audio-orchestra/audio/orchestra/api/Asio.cpp

924 lines
32 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2011, Edouard DUPIN, all right reserved
* @license APACHE v2.0 (see license file)
* @fork from RTAudio
*/
#if defined(ORCHESTRA_BUILD_ASIO)
#include <audio/orchestra/Interface.h>
#include <audio/orchestra/debug.h>
std::shared_ptr<audio::orchestra::Api> audio::orchestra::api::Asio::create() {
return std::shared_ptr<audio::orchestra::Api>(new audio::orchestra::api::Asio());
}
// The ASIO API is designed around a callback scheme, so this
// implementation is similar to that used for OS-X CoreAudio and Linux
// Jack. The primary constraint with ASIO is that it only allows
// access to a single driver at a time. Thus, it is not possible to
// have more than one simultaneous RtAudio stream.
//
// This implementation also requires a number of external ASIO files
// and a few global variables. The ASIO callback scheme does not
// allow for the passing of user data, so we must create a global
// pointer to our callbackInfo structure.
//
// On unix systems, we make use of a pthread condition variable.
// Since there is no equivalent in Windows, I hacked something based
// on information found in
// http://www.cs.wustl.edu/~schmidt/win32-cv-1.html.
#include "asiosys.h"
#include "asio.h"
#include "iasiothiscallresolver.h"
#include "asiodrivers.h"
#include <cmath>
#undef __class__
#define __class__ "api::Asio"
static AsioDrivers drivers;
static ASIOCallbacks asioCallbacks;
static ASIODriverInfo driverInfo;
static CallbackInfo *asioCallbackInfo;
static bool asioXRun;
namespace audio {
namespace orchestra {
namespace api {
class AsioPrivate {
public:
int32_t drainCounter; // Tracks callback counts when draining
bool internalDrain; // Indicates if stop is initiated from callback or not.
ASIOBufferInfo *bufferInfos;
HANDLE condition;
AsioPrivate() :
drainCounter(0),
internalDrain(false),
bufferInfos(0) {
}
};
}
}
}
// Function declarations (definitions at end of section)
static const char* getAsioErrorString(ASIOError _result);
static void sampleRateChanged(ASIOSampleRate _sRate);
static long asioMessages(long _selector, long _value, void* _message, double* _opt);
audio::orchestra::api::Asio::Asio() :
m_private(new audio::orchestra::api::AsioPrivate()) {
// ASIO cannot run on a multi-threaded appartment. You can call
// CoInitialize beforehand, but it must be for appartment threading
// (in which case, CoInitilialize will return S_FALSE here).
m_coInitialized = false;
HRESULT hr = CoInitialize(nullptr);
if (FAILED(hr)) {
ATA_ERROR("requires a single-threaded appartment. Call CoInitializeEx(0,COINIT_APARTMENTTHREADED)");
}
m_coInitialized = true;
drivers.removeCurrentDriver();
driverInfo.asioVersion = 2;
// See note in DirectSound implementation about GetDesktopWindow().
driverInfo.sysRef = GetForegroundWindow();
}
audio::orchestra::api::Asio::~Asio() {
if (m_state != audio::orchestra::state_closed) {
closeStream();
}
if (m_coInitialized) {
CoUninitialize();
}
}
uint32_t audio::orchestra::api::Asio::getDeviceCount() {
return (uint32_t) drivers.asioGetNumDev();
}
rtaudio::DeviceInfo audio::orchestra::api::Asio::getDeviceInfo(uint32_t _device) {
rtaudio::DeviceInfo info;
info.probed = false;
// Get device ID
uint32_t nDevices = getDeviceCount();
if (nDevices == 0) {
ATA_ERROR("no devices found!");
return info;
}
if (_device >= nDevices) {
ATA_ERROR("device ID is invalid!");
return info;
}
// If a stream is already open, we cannot probe other devices. Thus, use the saved results.
if (m_state != audio::orchestra::state_closed) {
if (_device >= m_devices.size()) {
ATA_ERROR("device ID was not present before stream was opened.");
return info;
}
return m_devices[ _device ];
}
char driverName[32];
ASIOError result = drivers.asioGetDriverName((int) _device, driverName, 32);
if (result != ASE_OK) {
ATA_ERROR("unable to get driver name (" << getAsioErrorString(result) << ").");
return info;
}
info.name = driverName;
if (!drivers.loadDriver(driverName)) {
ATA_ERROR("unable to load driver (" << driverName << ").");
return info;
}
result = ASIOInit(&driverInfo);
if (result != ASE_OK) {
ATA_ERROR("error (" << getAsioErrorString(result) << ") initializing driver (" << driverName << ").");
return info;
}
// Determine the device channel information.
long inputChannels, outputChannels;
result = ASIOGetChannels(&inputChannels, &outputChannels);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("error (" << getAsioErrorString(result) << ") getting channel count (" << driverName << ").");
return info;
}
info.outputChannels = outputChannels;
info.inputChannels = inputChannels;
if (info.outputChannels > 0 && info.inputChannels > 0) {
info.duplexChannels = (info.outputChannels > info.inputChannels) ? info.inputChannels : info.outputChannels;
}
// Determine the supported sample rates.
info.sampleRates.clear();
for (uint32_t i=0; i<MAX_SAMPLE_RATES; i++) {
result = ASIOCanSampleRate((ASIOSampleRate) SAMPLE_RATES[i]);
if (result == ASE_OK) {
info.sampleRates.push_back(SAMPLE_RATES[i]);
}
}
// Determine supported data types ... just check first channel and assume rest are the same.
ASIOChannelInfo channelInfo;
channelInfo.channel = 0;
channelInfo.isInput = true;
if (info.inputChannels <= 0) {
channelInfo.isInput = false;
}
result = ASIOGetChannelInfo(&channelInfo);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("error (" << getAsioErrorString(result) << ") getting driver channel info (" << driverName << ").");
return info;
}
info.nativeFormats.clear();
if ( channelInfo.type == ASIOSTInt16MSB
|| channelInfo.type == ASIOSTInt16LSB) {
info.nativeFormats.push_back(audio::format_int16);
} else if ( channelInfo.type == ASIOSTInt32MSB
|| channelInfo.type == ASIOSTInt32LSB) {
info.nativeFormats.push_back(audio::format_int32);
} else if ( channelInfo.type == ASIOSTFloat32MSB
|| channelInfo.type == ASIOSTFloat32LSB) {
info.nativeFormats.push_back(audio::format_float);
} else if ( channelInfo.type == ASIOSTFloat64MSB
|| channelInfo.type == ASIOSTFloat64LSB) {
info.nativeFormats.push_back(audio::format_double);
} else if ( channelInfo.type == ASIOSTInt24MSB
|| channelInfo.type == ASIOSTInt24LSB) {
info.nativeFormats.push_back(audio::format_int24);
}
if (info.outputChannels > 0){
if (getDefaultOutputDevice() == _device) {
info.isDefaultOutput = true;
}
}
if (info.inputChannels > 0) {
if (getDefaultInputDevice() == _device) {
info.isDefaultInput = true;
}
}
info.probed = true;
drivers.removeCurrentDriver();
return info;
}
static void bufferSwitch(long _index, ASIOBool _processNow) {
RtApiAsio* object = (RtApiAsio*)asioCallbackInfo->object;
object->callbackEvent(_index);
}
void audio::orchestra::api::Asio::saveDeviceInfo() {
m_devices.clear();
uint32_t nDevices = getDeviceCount();
m_devices.resize(nDevices);
for (uint32_t i=0; i<nDevices; i++) {
m_devices[i] = getDeviceInfo(i);
}
}
bool audio::orchestra::api::Asio::probeDeviceOpen(uint32_t _device,
audio::orchestra::mode _mode,
uint32_t _channels,
uint32_t _firstChannel,
uint32_t _sampleRate,
audio::format _format,
uint32_t* _bufferSize,
const audio::orchestra::StreamOptions& _options) {
// For ASIO, a duplex stream MUST use the same driver.
if ( _mode == audio::orchestra::mode_input
&& m_mode == audio::orchestra::mode_output
&& m_device[0] != _device) {
ATA_ERROR("an ASIO duplex stream must use the same device for input and output!");
return false;
}
char driverName[32];
ASIOError result = drivers.asioGetDriverName((int) _device, driverName, 32);
if (result != ASE_OK) {
ATA_ERROR("unable to get driver name (" << getAsioErrorString(result) << ").");
return false;
}
// Only load the driver once for duplex stream.
if ( _mode != audio::orchestra::mode_input
|| m_mode != audio::orchestra::mode_output) {
// The getDeviceInfo() function will not work when a stream is open
// because ASIO does not allow multiple devices to run at the same
// time. Thus, we'll probe the system before opening a stream and
// save the results for use by getDeviceInfo().
this->saveDeviceInfo();
if (!drivers.loadDriver(driverName)) {
ATA_ERROR("unable to load driver (" << driverName << ").");
return false;
}
result = ASIOInit(&driverInfo);
if (result != ASE_OK) {
ATA_ERROR("error (" << getAsioErrorString(result) << ") initializing driver (" << driverName << ").");
return false;
}
}
// Check the device channel count.
long inputChannels, outputChannels;
result = ASIOGetChannels(&inputChannels, &outputChannels);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("error (" << getAsioErrorString(result) << ") getting channel count (" << driverName << ").");
return false;
}
if ( ( _mode == audio::orchestra::mode_output
&& (_channels+_firstChannel) > (uint32_t) outputChannels)
|| ( _mode == audio::orchestra::mode_input
&& (_channels+_firstChannel) > (uint32_t) inputChannels)) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") does not support requested channel count (" << _channels << ") + offset (" << _firstChannel << ").");
return false;
}
m_nDeviceChannels[modeToIdTable(_mode)] = _channels;
m_nUserChannels[modeToIdTable(_mode)] = _channels;
m_channelOffset[modeToIdTable(_mode)] = _firstChannel;
// Verify the sample rate is supported.
result = ASIOCanSampleRate((ASIOSampleRate) _sampleRate);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") does not support requested sample rate (" << _sampleRate << ").");
return false;
}
// Get the current sample rate
ASIOSampleRate currentRate;
result = ASIOGetSampleRate(&currentRate);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") error getting sample rate.");
return false;
}
// Set the sample rate only if necessary
if (currentRate != _sampleRate) {
result = ASIOSetSampleRate((ASIOSampleRate) _sampleRate);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") error setting sample rate (" << _sampleRate << ").");
return false;
}
}
// Determine the driver data type.
ASIOChannelInfo channelInfo;
channelInfo.channel = 0;
if (_mode == audio::orchestra::mode_output) {
channelInfo.isInput = false;
} else {
channelInfo.isInput = true;
}
result = ASIOGetChannelInfo(&channelInfo);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") error (" << getAsioErrorString(result) << ") getting data format.");
return false;
}
// Assuming WINDOWS host is always little-endian.
m_doByteSwap[modeToIdTable(_mode)] = false;
m_userFormat = _format;
m_deviceFormat[modeToIdTable(_mode)] = 0;
if ( channelInfo.type == ASIOSTInt16MSB
|| channelInfo.type == ASIOSTInt16LSB) {
m_deviceFormat[modeToIdTable(_mode)] = RTAUDIO_SINT16;
if (channelInfo.type == ASIOSTInt16MSB) {
m_doByteSwap[modeToIdTable(_mode)] = true;
}
} else if ( channelInfo.type == ASIOSTInt32MSB
|| channelInfo.type == ASIOSTInt32LSB) {
m_deviceFormat[modeToIdTable(_mode)] = RTAUDIO_SINT32;
if (channelInfo.type == ASIOSTInt32MSB) {
m_doByteSwap[modeToIdTable(_mode)] = true;
}
} else if ( channelInfo.type == ASIOSTFloat32MSB
|| channelInfo.type == ASIOSTFloat32LSB) {
m_deviceFormat[modeToIdTable(_mode)] = RTAUDIO_FLOAT32;
if (channelInfo.type == ASIOSTFloat32MSB) {
m_doByteSwap[modeToIdTable(_mode)] = true;
}
} else if ( channelInfo.type == ASIOSTFloat64MSB
|| channelInfo.type == ASIOSTFloat64LSB) {
m_deviceFormat[modeToIdTable(_mode)] = RTAUDIO_FLOAT64;
if (channelInfo.type == ASIOSTFloat64MSB) {
m_doByteSwap[modeToIdTable(_mode)] = true;
}
} else if ( channelInfo.type == ASIOSTInt24MSB
|| channelInfo.type == ASIOSTInt24LSB) {
m_deviceFormat[modeToIdTable(_mode)] = RTAUDIO_SINT24;
if (channelInfo.type == ASIOSTInt24MSB) {
m_doByteSwap[modeToIdTable(_mode)] = true;
}
}
if (m_deviceFormat[modeToIdTable(_mode)] == 0) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") data format not supported by RtAudio.");
return false;
}
// Set the buffer size. For a duplex stream, this will end up
// setting the buffer size based on the input constraints, which
// should be ok.
long minSize, maxSize, preferSize, granularity;
result = ASIOGetBufferSize(&minSize, &maxSize, &preferSize, &granularity);
if (result != ASE_OK) {
drivers.removeCurrentDriver();
ATA_ERROR("driver (" << driverName << ") error (" << getAsioErrorString(result) << ") getting buffer size.");
return false;
}
if (*_bufferSize < (uint32_t) minSize) {
*_bufferSize = (uint32_t) minSize;
} else if (*_bufferSize > (uint32_t) maxSize) {
*_bufferSize = (uint32_t) maxSize;
} else if (granularity == -1) {
// Make sure bufferSize is a power of two.
int32_t log2_of_min_size = 0;
int32_t log2_of_max_size = 0;
for (uint32_t i = 0; i < sizeof(long) * 8; i++) {
if (minSize & ((long)1 << i)) {
log2_of_min_size = i;
}
if (maxSize & ((long)1 << i)) {
log2_of_max_size = i;
}
}
long min_delta = std::abs((long)*_bufferSize - ((long)1 << log2_of_min_size));
int32_t min_delta_num = log2_of_min_size;
for (int32_t i = log2_of_min_size + 1; i <= log2_of_max_size; i++) {
long current_delta = std::abs((long)*_bufferSize - ((long)1 << i));
if (current_delta < min_delta) {
min_delta = current_delta;
min_delta_num = i;
}
}
*_bufferSize = ((uint32_t)1 << min_delta_num);
if (*_bufferSize < (uint32_t) {
minSize) *_bufferSize = (uint32_t) minSize;
} else if (*_bufferSize > (uint32_t) maxSize) {
*_bufferSize = (uint32_t) maxSize;
}
} else if (granularity != 0) {
// Set to an even multiple of granularity, rounding up.
*_bufferSize = (*_bufferSize + granularity-1) / granularity * granularity;
}
if ( _mode == audio::orchestra::mode_input
&& m_mode == audio::orchestra::mode_output
&& m_bufferSize != *_bufferSize) {
drivers.removeCurrentDriver();
ATA_ERROR("input/output buffersize discrepancy!");
return false;
}
m_bufferSize = *_bufferSize;
m_nBuffers = 2;
// ASIO always uses non-interleaved buffers.
m_deviceInterleaved[modeToIdTable(_mode)] = false;
m_private->bufferInfos = 0;
// Create a manual-reset event.
m_private->condition = CreateEvent(nullptr, // no security
TRUE, // manual-reset
FALSE, // non-signaled initially
nullptr); // unnamed
// Create the ASIO internal buffers. Since RtAudio sets up input
// and output separately, we'll have to dispose of previously
// created output buffers for a duplex stream.
long inputLatency, outputLatency;
if ( _mode == audio::orchestra::mode_input
&& m_mode == audio::orchestra::mode_output) {
ASIODisposeBuffers();
if (m_private->bufferInfos == nullptr) {
free(m_private->bufferInfos);
m_private->bufferInfos = nullptr;
}
}
// Allocate, initialize, and save the bufferInfos in our stream callbackInfo structure.
bool buffersAllocated = false;
uint32_t i, nChannels = m_nDeviceChannels[0] + m_nDeviceChannels[1];
m_private->bufferInfos = (ASIOBufferInfo *) malloc(nChannels * sizeof(ASIOBufferInfo));
if (m_private->bufferInfos == nullptr) {
ATA_ERROR("error allocating bufferInfo memory for driver (" << driverName << ").");
goto error;
}
ASIOBufferInfo *infos;
infos = m_private->bufferInfos;
for (i=0; i<m_nDeviceChannels[0]; i++, infos++) {
infos->isInput = ASIOFalse;
infos->channelNum = i + m_channelOffset[0];
infos->buffers[0] = infos->buffers[1] = 0;
}
for (i=0; i<m_nDeviceChannels[1]; i++, infos++) {
infos->isInput = ASIOTrue;
infos->channelNum = i + m_channelOffset[1];
infos->buffers[0] = infos->buffers[1] = 0;
}
// Set up the ASIO callback structure and create the ASIO data buffers.
asioCallbacks.bufferSwitch = &bufferSwitch;
asioCallbacks.sampleRateDidChange = &sampleRateChanged;
asioCallbacks.asioMessage = &asioMessages;
asioCallbacks.bufferSwitchTimeInfo = nullptr;
result = ASIOCreateBuffers(m_private->bufferInfos, nChannels, m_bufferSize, &asioCallbacks);
if (result != ASE_OK) {
ATA_ERROR("driver (" << driverName << ") error (" << getAsioErrorString(result) << ") creating buffers.");
goto error;
}
buffersAllocated = true;
// Set flags for buffer conversion.
m_doConvertBuffer[modeToIdTable(_mode)] = false;
if (m_userFormat != m_deviceFormat[modeToIdTable(_mode)]) {
m_doConvertBuffer[modeToIdTable(_mode)] = true;
}
if ( m_deviceInterleaved[modeToIdTable(_mode)] == false
&& m_nUserChannels[modeToIdTable(_mode)] > 1) {
m_doConvertBuffer[modeToIdTable(_mode)] = true;
}
// Allocate necessary internal buffers
uint64_t bufferBytes;
bufferBytes = m_nUserChannels[modeToIdTable(_mode)] * *_bufferSize * audio::getFormatBytes(m_userFormat);
m_userBuffer[modeToIdTable(_mode)] = (char *) calloc(bufferBytes, 1);
if (m_userBuffer[modeToIdTable(_mode)] == nullptr) {
ATA_ERROR("error allocating user buffer memory.");
goto error;
}
if (m_doConvertBuffer[modeToIdTable(_mode)]) {
bool makeBuffer = true;
bufferBytes = m_nDeviceChannels[modeToIdTable(_mode)] * audio::getFormatBytes(m_deviceFormat[modeToIdTable(_mode)]);
if (_mode == audio::orchestra::mode_input) {
if (m_mode == audio::orchestra::mode_output && m_deviceBuffer) {
uint64_t bytesOut = m_nDeviceChannels[0] * audio::getFormatBytes(m_deviceFormat[0]);
if (bufferBytes <= bytesOut) {
makeBuffer = false;
}
}
}
if (makeBuffer) {
bufferBytes *= *_bufferSize;
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = nullptr;
}
m_deviceBuffer = (char *) calloc(bufferBytes, 1);
if (m_deviceBuffer == nullptr) {
ATA_ERROR("error allocating device buffer memory.");
goto error;
}
}
}
m_sampleRate = _sampleRate;
m_device[modeToIdTable(_mode)] = _device;
m_state = audio::orchestra::state_stopped;
if ( _mode == audio::orchestra::mode_output
&& _mode == audio::orchestra::mode_input) {
// We had already set up an output stream.
m_mode = audio::orchestra::mode_duplex;
} else {
m_mode = _mode;
}
// Determine device latencies
result = ASIOGetLatencies(&inputLatency, &outputLatency);
if (result != ASE_OK) {
ATA_ERROR("driver (" << driverName << ") error (" << getAsioErrorString(result) << ") getting latency.");
} else {
m_latency[0] = outputLatency;
m_latency[1] = inputLatency;
}
// Setup the buffer conversion information structure. We don't use
// buffers to do channel offsets, so we override that parameter
// here.
if (m_doConvertBuffer[modeToIdTable(_mode)]) {
setConvertInfo(_mode, 0);
}
return true;
error:
if (buffersAllocated) {
ASIODisposeBuffers();
}
drivers.removeCurrentDriver();
CloseHandle(m_private->condition);
if (m_private->bufferInfos != nullptr) {
free(m_private->bufferInfos);
m_private->bufferInfos = nullptr;
}
for (int32_t i=0; i<2; i++) {
if (m_userBuffer[i]) {
free(m_userBuffer[i]);
m_userBuffer[i] = 0;
}
}
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = 0;
}
return false;
}
enum audio::orchestra::error audio::orchestra::api::Asio::closeStream() {
if (m_state == audio::orchestra::state_closed) {
ATA_ERROR("no open stream to close!");
return audio::orchestra::error_warning;
}
if (m_state == audio::orchestra::state_running) {
m_state = audio::orchestra::state_stopped;
ASIOStop();
}
ASIODisposeBuffers();
drivers.removeCurrentDriver();
CloseHandle(m_private->condition);
if (m_private->bufferInfos) {
free(m_private->bufferInfos);
}
for (int32_t i=0; i<2; i++) {
if (m_userBuffer[i]) {
free(m_userBuffer[i]);
m_userBuffer[i] = 0;
}
}
if (m_deviceBuffer) {
free(m_deviceBuffer);
m_deviceBuffer = 0;
}
m_mode = audio::orchestra::mode_unknow;
m_state = audio::orchestra::state_closed;
return audio::orchestra::error_none;
}
bool stopThreadCalled = false;
enum audio::orchestra::error audio::orchestra::api::Asio::startStream() {
// TODO : Check return ...
audio::orchestra::Api::startStream();
if (verifyStream() != audio::orchestra::error_none) {
return audio::orchestra::error_fail;
}
if (m_state == audio::orchestra::state_running) {
ATA_ERROR("the stream is already running!");
return audio::orchestra::error_warning;
}
ASIOError result = ASIOStart();
if (result != ASE_OK) {
ATA_ERROR("error (" << getAsioErrorString(result) << ") starting device.");
goto unlock;
}
m_private->drainCounter = 0;
m_private->internalDrain = false;
ResetEvent(m_private->condition);
m_state = audio::orchestra::state_running;
asioXRun = false;
unlock:
stopThreadCalled = false;
if (result == ASE_OK) {
return audio::orchestra::error_none;
}
return audio::orchestra::error_systemError;
}
enum audio::orchestra::error audio::orchestra::api::Asio::stopStream() {
if (verifyStream() != audio::orchestra::error_none) {
return audio::orchestra::error_fail;
}
if (m_state == audio::orchestra::state_stopped) {
ATA_ERROR("the stream is already stopped!");
return audio::orchestra::error_warning;
}
if (m_mode == audio::orchestra::mode_output || m_mode == audio::orchestra::mode_duplex) {
if (m_private->drainCounter == 0) {
m_private->drainCounter = 2;
WaitForSingleObject(m_private->condition, INFINITE); // block until signaled
}
}
m_state = audio::orchestra::state_stopped;
ASIOError result = ASIOStop();
if (result != ASE_OK) {
ATA_ERROR("error (" << getAsioErrorString(result) << ") stopping device.");
}
if (result == ASE_OK) {
return audio::orchestra::error_none;
}
return audio::orchestra::error_systemError;
}
enum audio::orchestra::error audio::orchestra::api::Asio::abortStream() {
if (verifyStream() != audio::orchestra::error_none) {
return audio::orchestra::error_fail;
}
if (m_state == audio::orchestra::state_stopped) {
ATA_ERROR("the stream is already stopped!");
error(audio::orchestra::error_warning);
return;
}
// The following lines were commented-out because some behavior was
// noted where the device buffers need to be zeroed to avoid
// continuing sound, even when the device buffers are completely
// disposed. So now, calling abort is the same as calling stop.
// handle->drainCounter = 2;
return stopStream();
}
// This function will be called by a spawned thread when the user
// callback function signals that the stream should be stopped or
// aborted. It is necessary to handle it this way because the
// callbackEvent() function must return before the ASIOStop()
// function will return.
static unsigned __stdcall asioStopStream(void *_ptr) {
CallbackInfo* info = (CallbackInfo*)_ptr;
RtApiAsio* object = (RtApiAsio*)info->object;
object->stopStream();
_endthreadex(0);
return 0;
}
bool audio::orchestra::api::Asio::callbackEvent(long bufferIndex) {
if ( m_state == audio::orchestra::state_stopped
|| m_state == audio::orchestra::state_stopping) {
return true;
}
if (m_state == audio::orchestra::state_closed) {
ATA_ERROR("the stream is closed ... this shouldn't happen!");
return false;
}
CallbackInfo *info = (CallbackInfo *) &m_callbackInfo;
// Check if we were draining the stream and signal if finished.
if (m_private->drainCounter > 3) {
m_state = audio::orchestra::state_stopping;
if (m_private->internalDrain == false) {
SetEvent(m_private->condition);
} else { // spawn a thread to stop the stream
unsigned threadId;
m_callbackInfo.thread = _beginthreadex(nullptr,
0,
&asioStopStream,
&m_callbackInfo,
0,
&threadId);
}
return true;
}
// Invoke user callback to get fresh output data UNLESS we are
// draining stream.
if (m_private->drainCounter == 0) {
audio::Time streamTime = getStreamTime();
std::vector<enum audio::orchestra::status status;
if (m_mode != audio::orchestra::mode_input && asioXRun == true) {
status.push_back(audio::orchestra::status_underflow);
asioXRun = false;
}
if (m_mode != audio::orchestra::mode_output && asioXRun == true) {
status.push_back(audio::orchestra::status_underflow;
asioXRun = false;
}
int32_t cbReturnValue = info->callback(m_userBuffer[1],
streamTime,
m_userBuffer[0],
streamTime,
m_bufferSize,
status);
if (cbReturnValue == 2) {
m_state = audio::orchestra::state_stopping;
m_private->drainCounter = 2;
unsigned threadId;
m_callbackInfo.thread = _beginthreadex(nullptr,
0,
&asioStopStream,
&m_callbackInfo,
0,
&threadId);
return true;
} else if (cbReturnValue == 1) {
m_private->drainCounter = 1;
m_private->internalDrain = true;
}
}
uint32_t nChannels, bufferBytes, i, j;
nChannels = m_nDeviceChannels[0] + m_nDeviceChannels[1];
if ( m_mode == audio::orchestra::mode_output
|| m_mode == audio::orchestra::mode_duplex) {
bufferBytes = m_bufferSize * audio::getFormatBytes(m_deviceFormat[0]);
if (m_private->drainCounter > 1) { // write zeros to the output stream
for (i=0, j=0; i<nChannels; i++) {
if (m_private->bufferInfos[i].isInput != ASIOTrue) {
memset(m_private->bufferInfos[i].buffers[bufferIndex], 0, bufferBytes);
}
}
} else if (m_doConvertBuffer[0]) {
convertBuffer(m_deviceBuffer, m_userBuffer[0], m_convertInfo[0]);
if (m_doByteSwap[0]) {
byteSwapBuffer(m_deviceBuffer,
m_bufferSize * m_nDeviceChannels[0],
m_deviceFormat[0]);
}
for (i=0, j=0; i<nChannels; i++) {
if (m_private->bufferInfos[i].isInput != ASIOTrue) {
memcpy(m_private->bufferInfos[i].buffers[bufferIndex],
&m_deviceBuffer[j++*bufferBytes],
bufferBytes);
}
}
} else {
if (m_doByteSwap[0]) {
byteSwapBuffer(m_userBuffer[0],
m_bufferSize * m_nUserChannels[0],
m_userFormat);
}
for (i=0, j=0; i<nChannels; i++) {
if (m_private->bufferInfos[i].isInput != ASIOTrue) {
memcpy(m_private->bufferInfos[i].buffers[bufferIndex],
&m_userBuffer[0][bufferBytes*j++],
bufferBytes);
}
}
}
if (m_private->drainCounter) {
m_private->drainCounter++;
goto unlock;
}
}
if ( m_mode == audio::orchestra::mode_input
|| m_mode == audio::orchestra::mode_duplex) {
bufferBytes = m_bufferSize * audio::getFormatBytes(m_deviceFormat[1]);
if (m_doConvertBuffer[1]) {
// Always interleave ASIO input data.
for (i=0, j=0; i<nChannels; i++) {
if (m_private->bufferInfos[i].isInput == ASIOTrue) {
memcpy(&m_deviceBuffer[j++*bufferBytes],
m_private->bufferInfos[i].buffers[bufferIndex],
bufferBytes);
}
}
if (m_doByteSwap[1]) {
byteSwapBuffer(m_deviceBuffer,
m_bufferSize * m_nDeviceChannels[1],
m_deviceFormat[1]);
}
convertBuffer(m_userBuffer[1],
m_deviceBuffer,
m_convertInfo[1]);
} else {
for (i=0, j=0; i<nChannels; i++) {
if (m_private->bufferInfos[i].isInput == ASIOTrue) {
memcpy(&m_userBuffer[1][bufferBytes*j++],
m_private->bufferInfos[i].buffers[bufferIndex],
bufferBytes);
}
}
if (m_doByteSwap[1]) {
byteSwapBuffer(m_userBuffer[1],
m_bufferSize * m_nUserChannels[1],
m_userFormat);
}
}
}
unlock:
// The following call was suggested by Malte Clasen. While the API
// documentation indicates it should not be required, some device
// drivers apparently do not function correctly without it.
ASIOOutputReady();
audio::orchestra::Api::tickStreamTime();
return true;
}
static void sampleRateChanged(ASIOSampleRate _sRate) {
// The ASIO documentation says that this usually only happens during
// external sync. Audio processing is not stopped by the driver,
// actual sample rate might not have even changed, maybe only the
// sample rate status of an AES/EBU or S/PDIF digital input at the
// audio device.
RtApi* object = (RtApi*)asioCallbackInfo->object;
enum audio::orchestra::error ret = object->stopStream()
if (ret != audio::orchestra::error_none) {
ATA_ERROR("error stop stream!");
} else {
ATA_ERROR("driver reports sample rate changed to " << _sRate << " ... stream stopped!!!");
}
}
static long asioMessages(long _selector, long _value, void* _message, double* _opt) {
long ret = 0;
switch(_selector) {
case kAsioSelectorSupported:
if ( _value == kAsioResetRequest
|| _value == kAsioEngineVersion
|| _value == kAsioResyncRequest
|| _value == kAsioLatenciesChanged
// The following three were added for ASIO 2.0, you don't
// necessarily have to support them.
|| _value == kAsioSupportsTimeInfo
|| _value == kAsioSupportsTimeCode
|| _value == kAsioSupportsInputMonitor) {
ret = 1L;
}
break;
case kAsioResetRequest:
// Defer the task and perform the reset of the driver during the
// next "safe" situation. You cannot reset the driver right now,
// as this code is called from the driver. Reset the driver is
// done by completely destruct is. I.e. ASIOStop(),
// ASIODisposeBuffers(), Destruction Afterwards you initialize the
// driver again.
ATA_ERROR("driver reset requested!!!");
ret = 1L;
break;
case kAsioResyncRequest:
// This informs the application that the driver encountered some
// non-fatal data loss. It is used for synchronization purposes
// of different media. Added mainly to work around the Win16Mutex
// problems in Windows 95/98 with the Windows Multimedia system,
// which could lose data because the Mutex was held too long by
// another thread. However a driver can issue it in other
// situations, too.
// ATA_ERROR("driver resync requested!!!");
asioXRun = true;
ret = 1L;
break;
case kAsioLatenciesChanged:
// This will inform the host application that the drivers were
// latencies changed. Beware, it this does not mean that the
// buffer sizes have changed! You might need to update internal
// delay data.
ATA_ERROR("driver latency may have changed!!!");
ret = 1L;
break;
case kAsioEngineVersion:
// Return the supported ASIO version of the host application. If
// a host application does not implement this selector, ASIO 1.0
// is assumed by the driver.
ret = 2L;
break;
case kAsioSupportsTimeInfo:
// Informs the driver whether the
// asioCallbacks.bufferSwitchTimeInfo() callback is supported.
// For compatibility with ASIO 1.0 drivers the host application
// should always support the "old" bufferSwitch method, too.
ret = 0;
break;
case kAsioSupportsTimeCode:
// Informs the driver whether application is interested in time
// code info. If an application does not need to know about time
// code, the driver has less work to do.
ret = 0;
break;
}
return ret;
}
static const char* getAsioErrorString(ASIOError _result) {
struct Messages {
ASIOError value;
const char*message;
};
static const Messages m[] = {
{ ASE_NotPresent, "Hardware input or output is not present or available." },
{ ASE_HWMalfunction, "Hardware is malfunctioning." },
{ ASE_InvalidParameter, "Invalid input parameter." },
{ ASE_InvalidMode, "Invalid mode." },
{ ASE_SPNotAdvancing, "Sample position not advancing." },
{ ASE_NoClock, "Sample clock or rate cannot be determined or is not present." },
{ ASE_NoMemory, "Not enough memory to complete the request." }
};
for (uint32_t i = 0; i < sizeof(m)/sizeof(m[0]); ++i) {
if (m[i].value == result) {
return m[i].message;
}
}
return "Unknown error.";
}
#endif