to the OSS API
// implementation.
struct OssHandle {
int32_t id[2]; // device ids
bool xrun[2];
bool triggered;
std::condition_variable runnable;
OssHandle(void):
triggered(false) {
id[0] = 0;
id[1] = 0;
xrun[0] = false;
xrun[1] = false;
}
};
airtaudio::api::Oss::Oss(void) {
// Nothing to do here.
}
airtaudio::api::Oss::~Oss(void) {
if (m_stream.state != STREAM_CLOSED) {
closeStream();
}
}
uint32_t airtaudio::api::Oss::getDeviceCount(void) {
int32_t mixerfd = open("/dev/mixer", O_RDWR, 0);
if (mixerfd == -1) {
ATA_ERROR("airtaudio::api::Oss::getDeviceCount: error opening '/dev/mixer'.");
return 0;
}
oss_sysinfo sysinfo;
if (ioctl(mixerfd, SNDCTL_SYSINFO, &sysinfo) == -1) {
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::getDeviceCount: error getting sysinfo, OSS version >= 4.0 is required.");
return 0;
}
close(mixerfd);
return sysinfo.numaudios;
}
airtaudio::DeviceInfo airtaudio::api::Oss::getDeviceInfo(uint32_t _device) {
rtaudio::DeviceInfo info;
info.probed = false;
int32_t mixerfd = open("/dev/mixer", O_RDWR, 0);
if (mixerfd == -1) {
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: error opening '/dev/mixer'.");
return info;
}
oss_sysinfo sysinfo;
int32_t result = ioctl(mixerfd, SNDCTL_SYSINFO, &sysinfo);
if (result == -1) {
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: error getting sysinfo, OSS version >= 4.0 is required.");
return info;
}
unsigned nDevices = sysinfo.numaudios;
if (nDevices == 0) {
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: no devices found!");
return info;
}
if (_device >= nDevices) {
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: device ID is invalid!");
return info;
}
oss_audioinfo ainfo;
ainfo.dev = _device;
result = ioctl(mixerfd, SNDCTL_AUDIOINFO, &ainfo);
close(mixerfd);
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: error getting device (" << ainfo.name << ") info.");
error(airtaudio::errorWarning);
return info;
}
// Probe channels
if (ainfo.caps & PCM_CAP_OUTPUT) {
info.outputChannels = ainfo.max_channels;
}
if (ainfo.caps & PCM_CAP_INPUT) {
info.inputChannels = ainfo.max_channels;
}
if (ainfo.caps & PCM_CAP_DUPLEX) {
if ( info.outputChannels > 0
&& info.inputChannels > 0
&& ainfo.caps & PCM_CAP_DUPLEX) {
info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
}
}
// Probe data formats ... do for input
uint64_t mask = ainfo.iformats;
if ( mask & AFMT_S16_LE
|| mask & AFMT_S16_BE) {
info.nativeFormats |= RTAUDIO_SINT16;
}
if (mask & AFMT_S8) {
info.nativeFormats |= RTAUDIO_SINT8;
}
if ( mask & AFMT_S32_LE
|| mask & AFMT_S32_BE) {
info.nativeFormats |= RTAUDIO_SINT32;
}
if (mask & AFMT_FLOAT) {
info.nativeFormats |= RTAUDIO_FLOAT32;
}
if ( mask & AFMT_S24_LE
|| mask & AFMT_S24_BE) {
info.nativeFormats |= RTAUDIO_SINT24;
}
// Check that we have at least one supported format
if (info.nativeFormats == 0) {
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: device (" << ainfo.name << ") data format not supported by RtAudio.");
return info;
}
// Probe the supported sample rates.
info.sampleRates.clear();
if (ainfo.nrates) {
for (uint32_t i=0; i<ainfo.nrates; i++) {
for (uint32_t k=0; k<MAX_SAMPLE_RATES; k++) {
if (ainfo.rates[i] == SAMPLE_RATES[k]) {
info.sampleRates.push_back(SAMPLE_RATES[k]);
break;
}
}
}
} else {
// Check min and max rate values;
for (uint32_t k=0; k<MAX_SAMPLE_RATES; k++) {
if ( ainfo.min_rate <= (int) SAMPLE_RATES[k]
&& ainfo.max_rate >= (int) SAMPLE_RATES[k]) {
info.sampleRates.push_back(SAMPLE_RATES[k]);
}
}
}
if (info.sampleRates.size() == 0) {
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: no supported sample rates found for device (" << ainfo.name << ").");
} else {
info.probed = true;
info.name = ainfo.name;
}
return info;
}
bool airtaudio::api::Oss::probeDeviceOpen(uint32_t _device,
StreamMode _mode,
uint32_t _channels,
uint32_t _firstChannel,
uint32_t _sampleRate,
rtaudio::format _format,
uint32_t* _bufferSize,
rtaudio::StreamOptions* _options) {
int32_t mixerfd = open("/dev/mixer", O_RDWR, 0);
if (mixerfd == -1) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error opening '/dev/mixer'.");
return false;
}
oss_sysinfo sysinfo;
int32_t result = ioctl(mixerfd, SNDCTL_SYSINFO, &sysinfo);
if (result == -1) {
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error getting sysinfo, OSS version >= 4.0 is required.");
return false;
}
unsigned nDevices = sysinfo.numaudios;
if (nDevices == 0) {
// This should not happen because a check is made before this function is called.
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: no devices found!");
return false;
}
if (_device >= nDevices) {
// This should not happen because a check is made before this function is called.
close(mixerfd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device ID is invalid!");
return false;
}
oss_audioinfo ainfo;
ainfo.dev = _device;
result = ioctl(mixerfd, SNDCTL_AUDIOINFO, &ainfo);
close(mixerfd);
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::getDeviceInfo: error getting device (" << ainfo.name << ") info.");
return false;
}
// Check if device supports input or output
if ( ( _mode == OUTPUT
&& !(ainfo.caps & PCM_CAP_OUTPUT))
|| ( _mode == INPUT
&& !(ainfo.caps & PCM_CAP_INPUT))) {
if (_mode == OUTPUT) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device (" << ainfo.name << ") does not support output.");
} else {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device (" << ainfo.name << ") does not support input.");
}
return false;
}
int32_t flags = 0;
OssHandle *handle = (OssHandle *) m_stream.apiHandle;
if (_mode == OUTPUT) {
flags |= O_WRONLY;
} else { // _mode == INPUT
if ( m_stream.mode == OUTPUT
&& m_stream.device[0] == _device) {
// We just set the same device for playback ... close and reopen for duplex (OSS only).
close(handle->id[0]);
handle->id[0] = 0;
if (!(ainfo.caps & PCM_CAP_DUPLEX)) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device (" << ainfo.name << ") does not support duplex mode.");
return false;
}
// Check that the number previously set channels is the same.
if (m_stream.nUserChannels[0] != _channels) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: input/output channels must be equal for OSS duplex device (" << ainfo.name << ").");
return false;
}
flags |= O_RDWR;
} else {
flags |= O_RDONLY;
}
}
// Set exclusive access if specified.
if ( _options != NULL
&& _options->flags & RTAUDIO_HOG_DEVICE) {
flags |= O_EXCL;
}
// Try to open the device.
int32_t fd;
fd = open(ainfo.devnode, flags, 0);
if (fd == -1) {
if (errno == EBUSY) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device (" << ainfo.name << ") is busy.");
} else {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error opening device (" << ainfo.name << ").");
}
return false;
}
// For duplex operation, specifically set this mode (this doesn't seem to work).
/*
if (flags | O_RDWR) {
result = ioctl(fd, SNDCTL_DSP_SETDUPLEX, NULL);
if (result == -1) {
m_errorStream << "airtaudio::api::Oss::probeDeviceOpen: error setting duplex mode for device (" << ainfo.name << ").";
m_errorText = m_errorStream.str();
return false;
}
}
*/
// Check the device channel support.
m_stream.nUserChannels[_mode] = _channels;
if (ainfo.max_channels < (int)(_channels + _firstChannel)) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: the device (" << ainfo.name << ") does not support requested channel parameters.");
return false;
}
// Set the number of channels.
int32_t deviceChannels = _channels + _firstChannel;
result = ioctl(fd, SNDCTL_DSP_CHANNELS, &deviceChannels);
if ( result == -1
|| deviceChannels < (int)(_channels + _firstChannel)) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error setting channel parameters on device (" << ainfo.name << ").");
return false;
}
m_stream.nDeviceChannels[_mode] = deviceChannels;
// Get the data format mask
int32_t mask;
result = ioctl(fd, SNDCTL_DSP_GETFMTS, &mask);
if (result == -1) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error getting device (" << ainfo.name << ") data formats.");
return false;
}
// Determine how to set the device format.
m_stream.userFormat = _format;
int32_t deviceFormat = -1;
m_stream.doByteSwap[_mode] = false;
if (_format == RTAUDIO_SINT8) {
if (mask & AFMT_S8) {
deviceFormat = AFMT_S8;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT8;
}
} else if (_format == RTAUDIO_SINT16) {
if (mask & AFMT_S16_NE) {
deviceFormat = AFMT_S16_NE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT16;
} else if (mask & AFMT_S16_OE) {
deviceFormat = AFMT_S16_OE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT16;
m_stream.doByteSwap[_mode] = true;
}
} else if (_format == RTAUDIO_SINT24) {
if (mask & AFMT_S24_NE) {
deviceFormat = AFMT_S24_NE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT24;
} else if (mask & AFMT_S24_OE) {
deviceFormat = AFMT_S24_OE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT24;
m_stream.doByteSwap[_mode] = true;
}
} else if (_format == RTAUDIO_SINT32) {
if (mask & AFMT_S32_NE) {
deviceFormat = AFMT_S32_NE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT32;
} else if (mask & AFMT_S32_OE) {
deviceFormat = AFMT_S32_OE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT32;
m_stream.doByteSwap[_mode] = true;
}
}
if (deviceFormat == -1) {
// The user requested format is not natively supported by the device.
if (mask & AFMT_S16_NE) {
deviceFormat = AFMT_S16_NE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT16;
} else if (mask & AFMT_S32_NE) {
deviceFormat = AFMT_S32_NE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT32;
} else if (mask & AFMT_S24_NE) {
deviceFormat = AFMT_S24_NE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT24;
} else if (mask & AFMT_S16_OE) {
deviceFormat = AFMT_S16_OE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT16;
m_stream.doByteSwap[_mode] = true;
} else if (mask & AFMT_S32_OE) {
deviceFormat = AFMT_S32_OE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT32;
m_stream.doByteSwap[_mode] = true;
} else if (mask & AFMT_S24_OE) {
deviceFormat = AFMT_S24_OE;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT24;
m_stream.doByteSwap[_mode] = true;
} else if (mask & AFMT_S8) {
deviceFormat = AFMT_S8;
m_stream.deviceFormat[_mode] = RTAUDIO_SINT8;
}
}
if (m_stream.deviceFormat[_mode] == 0) {
// This really shouldn't happen ...
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device (" << ainfo.name << ") data format not supported by RtAudio.");
return false;
}
// Set the data format.
int32_t temp = deviceFormat;
result = ioctl(fd, SNDCTL_DSP_SETFMT, &deviceFormat);
if ( result == -1
|| deviceFormat != temp) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error setting data format on device (" << ainfo.name << ").");
return false;
}
// Attempt to set the buffer size. According to OSS, the minimum
// number of buffers is two. The supposed minimum buffer size is 16
// bytes, so that will be our lower bound. The argument to this
// call is in the form 0xMMMMSSSS (hex), where the buffer size (in
// bytes) is given as 2^SSSS and the number of buffers as 2^MMMM.
// We'll check the actual value used near the end of the setup
// procedure.
int32_t ossBufferBytes = *_bufferSize * formatBytes(m_stream.deviceFormat[_mode]) * deviceChannels;
if (ossBufferBytes < 16) {
ossBufferBytes = 16;
}
int32_t buffers = 0;
if (_options != NULL) {
buffers = _options->numberOfBuffers;
}
if ( _options != NULL
&& _options->flags & RTAUDIO_MINIMIZE_LATENCY) {
buffers = 2;
}
if (buffers < 2) {
buffers = 3;
}
temp = ((int) buffers << 16) + (int)(log10((double)ossBufferBytes) / log10(2.0));
result = ioctl(fd, SNDCTL_DSP_SETFRAGMENT, &temp);
if (result == -1) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error setting buffer size on device (" << ainfo.name << ").");
return false;
}
m_stream.nBuffers = buffers;
// Save buffer size (in sample frames).
*_bufferSize = ossBufferBytes / (formatBytes(m_stream.deviceFormat[_mode]) * deviceChannels);
m_stream.bufferSize = *_bufferSize;
// Set the sample rate.
int32_t srate = _sampleRate;
result = ioctl(fd, SNDCTL_DSP_SPEED, &srate);
if (result == -1) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error setting sample rate (" << _sampleRate << ") on device (" << ainfo.name << ").");
return false;
}
// Verify the sample rate setup worked.
if (abs(srate - _sampleRate) > 100) {
close(fd);
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: device (" << ainfo.name << ") does not support sample rate (" << _sampleRate << ").");
return false;
}
m_stream.sampleRate = _sampleRate;
if ( _mode == INPUT
&& m_stream._mode == OUTPUT
&& m_stream.device[0] == _device) {
// We're doing duplex setup here.
m_stream.deviceFormat[0] = m_stream.deviceFormat[1];
m_stream.nDeviceChannels[0] = deviceChannels;
}
// Set interleaving parameters.
m_stream.userInterleaved = true;
m_stream.deviceInterleaved[_mode] = true;
if (_options && _options->flags & RTAUDIO_NONINTERLEAVED) {
m_stream.userInterleaved = false;
}
// Set flags for buffer conversion
m_stream.doConvertBuffer[_mode] = false;
if (m_stream.userFormat != m_stream.deviceFormat[_mode]) {
m_stream.doConvertBuffer[_mode] = true;
}
if (m_stream.nUserChannels[_mode] < m_stream.nDeviceChannels[_mode]) {
m_stream.doConvertBuffer[_mode] = true;
}
if ( m_stream.userInterleaved != m_stream.deviceInterleaved[_mode]
&& m_stream.nUserChannels[_mode] > 1) {
m_stream.doConvertBuffer[_mode] = true;
}
// Allocate the stream handles if necessary and then save.
if (m_stream.apiHandle == 0) {
handle = new OssHandle;
if handle == NULL) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error allocating OssHandle memory.");
goto error;
}
m_stream.apiHandle = (void *) handle;
} else {
handle = (OssHandle *) m_stream.apiHandle;
}
handle->id[_mode] = fd;
// Allocate necessary internal buffers.
uint64_t bufferBytes;
bufferBytes = m_stream.nUserChannels[_mode] * *_bufferSize * formatBytes(m_stream.userFormat);
m_stream.userBuffer[_mode] = (char *) calloc(bufferBytes, 1);
if (m_stream.userBuffer[_mode] == NULL) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error allocating user buffer memory.");
goto error;
}
if (m_stream.doConvertBuffer[_mode]) {
bool makeBuffer = true;
bufferBytes = m_stream.nDeviceChannels[_mode] * formatBytes(m_stream.deviceFormat[_mode]);
if (_mode == INPUT) {
if ( m_stream._mode == OUTPUT
&& m_stream.deviceBuffer) {
uint64_t bytesOut = m_stream.nDeviceChannels[0] * formatBytes(m_stream.deviceFormat[0]);
if (bufferBytes <= bytesOut) {
makeBuffer = false;
}
}
}
if (makeBuffer) {
bufferBytes *= *_bufferSize;
if (m_stream.deviceBuffer) {
free(m_stream.deviceBuffer);
}
m_stream.deviceBuffer = (char *) calloc(bufferBytes, 1);
if (m_stream.deviceBuffer == NULL) {
ATA_ERROR("airtaudio::api::Oss::probeDeviceOpen: error allocating device buffer memory.");
goto error;
}
}
}
m_stream.device[_mode] = _device;
m_stream.state = STREAM_STOPPED;
// Setup the buffer conversion information structure.
if (m_stream.doConvertBuffer[_mode]) {
setConvertInfo(_mode, _firstChannel);
}
// Setup thread if necessary.
if (m_stream.mode == OUTPUT && _mode == INPUT) {
// We had already set up an output stream.
m_stream.mode = DUPLEX;
if (m_stream.device[0] == _device) {
handle->id[0] = fd;
}
} else {
m_stream.mode = _mode;
// Setup callback thread.
m_stream.callbackInfo.object = (void *) this;
m_stream.callbackInfo.isRunning = true;
m_stream.callbackInfo.thread = new std::thread(ossCallbackHandler, &m_stream.callbackInfo);
if (m_stream.callbackInfo.thread == NULL) {
m_stream.callbackInfo.isRunning = false;
ATA_ERROR("airtaudio::api::Oss::error creating callback thread!");
goto error;
}
}
return true;
error:
if (handle) {
if (handle->id[0]) {
close(handle->id[0]);
}
if (handle->id[1]) {
close(handle->id[1]);
}
delete handle;
m_stream.apiHandle = 0;
}
for (int32_t i=0; i<2; i++) {
if (m_stream.userBuffer[i]) {
free(m_stream.userBuffer[i]);
m_stream.userBuffer[i] = 0;
}
}
if (m_stream.deviceBuffer) {
free(m_stream.deviceBuffer);
m_stream.deviceBuffer = 0;
}
return false;
}
enum airtaudio::errorType airtaudio::api::Oss::closeStream(void) {
if (m_stream.state == STREAM_CLOSED) {
ATA_ERROR("airtaudio::api::Oss::closeStream(): no open stream to close!");
return airtaudio::errorWarning;
}
OssHandle *handle = (OssHandle *) m_stream.apiHandle;
m_stream.callbackInfo.isRunning = false;
m_stream.mutex.lock();
if (m_stream.state == STREAM_STOPPED) {
handle->runnable.notify_one();
}
m_stream.mutex.unlock();
m_stream.callbackInfo.thread->join();
if (m_stream.state == STREAM_RUNNING) {
if (m_stream.mode == OUTPUT || m_stream.mode == DUPLEX) {
ioctl(handle->id[0], SNDCTL_DSP_HALT, 0);
} else {
ioctl(handle->id[1], SNDCTL_DSP_HALT, 0);
}
m_stream.state = STREAM_STOPPED;
}
if (handle) {
if (handle->id[0]) {
close(handle->id[0]);
}
if (handle->id[1]) {
close(handle->id[1]);
}
delete handle;
m_stream.apiHandle = 0;
}
for (int32_t i=0; i<2; i++) {
if (m_stream.userBuffer[i]) {
free(m_stream.userBuffer[i]);
m_stream.userBuffer[i] = 0;
}
}
if (m_stream.deviceBuffer) {
free(m_stream.deviceBuffer);
m_stream.deviceBuffer = 0;
}
m_stream.mode = UNINITIALIZED;
m_stream.state = STREAM_CLOSED;
return airtaudio::errorNone;
}
enum airtaudio::errorType airtaudio::api::Oss::startStream(void) {
if (verifyStream() != airtaudio::errorNone) {
return airtaudio::errorFail;
}
if (m_stream.state == STREAM_RUNNING) {
ATA_ERROR("airtaudio::api::Oss::startStream(): the stream is already running!");
return airtaudio::errorWarning;
}
m_stream.mutex.lock();
m_stream.state = STREAM_RUNNING;
// No need to do anything else here ... OSS automatically starts
// when fed samples.
m_stream.mutex.unlock();
OssHandle *handle = (OssHandle *) m_stream.apiHandle;
handle->runnable.notify_one();
}
enum airtaudio::errorType airtaudio::api::Oss::stopStream(void) {
if (verifyStream() != airtaudio::errorNone) {
return airtaudio::errorFail;
}
if (m_stream.state == STREAM_STOPPED) {
ATA_ERROR("airtaudio::api::Oss::stopStream(): the stream is already stopped!");
return;
}
m_stream.mutex.lock();
// The state might change while waiting on a mutex.
if (m_stream.state == STREAM_STOPPED) {
m_stream.mutex.unlock();
return;
}
int32_t result = 0;
OssHandle *handle = (OssHandle *) m_stream.apiHandle;
if ( m_stream.mode == OUTPUT
|| m_stream.mode == DUPLEX) {
// Flush the output with zeros a few times.
char *buffer;
int32_t samples;
airtaudio::format format;
if (m_stream.doConvertBuffer[0]) {
buffer = m_stream.deviceBuffer;
samples = m_stream.bufferSize * m_stream.nDeviceChannels[0];
format = m_stream.deviceFormat[0];
} else {
buffer = m_stream.userBuffer[0];
samples = m_stream.bufferSize * m_stream.nUserChannels[0];
format = m_stream.userFormat;
}
memset(buffer, 0, samples * formatBytes(format));
for (uint32_t i=0; i<m_stream.nBuffers+1; i++) {
result = write(handle->id[0], buffer, samples * formatBytes(format));
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::stopStream: audio write error.");
return airtaudio::errorWarning;
}
}
result = ioctl(handle->id[0], SNDCTL_DSP_HALT, 0);
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::stopStream: system error stopping callback procedure on device (" << m_stream.device[0] << ").");
goto unlock;
}
handle->triggered = false;
}
if ( m_stream.mode == INPUT
|| ( m_stream.mode == DUPLEX
&& handle->id[0] != handle->id[1])) {
result = ioctl(handle->id[1], SNDCTL_DSP_HALT, 0);
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::stopStream: system error stopping input callback procedure on device (" << m_stream.device[0] << ").");
goto unlock;
}
}
unlock:
m_stream.state = STREAM_STOPPED;
m_stream.mutex.unlock();
if (result != -1) {
return airtaudio::errorNone;
}
return airtaudio::errorSystemError;
}
enum airtaudio::errorType airtaudio::api::Oss::abortStream(void) {
if (verifyStream() != airtaudio::errorNone) {
return airtaudio::errorFail;
}
if (m_stream.state == STREAM_STOPPED) {
ATA_ERROR("airtaudio::api::Oss::abortStream(): the stream is already stopped!");
return airtaudio::errorWarning;
}
m_stream.mutex.lock();
// The state might change while waiting on a mutex.
if (m_stream.state == STREAM_STOPPED) {
m_stream.mutex.unlock();
return;
}
int32_t result = 0;
OssHandle *handle = (OssHandle *) m_stream.apiHandle;
if (m_stream.mode == OUTPUT || m_stream.mode == DUPLEX) {
result = ioctl(handle->id[0], SNDCTL_DSP_HALT, 0);
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::abortStream: system error stopping callback procedure on device (" << m_stream.device[0] << ").");
goto unlock;
}
handle->triggered = false;
}
if (m_stream.mode == INPUT || (m_stream.mode == DUPLEX && handle->id[0] != handle->id[1])) {
result = ioctl(handle->id[1], SNDCTL_DSP_HALT, 0);
if (result == -1) {
ATA_ERROR("airtaudio::api::Oss::abortStream: system error stopping input callback procedure on device (" << m_stream.device[0] << ").");
goto unlock;
}
}
unlock:
m_stream.state = STREAM_STOPPED;
m_stream.mutex.unlock();
if (result != -1) {
return airtaudio::errorNone;
}
return airtaudio::errorSystemError;
}
void airtaudio::api::Oss::callbackEvent(void) {
OssHandle *handle = (OssHandle *) m_stream.apiHandle;
if (m_stream.state == STREAM_STOPPED) {
std::unique_lock<std::mutex> lck(m_stream.mutex);
handle->runnable.wait(lck);
if (m_stream.state != STREAM_RUNNING) {
return;
}
}
if (m_stream.state == STREAM_CLOSED) {
ATA_ERROR("airtaudio::api::Oss::callbackEvent(): the stream is closed ... this shouldn't happen!");
return airtaudio::errorWarning;
}
// Invoke user callback to get fresh output data.
int32_t doStopStream = 0;
airtaudio::AirTAudioCallback callback = (airtaudio::AirTAudioCallback) m_stream.callbackInfo.callback;
double streamTime = getStreamTime();
rtaudio::streamStatus status = 0;
if ( m_stream.mode != INPUT
&& handle->xrun[0] == true) {
status |= RTAUDIO_OUTPUT_UNDERFLOW;
handle->xrun[0] = false;
}
if ( m_stream.mode != OUTPUT
&& handle->xrun[1] == true) {
status |= RTAUDIO_INPUT_OVERFLOW;
handle->xrun[1] = false;
}
doStopStream = callback(m_stream.userBuffer[0],
m_stream.userBuffer[1],
m_stream.bufferSize,
streamTime,
status,
m_stream.callbackInfo.userData);
if (doStopStream == 2) {
this->abortStream();
return;
}
m_stream.mutex.lock();
// The state might change while waiting on a mutex.
if (m_stream.state == STREAM_STOPPED) {
goto unlock;
}
int32_t result;
char *buffer;
int32_t samples;
airtaudio::format format;
if ( m_stream.mode == OUTPUT
|| m_stream.mode == DUPLEX) {
// Setup parameters and do buffer conversion if necessary.
if (m_stream.doConvertBuffer[0]) {
buffer = m_stream.deviceBuffer;
convertBuffer(buffer, m_stream.userBuffer[0], m_stream.convertInfo[0]);
samples = m_stream.bufferSize * m_stream.nDeviceChannels[0];
format = m_stream.deviceFormat[0];
} else {
buffer = m_stream.userBuffer[0];
samples = m_stream.bufferSize * m_stream.nUserChannels[0];
format = m_stream.userFormat;
}
// Do byte swapping if necessary.
if (m_stream.doByteSwap[0]) {
byteSwapBuffer(buffer, samples, format);
}
if ( m_stream.mode == DUPLEX
&& handle->triggered == false) {
int32_t trig = 0;
ioctl(handle->id[0], SNDCTL_DSP_SETTRIGGER, &trig);
result = write(handle->id[0], buffer, samples * formatBytes(format));
trig = PCM_ENABLE_INPUT|PCM_ENABLE_OUTPUT;
ioctl(handle->id[0], SNDCTL_DSP_SETTRIGGER, &trig);
handle->triggered = true;
} else {
// Write samples to device.
result = write(handle->id[0], buffer, samples * formatBytes(format));
}
if (result == -1) {
// We'll assume this is an underrun, though there isn't a
// specific means for determining that.
handle->xrun[0] = true;
ATA_ERROR("airtaudio::api::Oss::callbackEvent: audio write error.");
//error(airtaudio::errorWarning);
// Continue on to input section.
}
}
if ( m_stream.mode == INPUT
|| m_stream.mode == DUPLEX) {
// Setup parameters.
if (m_stream.doConvertBuffer[1]) {
buffer = m_stream.deviceBuffer;
samples = m_stream.bufferSize * m_stream.nDeviceChannels[1];
format = m_stream.deviceFormat[1];
} else {
buffer = m_stream.userBuffer[1];
samples = m_stream.bufferSize * m_stream.nUserChannels[1];
format = m_stream.userFormat;
}
// Read samples from device.
result = read(handle->id[1], buffer, samples * formatBytes(format));
if (result == -1) {
// We'll assume this is an overrun, though there isn't a
// specific means for determining that.
handle->xrun[1] = true;
ATA_ERROR("airtaudio::api::Oss::callbackEvent: audio read error.");
goto unlock;
}
// Do byte swapping if necessary.
if (m_stream.doByteSwap[1]) {
byteSwapBuffer(buffer, samples, format);
}
// Do buffer conversion if necessary.
if (m_stream.doConvertBuffer[1]) {
convertBuffer(m_stream.userBuffer[1], m_stream.deviceBuffer, m_stream.convertInfo[1]);
}
}
unlock:
m_stream.mutex.unlock();
airtaudio::Api::tickStreamTime();
if (doStopStream == 1) {
this->stopStream();
}
}
static void ossCallbackHandler(void* _ptr) {
CallbackInfo* info = (CallbackInfo*)_ptr;
RtApiOss* object = (RtApiOss*)info->object;
bool *isRunning = &info->isRunning;
while (*isRunning == true) {
object->callbackEvent();
}
}
#endif