1109 lines
34 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2011, Edouard DUPIN, all right reserved
* @license APACHE v2.0 (see license file)
* @fork from RTAudio
*/
#if defined(__LINUX_ALSA__)
#include <alsa/asoundlib.h>
#include <unistd.h>
#include <airtaudio/Interface.h>
#include <airtaudio/debug.h>
#include <limits.h>
#undef __class__
#define __class__ "api::Alsa"
airtaudio::Api* airtaudio::api::Alsa::Create() {
return new airtaudio::api::Alsa();
}
// A structure to hold various information related to the ALSA API
// implementation.
struct AlsaHandle {
snd_pcm_t *handles[2];
bool synchronized;
bool xrun[2];
std::condition_variable runnable_cv;
bool runnable;
AlsaHandle() :
synchronized(false),
runnable(false) {
handles[0] = nullptr;
handles[1] = nullptr;
xrun[0] = false;
xrun[1] = false;
}
};
airtaudio::api::Alsa::Alsa() {
// Nothing to do here.
}
airtaudio::api::Alsa::~Alsa() {
if (m_state != airtaudio::state_closed) {
closeStream();
}
}
uint32_t airtaudio::api::Alsa::getDeviceCount() {
unsigned nDevices = 0;
int32_t result, subdevice, card;
char name[64];
snd_ctl_t *handle;
// Count cards and devices
card = -1;
snd_card_next(&card);
while (card >= 0) {
sprintf(name, "hw:%d", card);
result = snd_ctl_open(&handle, name, 0);
if (result < 0) {
ATA_ERROR("control open, card = " << card << ", " << snd_strerror(result) << ".");
// TODO : Return error airtaudio::error_warning;
goto nextcard;
}
subdevice = -1;
while(1) {
result = snd_ctl_pcm_next_device(handle, &subdevice);
if (result < 0) {
ATA_ERROR("control next device, card = " << card << ", " << snd_strerror(result) << ".");
// TODO : Return error airtaudio::error_warning;
break;
}
if (subdevice < 0) {
break;
}
nDevices++;
}
nextcard:
snd_ctl_close(handle);
snd_card_next(&card);
}
result = snd_ctl_open(&handle, "default", 0);
if (result == 0) {
nDevices++;
snd_ctl_close(handle);
}
return nDevices;
}
airtaudio::DeviceInfo airtaudio::api::Alsa::getDeviceInfo(uint32_t _device) {
airtaudio::DeviceInfo info;
info.probed = false;
unsigned nDevices = 0;
int32_t result, subdevice, card;
char name[64];
snd_ctl_t *chandle;
// Count cards and devices
card = -1;
snd_card_next(&card);
while (card >= 0) {
sprintf(name, "hw:%d", card);
result = snd_ctl_open(&chandle, name, SND_CTL_NONBLOCK);
if (result < 0) {
ATA_WARNING("control open, card = " << card << ", " << snd_strerror(result) << ".");
goto nextcard;
}
subdevice = -1;
while(1) {
result = snd_ctl_pcm_next_device(chandle, &subdevice);
if (result < 0) {
ATA_WARNING("control next device, card = " << card << ", " << snd_strerror(result) << ".");
break;
}
if (subdevice < 0) {
break;
}
if (nDevices == _device) {
sprintf(name, "hw:%d,%d", card, subdevice);
goto foundDevice;
}
nDevices++;
}
nextcard:
snd_ctl_close(chandle);
snd_card_next(&card);
}
result = snd_ctl_open(&chandle, "default", SND_CTL_NONBLOCK);
if (result == 0) {
if (nDevices == _device) {
strcpy(name, "default");
goto foundDevice;
}
nDevices++;
}
if (nDevices == 0) {
ATA_ERROR("no devices found!");
// TODO : airtaudio::error_invalidUse;
return info;
}
if (_device >= nDevices) {
ATA_ERROR("device ID is invalid!");
// TODO : airtaudio::error_invalidUse;
return info;
}
foundDevice:
// If a stream is already open, we cannot probe the stream devices.
// Thus, use the saved results.
if ( m_state != airtaudio::state_closed
&& ( m_device[0] == _device
|| m_device[1] == _device)) {
snd_ctl_close(chandle);
if (_device >= m_devices.size()) {
ATA_ERROR("device ID was not present before stream was opened.");
// TODO : return airtaudio::error_warning;
return info;
}
return m_devices[ _device ];
}
int32_t openMode = SND_PCM_ASYNC;
snd_pcm_stream_t stream;
snd_pcm_info_t *pcminfo;
snd_pcm_info_alloca(&pcminfo);
snd_pcm_t *phandle;
snd_pcm_hw_params_t *params;
snd_pcm_hw_params_alloca(&params);
// First try for playback unless default _device (which has subdev -1)
stream = SND_PCM_STREAM_PLAYBACK;
snd_pcm_info_set_stream(pcminfo, stream);
if (subdevice != -1) {
snd_pcm_info_set_device(pcminfo, subdevice);
snd_pcm_info_set_subdevice(pcminfo, 0);
result = snd_ctl_pcm_info(chandle, pcminfo);
if (result < 0) {
// Device probably doesn't support playback.
goto captureProbe;
}
}
result = snd_pcm_open(&phandle, name, stream, openMode | SND_PCM_NONBLOCK);
if (result < 0) {
ATA_ERROR("snd_pcm_open error for device (" << name << "), " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
goto captureProbe;
}
// The device is open ... fill the parameter structure.
result = snd_pcm_hw_params_any(phandle, params);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("snd_pcm_hw_params error for device (" << name << "), " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
goto captureProbe;
}
// Get output channel information.
uint32_t value;
result = snd_pcm_hw_params_get_channels_max(params, &value);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error getting device (" << name << ") output channels, " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
goto captureProbe;
}
info.outputChannels = value;
snd_pcm_close(phandle);
captureProbe:
stream = SND_PCM_STREAM_CAPTURE;
snd_pcm_info_set_stream(pcminfo, stream);
// Now try for capture unless default device (with subdev = -1)
if (subdevice != -1) {
result = snd_ctl_pcm_info(chandle, pcminfo);
snd_ctl_close(chandle);
if (result < 0) {
// Device probably doesn't support capture.
if (info.outputChannels == 0) {
return info;
}
goto probeParameters;
}
}
result = snd_pcm_open(&phandle, name, stream, openMode | SND_PCM_NONBLOCK);
if (result < 0) {
ATA_ERROR("snd_pcm_open error for device (" << name << "), " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
if (info.outputChannels == 0) {
return info;
}
goto probeParameters;
}
// The device is open ... fill the parameter structure.
result = snd_pcm_hw_params_any(phandle, params);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("snd_pcm_hw_params error for device (" << name << "), " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
if (info.outputChannels == 0) {
return info;
}
goto probeParameters;
}
result = snd_pcm_hw_params_get_channels_max(params, &value);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error getting device (" << name << ") input channels, " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
if (info.outputChannels == 0) {
return info;
}
goto probeParameters;
}
info.inputChannels = value;
snd_pcm_close(phandle);
// If device opens for both playback and capture, we determine the channels.
if (info.outputChannels > 0 && info.inputChannels > 0) {
info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
}
// ALSA doesn't provide default devices so we'll use the first available one.
if (_device == 0 && info.outputChannels > 0) {
info.isDefaultOutput = true;
}
if (_device == 0 && info.inputChannels > 0) {
info.isDefaultInput = true;
}
probeParameters:
// At this point, we just need to figure out the supported data
// formats and sample rates. We'll proceed by opening the device in
// the direction with the maximum number of channels, or playback if
// they are equal. This might limit our sample rate options, but so
// be it.
if (info.outputChannels >= info.inputChannels) {
stream = SND_PCM_STREAM_PLAYBACK;
} else {
stream = SND_PCM_STREAM_CAPTURE;
}
snd_pcm_info_set_stream(pcminfo, stream);
result = snd_pcm_open(&phandle, name, stream, openMode | SND_PCM_NONBLOCK);
if (result < 0) {
ATA_ERROR("snd_pcm_open error for device (" << name << "), " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
return info;
}
// The device is open ... fill the parameter structure.
result = snd_pcm_hw_params_any(phandle, params);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("snd_pcm_hw_params error for device (" << name << "), " << snd_strerror(result) << ".");
// TODO : Return airtaudio::error_warning;
return info;
}
// Test our discrete set of sample rate values.
info.sampleRates.clear();
for (auto &it : airtaudio::genericSampleRate()) {
if (snd_pcm_hw_params_test_rate(phandle, params, it, 0) == 0) {
info.sampleRates.push_back(it);
}
}
if (info.sampleRates.size() == 0) {
snd_pcm_close(phandle);
ATA_ERROR("no supported sample rates found for device (" << name << ").");
// TODO : Return airtaudio::error_warning;
return info;
}
// Probe the supported data formats ... we don't care about endian-ness just yet
snd_pcm_format_t format;
info.nativeFormats.clear();
format = SND_PCM_FORMAT_S8;
if (snd_pcm_hw_params_test_format(phandle, params, format) == 0) {
info.nativeFormats.push_back(audio::format_int8);
}
format = SND_PCM_FORMAT_S16;
if (snd_pcm_hw_params_test_format(phandle, params, format) == 0) {
info.nativeFormats.push_back(audio::format_int16);
}
format = SND_PCM_FORMAT_S24;
if (snd_pcm_hw_params_test_format(phandle, params, format) == 0) {
info.nativeFormats.push_back(audio::format_int24);
}
format = SND_PCM_FORMAT_S32;
if (snd_pcm_hw_params_test_format(phandle, params, format) == 0) {
info.nativeFormats.push_back(audio::format_int32);
}
format = SND_PCM_FORMAT_FLOAT;
if (snd_pcm_hw_params_test_format(phandle, params, format) == 0) {
info.nativeFormats.push_back(audio::format_float);
}
format = SND_PCM_FORMAT_FLOAT64;
if (snd_pcm_hw_params_test_format(phandle, params, format) == 0) {
info.nativeFormats.push_back(audio::format_double);
}
// Check that we have at least one supported format
if (info.nativeFormats.size() == 0) {
ATA_ERROR("pcm device (" << name << ") data format not supported by RtAudio.");
// TODO : Return airtaudio::error_warning;
return info;
}
// Get the device name
char *cardname;
result = snd_card_get_name(card, &cardname);
if (result >= 0) {
sprintf(name, "hw:%s,%d", cardname, subdevice);
}
info.name = name;
// That's all ... close the device and return
snd_pcm_close(phandle);
info.probed = true;
return info;
}
void airtaudio::api::Alsa::saveDeviceInfo() {
m_devices.clear();
uint32_t nDevices = getDeviceCount();
m_devices.resize(nDevices);
for (uint32_t iii=0; iii<nDevices; ++iii) {
m_devices[iii] = getDeviceInfo(iii);
}
}
bool airtaudio::api::Alsa::probeDeviceOpen(uint32_t _device,
airtaudio::mode _mode,
uint32_t _channels,
uint32_t _firstChannel,
uint32_t _sampleRate,
audio::format _format,
uint32_t *_bufferSize,
airtaudio::StreamOptions *_options) {
// I'm not using the "plug" interface ... too much inconsistent behavior.
unsigned nDevices = 0;
int32_t result, subdevice, card;
char name[64];
snd_ctl_t *chandle;
// Count cards and devices
card = -1;
// NOTE : Find the device name : [BEGIN]
snd_card_next(&card);
while (card >= 0) {
sprintf(name, "hw:%d", card);
result = snd_ctl_open(&chandle, name, SND_CTL_NONBLOCK);
if (result < 0) {
ATA_ERROR("control open, card = " << card << ", " << snd_strerror(result) << ".");
return false;
}
subdevice = -1;
while(1) {
result = snd_ctl_pcm_next_device(chandle, &subdevice);
if (result < 0) break;
if (subdevice < 0) break;
if (nDevices == _device) {
sprintf(name, "hw:%d,%d", card, subdevice);
snd_ctl_close(chandle);
goto foundDevice;
}
nDevices++;
}
snd_ctl_close(chandle);
snd_card_next(&card);
}
result = snd_ctl_open(&chandle, "default", SND_CTL_NONBLOCK);
if (result == 0) {
if (nDevices == _device) {
strcpy(name, "default");
goto foundDevice;
}
nDevices++;
}
if (nDevices == 0) {
// This should not happen because a check is made before this function is called.
ATA_ERROR("no devices found!");
return false;
}
if (_device >= nDevices) {
// This should not happen because a check is made before this function is called.
ATA_ERROR("device ID is invalid!");
return false;
}
// NOTE : Find the device name : [ END ]
foundDevice:
// The getDeviceInfo() function will not work for a device that is
// already open. Thus, we'll probe the system before opening a
// stream and save the results for use by getDeviceInfo().
if ( _mode == airtaudio::mode_output
|| ( _mode == airtaudio::mode_input
&& m_mode != airtaudio::mode_output)) {
// only do once
this->saveDeviceInfo();
}
snd_pcm_stream_t stream;
if (_mode == airtaudio::mode_output) {
stream = SND_PCM_STREAM_PLAYBACK;
} else {
stream = SND_PCM_STREAM_CAPTURE;
}
snd_pcm_t *phandle;
int32_t openMode = SND_PCM_ASYNC;
result = snd_pcm_open(&phandle, name, stream, openMode);
if (result < 0) {
if (_mode == airtaudio::mode_output) {
ATA_ERROR("pcm device (" << name << ") won't open for output.");
} else {
ATA_ERROR("pcm device (" << name << ") won't open for input.");
}
return false;
}
// Fill the parameter structure.
snd_pcm_hw_params_t *hw_params;
snd_pcm_hw_params_alloca(&hw_params);
result = snd_pcm_hw_params_any(phandle, hw_params);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error getting pcm device (" << name << ") parameters, " << snd_strerror(result) << ".");
return false;
}
// Open stream all time in interleave mode (by default): (open in non interleave if we have no choice
result = snd_pcm_hw_params_set_access(phandle, hw_params, SND_PCM_ACCESS_RW_INTERLEAVED);
if (result < 0) {
result = snd_pcm_hw_params_set_access(phandle, hw_params, SND_PCM_ACCESS_RW_NONINTERLEAVED);
m_deviceInterleaved[modeToIdTable(_mode)] = false;
} else {
m_deviceInterleaved[modeToIdTable(_mode)] = true;
}
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error setting pcm device (" << name << ") access, " << snd_strerror(result) << ".");
return false;
}
// Determine how to set the device format.
m_userFormat = _format;
snd_pcm_format_t deviceFormat = SND_PCM_FORMAT_UNKNOWN;
if (_format == audio::format_int8) {
deviceFormat = SND_PCM_FORMAT_S8;
} else if (_format == audio::format_int16) {
deviceFormat = SND_PCM_FORMAT_S16;
} else if (_format == audio::format_int24) {
deviceFormat = SND_PCM_FORMAT_S24;
} else if (_format == audio::format_int32) {
deviceFormat = SND_PCM_FORMAT_S32;
} else if (_format == audio::format_float) {
deviceFormat = SND_PCM_FORMAT_FLOAT;
} else if (_format == audio::format_double) {
deviceFormat = SND_PCM_FORMAT_FLOAT64;
}
if (snd_pcm_hw_params_test_format(phandle, hw_params, deviceFormat) == 0) {
m_deviceFormat[modeToIdTable(_mode)] = _format;
} else {
// If we get here, no supported format was found.
snd_pcm_close(phandle);
ATA_ERROR("pcm device " << _device << " data format not supported: " << _format);
// TODO : display list of all supported format ..
return false;
}
result = snd_pcm_hw_params_set_format(phandle, hw_params, deviceFormat);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error setting pcm device (" << name << ") data format, " << snd_strerror(result) << ".");
return false;
}
// Determine whether byte-swaping is necessary.
m_doByteSwap[modeToIdTable(_mode)] = false;
if (deviceFormat != SND_PCM_FORMAT_S8) {
result = snd_pcm_format_cpu_endian(deviceFormat);
if (result == 0) {
m_doByteSwap[modeToIdTable(_mode)] = true;
} else if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error getting pcm device (" << name << ") endian-ness, " << snd_strerror(result) << ".");
return false;
}
}
// Set the sample rate.
result = snd_pcm_hw_params_set_rate_near(phandle, hw_params, (uint32_t*) &_sampleRate, 0);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error setting sample rate on device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
// Determine the number of channels for this device. We support a possible
// minimum device channel number > than the value requested by the user.
m_nUserChannels[modeToIdTable(_mode)] = _channels;
uint32_t value;
result = snd_pcm_hw_params_get_channels_max(hw_params, &value);
uint32_t deviceChannels = value;
if ( result < 0
|| deviceChannels < _channels + _firstChannel) {
snd_pcm_close(phandle);
ATA_ERROR("requested channel parameters not supported by device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
result = snd_pcm_hw_params_get_channels_min(hw_params, &value);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error getting minimum channels for device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
deviceChannels = value;
if (deviceChannels < _channels + _firstChannel) {
deviceChannels = _channels + _firstChannel;
}
m_nDeviceChannels[modeToIdTable(_mode)] = deviceChannels;
// Set the device channels.
result = snd_pcm_hw_params_set_channels(phandle, hw_params, deviceChannels);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error setting channels for device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
// Set the buffer (or period) size.
int32_t dir = 0;
snd_pcm_uframes_t periodSize = *_bufferSize;
result = snd_pcm_hw_params_set_period_size_near(phandle, hw_params, &periodSize, &dir);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error setting period size for device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
*_bufferSize = periodSize;
// Set the buffer number, which in ALSA is referred to as the "period".
uint32_t periods = 0;
if ( _options != nullptr
&& _options->flags.m_minimizeLatency == true) {
periods = 2;
}
/* TODO : Chouse the number of low level buffer ...
if ( _options != nullptr
&& _options->numberOfBuffers > 0) {
periods = _options->numberOfBuffers;
}
*/
if (periods < 2) {
periods = 4; // a fairly safe default value
}
result = snd_pcm_hw_params_set_periods_near(phandle, hw_params, &periods, &dir);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error setting periods for device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
// If attempting to setup a duplex stream, the bufferSize parameter
// MUST be the same in both directions!
if ( m_mode == airtaudio::mode_output
&& _mode == airtaudio::mode_input
&& *_bufferSize != m_bufferSize) {
snd_pcm_close(phandle);
ATA_ERROR("system error setting buffer size for duplex stream on device (" << name << ").");
return false;
}
m_bufferSize = *_bufferSize;
// Install the hardware configuration
result = snd_pcm_hw_params(phandle, hw_params);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error installing hardware configuration on device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
// Set the software configuration to fill buffers with zeros and prevent device stopping on xruns.
snd_pcm_sw_params_t *sw_params = nullptr;
snd_pcm_sw_params_alloca(&sw_params);
snd_pcm_sw_params_current(phandle, sw_params);
snd_pcm_sw_params_set_start_threshold(phandle, sw_params, *_bufferSize);
snd_pcm_sw_params_set_stop_threshold(phandle, sw_params, ULONG_MAX);
snd_pcm_sw_params_set_silence_threshold(phandle, sw_params, 0);
// The following two settings were suggested by Theo Veenker
//snd_pcm_sw_params_set_avail_min(phandle, sw_params, *_bufferSize);
//snd_pcm_sw_params_set_xfer_align(phandle, sw_params, 1);
// here are two options for a fix
//snd_pcm_sw_params_set_silence_size(phandle, sw_params, ULONG_MAX);
snd_pcm_uframes_t val;
snd_pcm_sw_params_get_boundary(sw_params, &val);
snd_pcm_sw_params_set_silence_size(phandle, sw_params, val);
result = snd_pcm_sw_params(phandle, sw_params);
if (result < 0) {
snd_pcm_close(phandle);
ATA_ERROR("error installing software configuration on device (" << name << "), " << snd_strerror(result) << ".");
return false;
}
// Set flags for buffer conversion
m_doConvertBuffer[modeToIdTable(_mode)] = false;
if (m_userFormat != m_deviceFormat[modeToIdTable(_mode)]) {
m_doConvertBuffer[modeToIdTable(_mode)] = true;
}
if (m_nUserChannels[modeToIdTable(_mode)] < m_nDeviceChannels[modeToIdTable(_mode)]) {
m_doConvertBuffer[modeToIdTable(_mode)] = true;
}
if ( m_deviceInterleaved[modeToIdTable(_mode)] == false
&& m_nUserChannels[modeToIdTable(_mode)] > 1) {
m_doConvertBuffer[modeToIdTable(_mode)] = true;
}
// Allocate the ApiHandle if necessary and then save.
AlsaHandle *apiInfo = nullptr;
if (m_apiHandle == nullptr) {
apiInfo = (AlsaHandle *) new AlsaHandle;
if (apiInfo == nullptr) {
ATA_ERROR("error allocating AlsaHandle memory.");
goto error;
}
m_apiHandle = (void *) apiInfo;
} else {
apiInfo = (AlsaHandle *) m_apiHandle;
}
apiInfo->handles[modeToIdTable(_mode)] = phandle;
phandle = 0;
// Allocate necessary internal buffers.
uint64_t bufferBytes;
bufferBytes = m_nUserChannels[modeToIdTable(_mode)] * *_bufferSize * audio::getFormatBytes(m_userFormat);
m_userBuffer[modeToIdTable(_mode)].resize(bufferBytes, 0);
if (m_userBuffer[modeToIdTable(_mode)].size() == 0) {
ATA_ERROR("error allocating user buffer memory.");
goto error;
}
if (m_doConvertBuffer[modeToIdTable(_mode)]) {
bool makeBuffer = true;
bufferBytes = m_nDeviceChannels[modeToIdTable(_mode)] * audio::getFormatBytes(m_deviceFormat[modeToIdTable(_mode)]);
if (_mode == airtaudio::mode_input) {
if ( m_mode == airtaudio::mode_output
&& m_deviceBuffer) {
uint64_t bytesOut = m_nDeviceChannels[0] * audio::getFormatBytes(m_deviceFormat[0]);
if (bufferBytes <= bytesOut) {
makeBuffer = false;
}
}
}
if (makeBuffer) {
bufferBytes *= *_bufferSize;
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = nullptr;
}
m_deviceBuffer = (char *) calloc(bufferBytes, 1);
if (m_deviceBuffer == nullptr) {
ATA_ERROR("error allocating device buffer memory.");
goto error;
}
}
}
m_sampleRate = _sampleRate;
m_nBuffers = periods;
m_device[modeToIdTable(_mode)] = _device;
m_state = airtaudio::state_stopped;
// Setup the buffer conversion information structure.
if (m_doConvertBuffer[modeToIdTable(_mode)]) {
setConvertInfo(_mode, _firstChannel);
}
// Setup thread if necessary.
if ( m_mode == airtaudio::mode_output
&& _mode == airtaudio::mode_input) {
// We had already set up an output stream.
m_mode = airtaudio::mode_duplex;
// Link the streams if possible.
apiInfo->synchronized = false;
if (snd_pcm_link(apiInfo->handles[0], apiInfo->handles[1]) == 0) {
apiInfo->synchronized = true;
} else {
ATA_ERROR("unable to synchronize input and output devices.");
// TODO : airtaudio::error_warning;
}
} else {
m_mode = _mode;
// Setup callback thread.
m_callbackInfo.isRunning = true;
m_callbackInfo.thread = new std::thread(&airtaudio::api::Alsa::alsaCallbackEvent, this);
if (m_callbackInfo.thread == nullptr) {
m_callbackInfo.isRunning = false;
ATA_ERROR("creating callback thread!");
goto error;
}
}
return true;
error:
if (apiInfo != nullptr) {
if (apiInfo->handles[0]) {
snd_pcm_close(apiInfo->handles[0]);
}
if (apiInfo->handles[1]) {
snd_pcm_close(apiInfo->handles[1]);
}
delete apiInfo;
apiInfo = nullptr;
m_apiHandle = 0;
}
if (phandle) {
snd_pcm_close(phandle);
}
for (int32_t iii=0; iii<2; ++iii) {
m_userBuffer[iii].clear();
}
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = 0;
}
m_state = airtaudio::state_closed;
return false;
}
enum airtaudio::error airtaudio::api::Alsa::closeStream() {
if (m_state == airtaudio::state_closed) {
ATA_ERROR("no open stream to close!");
return airtaudio::error_warning;
}
AlsaHandle *apiInfo = (AlsaHandle *) m_apiHandle;
m_callbackInfo.isRunning = false;
m_mutex.lock();
if (m_state == airtaudio::state_stopped) {
apiInfo->runnable = true;
apiInfo->runnable_cv.notify_one();
}
m_mutex.unlock();
if (m_callbackInfo.thread != nullptr) {
m_callbackInfo.thread->join();
}
if (m_state == airtaudio::state_running) {
m_state = airtaudio::state_stopped;
if ( m_mode == airtaudio::mode_output
|| m_mode == airtaudio::mode_duplex) {
snd_pcm_drop(apiInfo->handles[0]);
}
if ( m_mode == airtaudio::mode_input
|| m_mode == airtaudio::mode_duplex) {
snd_pcm_drop(apiInfo->handles[1]);
}
}
if (apiInfo != nullptr) {
if (apiInfo->handles[0]) {
snd_pcm_close(apiInfo->handles[0]);
}
if (apiInfo->handles[1]) {
snd_pcm_close(apiInfo->handles[1]);
}
delete apiInfo;
apiInfo = nullptr;
m_apiHandle = 0;
}
for (int32_t iii=0; iii<2; ++iii) {
m_userBuffer[iii].clear();
}
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = 0;
}
m_mode = airtaudio::mode_unknow;
m_state = airtaudio::state_closed;
return airtaudio::error_none;
}
enum airtaudio::error airtaudio::api::Alsa::startStream() {
// This method calls snd_pcm_prepare if the device isn't already in that state.
if (verifyStream() != airtaudio::error_none) {
return airtaudio::error_fail;
}
if (m_state == airtaudio::state_running) {
ATA_ERROR("the stream is already running!");
return airtaudio::error_warning;
}
std::unique_lock<std::mutex> lck(m_mutex);
int32_t result = 0;
snd_pcm_state_t state;
AlsaHandle *apiInfo = (AlsaHandle *) m_apiHandle;
snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
if ( m_mode == airtaudio::mode_output
|| m_mode == airtaudio::mode_duplex) {
if (handle[0] == nullptr) {
ATA_ERROR("send nullptr to alsa ...");
if (handle[1] != nullptr) {
ATA_ERROR("note : 1 is not null");
}
}
state = snd_pcm_state(handle[0]);
if (state != SND_PCM_STATE_PREPARED) {
result = snd_pcm_prepare(handle[0]);
if (result < 0) {
ATA_ERROR("error preparing output pcm device, " << snd_strerror(result) << ".");
goto unlock;
}
}
}
if ( ( m_mode == airtaudio::mode_input
|| m_mode == airtaudio::mode_duplex)
&& !apiInfo->synchronized) {
if (handle[1] == nullptr) {
ATA_ERROR("send nullptr to alsa ...");
if (handle[0] != nullptr) {
ATA_ERROR("note : 0 is not null");
}
}
state = snd_pcm_state(handle[1]);
if (state != SND_PCM_STATE_PREPARED) {
result = snd_pcm_prepare(handle[1]);
if (result < 0) {
ATA_ERROR("error preparing input pcm device, " << snd_strerror(result) << ".");
goto unlock;
}
}
}
m_state = airtaudio::state_running;
unlock:
apiInfo->runnable = true;
apiInfo->runnable_cv.notify_one();
if (result >= 0) {
return airtaudio::error_none;
}
return airtaudio::error_systemError;
}
enum airtaudio::error airtaudio::api::Alsa::stopStream() {
if (verifyStream() != airtaudio::error_none) {
return airtaudio::error_fail;
}
if (m_state == airtaudio::state_stopped) {
ATA_ERROR("the stream is already stopped!");
return airtaudio::error_warning;
}
m_state = airtaudio::state_stopped;
std::unique_lock<std::mutex> lck(m_mutex);
int32_t result = 0;
AlsaHandle *apiInfo = (AlsaHandle *) m_apiHandle;
snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
if ( m_mode == airtaudio::mode_output
|| m_mode == airtaudio::mode_duplex) {
if (apiInfo->synchronized) {
result = snd_pcm_drop(handle[0]);
} else {
result = snd_pcm_drain(handle[0]);
}
if (result < 0) {
ATA_ERROR("error draining output pcm device, " << snd_strerror(result) << ".");
goto unlock;
}
}
if ( ( m_mode == airtaudio::mode_input
|| m_mode == airtaudio::mode_duplex)
&& !apiInfo->synchronized) {
result = snd_pcm_drop(handle[1]);
if (result < 0) {
ATA_ERROR("error stopping input pcm device, " << snd_strerror(result) << ".");
goto unlock;
}
}
unlock:
if (result >= 0) {
return airtaudio::error_none;
}
return airtaudio::error_systemError;
}
enum airtaudio::error airtaudio::api::Alsa::abortStream() {
if (verifyStream() != airtaudio::error_none) {
return airtaudio::error_fail;
}
if (m_state == airtaudio::state_stopped) {
ATA_ERROR("the stream is already stopped!");
return airtaudio::error_warning;
}
m_state = airtaudio::state_stopped;
std::unique_lock<std::mutex> lck(m_mutex);
int32_t result = 0;
AlsaHandle *apiInfo = (AlsaHandle *) m_apiHandle;
snd_pcm_t **handle = (snd_pcm_t **) apiInfo->handles;
if ( m_mode == airtaudio::mode_output
|| m_mode == airtaudio::mode_duplex) {
result = snd_pcm_drop(handle[0]);
if (result < 0) {
ATA_ERROR("error aborting output pcm device, " << snd_strerror(result) << ".");
goto unlock;
}
}
if ( ( m_mode == airtaudio::mode_input
|| m_mode == airtaudio::mode_duplex)
&& !apiInfo->synchronized) {
result = snd_pcm_drop(handle[1]);
if (result < 0) {
ATA_ERROR("error aborting input pcm device, " << snd_strerror(result) << ".");
goto unlock;
}
}
unlock:
if (result >= 0) {
return airtaudio::error_none;
}
return airtaudio::error_systemError;
}
void airtaudio::api::Alsa::alsaCallbackEvent(void *_userData) {
airtaudio::api::Alsa* myClass = reinterpret_cast<airtaudio::api::Alsa*>(_userData);
myClass->callbackEvent();
}
void airtaudio::api::Alsa::callbackEvent() {
while (m_callbackInfo.isRunning == true) {
callbackEventOneCycle();
}
}
void airtaudio::api::Alsa::callbackEventOneCycle() {
AlsaHandle *apiInfo = (AlsaHandle *) m_apiHandle;
if (m_state == airtaudio::state_stopped) {
std::unique_lock<std::mutex> lck(m_mutex);
// TODO : Set this back ....
/*
while (!apiInfo->runnable) {
apiInfo->runnable_cv.wait(lck);
}
*/
if (m_state != airtaudio::state_running) {
return;
}
}
if (m_state == airtaudio::state_closed) {
ATA_CRITICAL("the stream is closed ... this shouldn't happen!");
return; // TODO : notify appl: airtaudio::error_warning;
}
int32_t doStopStream = 0;
double streamTime = getStreamTime();
enum airtaudio::status status = airtaudio::status_ok;
if (m_mode != airtaudio::mode_input && apiInfo->xrun[0] == true) {
status = airtaudio::status_underflow;
apiInfo->xrun[0] = false;
}
if (m_mode != airtaudio::mode_output && apiInfo->xrun[1] == true) {
status = airtaudio::status_overflow;
apiInfo->xrun[1] = false;
}
doStopStream = m_callbackInfo.callback(&m_userBuffer[0][0],
&m_userBuffer[1][0],
m_bufferSize,
streamTime,
status);
if (doStopStream == 2) {
abortStream();
return;
}
std::unique_lock<std::mutex> lck(m_mutex);
// The state might change while waiting on a mutex.
if (m_state == airtaudio::state_stopped) {
goto unlock;
}
int32_t result;
char *buffer;
int32_t channels;
snd_pcm_t **handle;
snd_pcm_sframes_t frames;
audio::format format;
handle = (snd_pcm_t **) apiInfo->handles;
if ( m_mode == airtaudio::mode_input
|| m_mode == airtaudio::mode_duplex) {
// Setup parameters.
if (m_doConvertBuffer[1]) {
buffer = m_deviceBuffer;
channels = m_nDeviceChannels[1];
format = m_deviceFormat[1];
} else {
buffer = &m_userBuffer[1][0];
channels = m_nUserChannels[1];
format = m_userFormat;
}
// Read samples from device in interleaved/non-interleaved format.
if (m_deviceInterleaved[1]) {
result = snd_pcm_readi(handle[1], buffer, m_bufferSize);
} else {
void *bufs[channels];
size_t offset = m_bufferSize * audio::getFormatBytes(format);
for (int32_t i=0; i<channels; i++)
bufs[i] = (void *) (buffer + (i * offset));
result = snd_pcm_readn(handle[1], bufs, m_bufferSize);
}
if (result < (int) m_bufferSize) {
// Either an error or overrun occured.
if (result == -EPIPE) {
snd_pcm_state_t state = snd_pcm_state(handle[1]);
if (state == SND_PCM_STATE_XRUN) {
apiInfo->xrun[1] = true;
result = snd_pcm_prepare(handle[1]);
if (result < 0) {
ATA_ERROR("error preparing device after overrun, " << snd_strerror(result) << ".");
}
} else {
ATA_ERROR("error, current state is " << snd_pcm_state_name(state) << ", " << snd_strerror(result) << ".");
}
} else {
ATA_ERROR("audio read error, " << snd_strerror(result) << ".");
}
// TODO : Notify application ... airtaudio::error_warning;
goto tryOutput;
}
// Do byte swapping if necessary.
if (m_doByteSwap[1]) {
byteSwapBuffer(buffer, m_bufferSize * channels, format);
}
// Do buffer conversion if necessary.
if (m_doConvertBuffer[1]) {
convertBuffer(&m_userBuffer[1][0], m_deviceBuffer, m_convertInfo[1]);
}
// Check stream latency
result = snd_pcm_delay(handle[1], &frames);
if (result == 0 && frames > 0) {
m_latency[1] = frames;
}
}
tryOutput:
if ( m_mode == airtaudio::mode_output
|| m_mode == airtaudio::mode_duplex) {
// Setup parameters and do buffer conversion if necessary.
if (m_doConvertBuffer[0]) {
buffer = m_deviceBuffer;
convertBuffer(buffer, &m_userBuffer[0][0], m_convertInfo[0]);
channels = m_nDeviceChannels[0];
format = m_deviceFormat[0];
} else {
buffer = &m_userBuffer[0][0];
channels = m_nUserChannels[0];
format = m_userFormat;
}
// Do byte swapping if necessary.
if (m_doByteSwap[0]) {
byteSwapBuffer(buffer, m_bufferSize * channels, format);
}
// Write samples to device in interleaved/non-interleaved format.
if (m_deviceInterleaved[0]) {
result = snd_pcm_writei(handle[0], buffer, m_bufferSize);
} else {
void *bufs[channels];
size_t offset = m_bufferSize * audio::getFormatBytes(format);
for (int32_t i=0; i<channels; i++) {
bufs[i] = (void *) (buffer + (i * offset));
}
result = snd_pcm_writen(handle[0], bufs, m_bufferSize);
}
if (result < (int) m_bufferSize) {
// Either an error or underrun occured.
if (result == -EPIPE) {
snd_pcm_state_t state = snd_pcm_state(handle[0]);
if (state == SND_PCM_STATE_XRUN) {
apiInfo->xrun[0] = true;
result = snd_pcm_prepare(handle[0]);
if (result < 0) {
ATA_ERROR("error preparing device after underrun, " << snd_strerror(result) << ".");
}
} else {
ATA_ERROR("error, current state is " << snd_pcm_state_name(state) << ", " << snd_strerror(result) << ".");
}
} else {
ATA_ERROR("audio write error, " << snd_strerror(result) << ".");
}
// TODO : Notuify application airtaudio::error_warning;
goto unlock;
}
// Check stream latency
result = snd_pcm_delay(handle[0], &frames);
if (result == 0 && frames > 0) {
m_latency[0] = frames;
}
}
unlock:
airtaudio::Api::tickStreamTime();
if (doStopStream == 1) {
this->stopStream();
}
}
#endif