859 lines
27 KiB
C++

/**
* @author Gary P. SCAVONE
*
* @copyright 2001-2013 Gary P. Scavone, all right reserved
*
* @license like MIT (see license file)
*/
#include <airtaudio/Interface.h>
#include <airtaudio/debug.h>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <climits>
// Static variable definitions.
const uint32_t airtaudio::api::MAX_SAMPLE_RATES = 14;
const uint32_t airtaudio::api::SAMPLE_RATES[] = {
4000,
5512,
8000,
9600,
11025,
16000,
22050,
32000,
44100,
48000,
88200,
96000,
176400,
192000
};
airtaudio::Api::Api(void) {
m_stream.state = airtaudio::api::STREAM_CLOSED;
m_stream.mode = airtaudio::api::UNINITIALIZED;
m_stream.apiHandle = 0;
m_stream.userBuffer[0] = 0;
m_stream.userBuffer[1] = 0;
}
airtaudio::Api::~Api(void) {
}
enum airtaudio::errorType airtaudio::Api::openStream(airtaudio::StreamParameters *oParams,
airtaudio::StreamParameters *iParams,
airtaudio::format format,
uint32_t sampleRate,
uint32_t *bufferFrames,
airtaudio::AirTAudioCallback callback,
void *userData,
airtaudio::StreamOptions *options) {
if (m_stream.state != airtaudio::api::STREAM_CLOSED) {
ATA_ERROR("airtaudio::Api::openStream: a stream is already open!");
return airtaudio::errorInvalidUse;
}
if (oParams && oParams->nChannels < 1) {
ATA_ERROR("airtaudio::Api::openStream: a non-NULL output StreamParameters structure cannot have an nChannels value less than one.");
return airtaudio::errorInvalidUse;
}
if (iParams && iParams->nChannels < 1) {
ATA_ERROR("airtaudio::Api::openStream: a non-NULL input StreamParameters structure cannot have an nChannels value less than one.");
return airtaudio::errorInvalidUse;
}
if (oParams == NULL && iParams == NULL) {
ATA_ERROR("airtaudio::Api::openStream: input and output StreamParameters structures are both NULL!");
return airtaudio::errorInvalidUse;
}
if (formatBytes(format) == 0) {
ATA_ERROR("airtaudio::Api::openStream: 'format' parameter value is undefined.");
return airtaudio::errorInvalidUse;
}
uint32_t nDevices = getDeviceCount();
uint32_t oChannels = 0;
if (oParams) {
oChannels = oParams->nChannels;
if (oParams->deviceId >= nDevices) {
ATA_ERROR("airtaudio::Api::openStream: output device parameter value is invalid.");
return airtaudio::errorInvalidUse;
}
}
uint32_t iChannels = 0;
if (iParams) {
iChannels = iParams->nChannels;
if (iParams->deviceId >= nDevices) {
ATA_ERROR("airtaudio::Api::openStream: input device parameter value is invalid.");
return airtaudio::errorInvalidUse;
}
}
clearStreamInfo();
bool result;
if (oChannels > 0) {
result = probeDeviceOpen(oParams->deviceId,
airtaudio::api::OUTPUT,
oChannels,
oParams->firstChannel,
sampleRate,
format,
bufferFrames,
options);
if (result == false) {
ATA_ERROR("system ERROR");
return airtaudio::errorSystemError;
}
}
if (iChannels > 0) {
result = probeDeviceOpen(iParams->deviceId,
airtaudio::api::INPUT,
iChannels,
iParams->firstChannel,
sampleRate,
format,
bufferFrames,
options);
if (result == false) {
if (oChannels > 0) {
closeStream();
}
ATA_ERROR("system error");
return airtaudio::errorSystemError;
}
}
m_stream.callbackInfo.callback = (void *) callback;
m_stream.callbackInfo.userData = userData;
if (options != NULL) {
options->numberOfBuffers = m_stream.nBuffers;
}
m_stream.state = airtaudio::api::STREAM_STOPPED;
return airtaudio::errorNone;
}
uint32_t airtaudio::Api::getDefaultInputDevice(void) {
// Should be implemented in subclasses if possible.
return 0;
}
uint32_t airtaudio::Api::getDefaultOutputDevice(void) {
// Should be implemented in subclasses if possible.
return 0;
}
enum airtaudio::errorType airtaudio::Api::closeStream(void) {
// MUST be implemented in subclasses!
return airtaudio::errorNone;
}
bool airtaudio::Api::probeDeviceOpen(uint32_t /*device*/,
airtaudio::api::StreamMode /*mode*/,
uint32_t /*channels*/,
uint32_t /*firstChannel*/,
uint32_t /*sampleRate*/,
airtaudio::format /*format*/,
uint32_t * /*bufferSize*/,
airtaudio::StreamOptions * /*options*/) {
// MUST be implemented in subclasses!
return airtaudio::api::FAILURE;
}
void airtaudio::Api::tickStreamTime(void) {
// Subclasses that do not provide their own implementation of
// getStreamTime should call this function once per buffer I/O to
// provide basic stream time support.
m_stream.streamTime += (m_stream.bufferSize * 1.0 / m_stream.sampleRate);
#if defined(HAVE_GETTIMEOFDAY)
gettimeofday(&m_stream.lastTickTimestamp, NULL);
#endif
}
long airtaudio::Api::getStreamLatency(void) {
if (verifyStream() != airtaudio::errorNone) {
return 0;
}
long totalLatency = 0;
if ( m_stream.mode == airtaudio::api::OUTPUT
|| m_stream.mode == airtaudio::api::DUPLEX) {
totalLatency = m_stream.latency[0];
}
if ( m_stream.mode == airtaudio::api::INPUT
|| m_stream.mode == airtaudio::api::DUPLEX) {
totalLatency += m_stream.latency[1];
}
return totalLatency;
}
double airtaudio::Api::getStreamTime(void) {
if (verifyStream() != airtaudio::errorNone) {
return 0.0f;
}
#if defined(HAVE_GETTIMEOFDAY)
// Return a very accurate estimate of the stream time by
// adding in the elapsed time since the last tick.
struct timeval then;
struct timeval now;
if (m_stream.state != airtaudio::api::STREAM_RUNNING || m_stream.streamTime == 0.0) {
return m_stream.streamTime;
}
gettimeofday(&now, NULL);
then = m_stream.lastTickTimestamp;
return m_stream.streamTime
+ ((now.tv_sec + 0.000001 * now.tv_usec)
- (then.tv_sec + 0.000001 * then.tv_usec));
#else
return m_stream.streamTime;
#endif
}
uint32_t airtaudio::Api::getStreamSampleRate(void) {
if (verifyStream() != airtaudio::errorNone) {
return 0;
}
return m_stream.sampleRate;
}
enum airtaudio::errorType airtaudio::Api::verifyStream(void) {
if (m_stream.state == airtaudio::api::STREAM_CLOSED) {
ATA_ERROR("airtaudio::Api:: a stream is not open!");
return airtaudio::errorInvalidUse;
}
return airtaudio::errorNone;
}
void airtaudio::Api::clearStreamInfo(void) {
m_stream.mode = airtaudio::api::UNINITIALIZED;
m_stream.state = airtaudio::api::STREAM_CLOSED;
m_stream.sampleRate = 0;
m_stream.bufferSize = 0;
m_stream.nBuffers = 0;
m_stream.userFormat = 0;
m_stream.userInterleaved = true;
m_stream.streamTime = 0.0;
m_stream.apiHandle = 0;
m_stream.deviceBuffer = 0;
m_stream.callbackInfo.callback = 0;
m_stream.callbackInfo.userData = 0;
m_stream.callbackInfo.isRunning = false;
for (int32_t iii=0; iii<2; ++iii) {
m_stream.device[iii] = 11111;
m_stream.doConvertBuffer[iii] = false;
m_stream.deviceInterleaved[iii] = true;
m_stream.doByteSwap[iii] = false;
m_stream.nUserChannels[iii] = 0;
m_stream.nDeviceChannels[iii] = 0;
m_stream.channelOffset[iii] = 0;
m_stream.deviceFormat[iii] = 0;
m_stream.latency[iii] = 0;
m_stream.userBuffer[iii] = 0;
m_stream.convertInfo[iii].channels = 0;
m_stream.convertInfo[iii].inJump = 0;
m_stream.convertInfo[iii].outJump = 0;
m_stream.convertInfo[iii].inFormat = 0;
m_stream.convertInfo[iii].outFormat = 0;
m_stream.convertInfo[iii].inOffset.clear();
m_stream.convertInfo[iii].outOffset.clear();
}
}
uint32_t airtaudio::Api::formatBytes(airtaudio::format _format)
{
if (_format == airtaudio::SINT16) {
return 2;
} else if ( _format == airtaudio::SINT32
|| _format == airtaudio::FLOAT32) {
return 4;
} else if (_format == airtaudio::FLOAT64) {
return 8;
} else if (_format == airtaudio::SINT24) {
return 3;
} else if (_format == airtaudio::SINT8) {
return 1;
}
ATA_ERROR("airtaudio::Api::formatBytes: undefined format.");
// TODO : airtaudio::errorWarning;
return 0;
}
void airtaudio::Api::setConvertInfo(airtaudio::api::StreamMode _mode, uint32_t _firstChannel) {
if (_mode == airtaudio::api::INPUT) { // convert device to user buffer
m_stream.convertInfo[_mode].inJump = m_stream.nDeviceChannels[1];
m_stream.convertInfo[_mode].outJump = m_stream.nUserChannels[1];
m_stream.convertInfo[_mode].inFormat = m_stream.deviceFormat[1];
m_stream.convertInfo[_mode].outFormat = m_stream.userFormat;
} else { // convert user to device buffer
m_stream.convertInfo[_mode].inJump = m_stream.nUserChannels[0];
m_stream.convertInfo[_mode].outJump = m_stream.nDeviceChannels[0];
m_stream.convertInfo[_mode].inFormat = m_stream.userFormat;
m_stream.convertInfo[_mode].outFormat = m_stream.deviceFormat[0];
}
if (m_stream.convertInfo[_mode].inJump < m_stream.convertInfo[_mode].outJump) {
m_stream.convertInfo[_mode].channels = m_stream.convertInfo[_mode].inJump;
} else {
m_stream.convertInfo[_mode].channels = m_stream.convertInfo[_mode].outJump;
}
// Set up the interleave/deinterleave offsets.
if (m_stream.deviceInterleaved[_mode] != m_stream.userInterleaved) {
if ( ( _mode == airtaudio::api::OUTPUT
&& m_stream.deviceInterleaved[_mode])
|| ( _mode == airtaudio::api::INPUT
&& m_stream.userInterleaved)) {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].inOffset.push_back(kkk * m_stream.bufferSize);
m_stream.convertInfo[_mode].outOffset.push_back(kkk);
m_stream.convertInfo[_mode].inJump = 1;
}
} else {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].inOffset.push_back(kkk);
m_stream.convertInfo[_mode].outOffset.push_back(kkk * m_stream.bufferSize);
m_stream.convertInfo[_mode].outJump = 1;
}
}
} else { // no (de)interleaving
if (m_stream.userInterleaved) {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].inOffset.push_back(kkk);
m_stream.convertInfo[_mode].outOffset.push_back(kkk);
}
} else {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].inOffset.push_back(kkk * m_stream.bufferSize);
m_stream.convertInfo[_mode].outOffset.push_back(kkk * m_stream.bufferSize);
m_stream.convertInfo[_mode].inJump = 1;
m_stream.convertInfo[_mode].outJump = 1;
}
}
}
// Add channel offset.
if (_firstChannel > 0) {
if (m_stream.deviceInterleaved[_mode]) {
if (_mode == airtaudio::api::OUTPUT) {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].outOffset[kkk] += _firstChannel;
}
} else {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].inOffset[kkk] += _firstChannel;
}
}
} else {
if (_mode == airtaudio::api::OUTPUT) {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].outOffset[kkk] += (_firstChannel * m_stream.bufferSize);
}
} else {
for (int32_t kkk=0; kkk<m_stream.convertInfo[_mode].channels; ++kkk) {
m_stream.convertInfo[_mode].inOffset[kkk] += (_firstChannel * m_stream.bufferSize);
}
}
}
}
}
void airtaudio::Api::convertBuffer(char *_outBuffer, char *_inBuffer, airtaudio::api::ConvertInfo &_info) {
// This function does format conversion, input/output channel compensation, and
// data interleaving/deinterleaving. 24-bit integers are assumed to occupy
// the lower three bytes of a 32-bit integer.
// Clear our device buffer when in/out duplex device channels are different
if ( _outBuffer == m_stream.deviceBuffer
&& m_stream.mode == airtaudio::api::DUPLEX
&& m_stream.nDeviceChannels[0] < m_stream.nDeviceChannels[1]) {
memset(_outBuffer, 0, m_stream.bufferSize * _info.outJump * formatBytes(_info.outFormat));
}
int32_t jjj;
if (_info.outFormat == airtaudio::FLOAT64) {
double scale;
double *out = (double *)_outBuffer;
if (_info.inFormat == airtaudio::SINT8) {
signed char *in = (signed char *)_inBuffer;
scale = 1.0 / 127.5;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (double) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT16) {
int16_t *in = (int16_t *)_inBuffer;
scale = 1.0 / 32767.5;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (double) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT24) {
int24_t *in = (int24_t *)_inBuffer;
scale = 1.0 / 8388607.5;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (double) (in[_info.inOffset[jjj]].asInt());
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT32) {
int32_t *in = (int32_t *)_inBuffer;
scale = 1.0 / 2147483647.5;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (double) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT32) {
float *in = (float *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (double) in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT64) {
// Channel compensation and/or (de)interleaving only.
double *in = (double *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
}
else if (_info.outFormat == airtaudio::FLOAT32) {
float scale;
float *out = (float *)_outBuffer;
if (_info.inFormat == airtaudio::SINT8) {
signed char *in = (signed char *)_inBuffer;
scale = (float) (1.0 / 127.5);
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (float) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT16) {
int16_t *in = (int16_t *)_inBuffer;
scale = (float) (1.0 / 32767.5);
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (float) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT24) {
int24_t *in = (int24_t *)_inBuffer;
scale = (float) (1.0 / 8388607.5);
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (float) (in[_info.inOffset[jjj]].asInt());
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT32) {
int32_t *in = (int32_t *)_inBuffer;
scale = (float) (1.0 / 2147483647.5);
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (float) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] += 0.5;
out[_info.outOffset[jjj]] *= scale;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT32) {
// Channel compensation and/or (de)interleaving only.
float *in = (float *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT64) {
double *in = (double *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (float) in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
}
else if (_info.outFormat == airtaudio::SINT32) {
int32_t *out = (int32_t *)_outBuffer;
if (_info.inFormat == airtaudio::SINT8) {
signed char *in = (signed char *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] <<= 24;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT16) {
int16_t *in = (int16_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] <<= 16;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT24) {
int24_t *in = (int24_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) in[_info.inOffset[jjj]].asInt();
out[_info.outOffset[jjj]] <<= 8;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT32) {
// Channel compensation and/or (de)interleaving only.
int32_t *in = (int32_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT32) {
float *in = (float *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] * 2147483647.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT64) {
double *in = (double *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] * 2147483647.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
}
else if (_info.outFormat == airtaudio::SINT24) {
int24_t *out = (int24_t *)_outBuffer;
if (_info.inFormat == airtaudio::SINT8) {
signed char *in = (signed char *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] << 16);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT16) {
int16_t *in = (int16_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] << 8);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT24) {
// Channel compensation and/or (de)interleaving only.
int24_t *in = (int24_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT32) {
int32_t *in = (int32_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] >> 8);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT32) {
float *in = (float *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] * 8388607.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT64) {
double *in = (double *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int32_t) (in[_info.inOffset[jjj]] * 8388607.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
}
else if (_info.outFormat == airtaudio::SINT16) {
int16_t *out = (int16_t *)_outBuffer;
if (_info.inFormat == airtaudio::SINT8) {
signed char *in = (signed char *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int16_t) in[_info.inOffset[jjj]];
out[_info.outOffset[jjj]] <<= 8;
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT16) {
// Channel compensation and/or (de)interleaving only.
int16_t *in = (int16_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT24) {
int24_t *in = (int24_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int16_t) (in[_info.inOffset[jjj]].asInt() >> 8);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT32) {
int32_t *in = (int32_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int16_t) ((in[_info.inOffset[jjj]] >> 16) & 0x0000ffff);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT32) {
float *in = (float *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int16_t) (in[_info.inOffset[jjj]] * 32767.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT64) {
double *in = (double *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (int16_t) (in[_info.inOffset[jjj]] * 32767.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
}
else if (_info.outFormat == airtaudio::SINT8) {
signed char *out = (signed char *)_outBuffer;
if (_info.inFormat == airtaudio::SINT8) {
// Channel compensation and/or (de)interleaving only.
signed char *in = (signed char *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = in[_info.inOffset[jjj]];
}
in += _info.inJump;
out += _info.outJump;
}
}
if (_info.inFormat == airtaudio::SINT16) {
int16_t *in = (int16_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (signed char) ((in[_info.inOffset[jjj]] >> 8) & 0x00ff);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT24) {
int24_t *in = (int24_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (signed char) (in[_info.inOffset[jjj]].asInt() >> 16);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::SINT32) {
int32_t *in = (int32_t *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (signed char) ((in[_info.inOffset[jjj]] >> 24) & 0x000000ff);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT32) {
float *in = (float *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (signed char) (in[_info.inOffset[jjj]] * 127.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
else if (_info.inFormat == airtaudio::FLOAT64) {
double *in = (double *)_inBuffer;
for (uint32_t iii=0; iii<m_stream.bufferSize; ++iii) {
for (jjj=0; jjj<_info.channels; ++jjj) {
out[_info.outOffset[jjj]] = (signed char) (in[_info.inOffset[jjj]] * 127.5 - 0.5);
}
in += _info.inJump;
out += _info.outJump;
}
}
}
}
void airtaudio::Api::byteSwapBuffer(char *_buffer, uint32_t _samples, airtaudio::format _format) {
register char val;
register char *ptr;
ptr = _buffer;
if (_format == airtaudio::SINT16) {
for (uint32_t iii=0; iii<_samples; ++iii) {
// Swap 1st and 2nd bytes.
val = *(ptr);
*(ptr) = *(ptr+1);
*(ptr+1) = val;
// Increment 2 bytes.
ptr += 2;
}
} else if ( _format == airtaudio::SINT32
|| _format == airtaudio::FLOAT32) {
for (uint32_t iii=0; iii<_samples; ++iii) {
// Swap 1st and 4th bytes.
val = *(ptr);
*(ptr) = *(ptr+3);
*(ptr+3) = val;
// Swap 2nd and 3rd bytes.
ptr += 1;
val = *(ptr);
*(ptr) = *(ptr+1);
*(ptr+1) = val;
// Increment 3 more bytes.
ptr += 3;
}
} else if (_format == airtaudio::SINT24) {
for (uint32_t iii=0; iii<_samples; ++iii) {
// Swap 1st and 3rd bytes.
val = *(ptr);
*(ptr) = *(ptr+2);
*(ptr+2) = val;
// Increment 2 more bytes.
ptr += 2;
}
} else if (_format == airtaudio::FLOAT64) {
for (uint32_t iii=0; iii<_samples; ++iii) {
// Swap 1st and 8th bytes
val = *(ptr);
*(ptr) = *(ptr+7);
*(ptr+7) = val;
// Swap 2nd and 7th bytes
ptr += 1;
val = *(ptr);
*(ptr) = *(ptr+5);
*(ptr+5) = val;
// Swap 3rd and 6th bytes
ptr += 1;
val = *(ptr);
*(ptr) = *(ptr+3);
*(ptr+3) = val;
// Swap 4th and 5th bytes
ptr += 1;
val = *(ptr);
*(ptr) = *(ptr+1);
*(ptr+1) = val;
// Increment 5 more bytes.
ptr += 5;
}
}
}