291 lines
9.4 KiB
C++
291 lines
9.4 KiB
C++
/** @file
|
|
* @author Edouard DUPIN
|
|
* @copyright 2011, Edouard DUPIN, all right reserved
|
|
* @license MPL v2.0 (see license file)
|
|
*/
|
|
#pragma once
|
|
|
|
#include <ememory/memory.hpp>
|
|
#include <etk/types.hpp>
|
|
#include <audio/algo/drain/BiQuadType.hpp>
|
|
#include <etk/Pair.hpp>
|
|
extern "C" {
|
|
#include <math.h>
|
|
}
|
|
#ifndef M_LN10
|
|
#define M_LN10 2.30258509299404568402
|
|
#endif
|
|
#ifndef M_SQRT2
|
|
#define M_SQRT2 1.41421356237309504880
|
|
#endif
|
|
|
|
namespace audio {
|
|
namespace algo {
|
|
namespace drain {
|
|
template<typename TYPE> class BiQuad {
|
|
public:
|
|
BiQuad() {
|
|
reset();
|
|
// reset coefficients
|
|
m_a[0] = 1.0;
|
|
m_a[1] = 0.0;
|
|
m_a[2] = 0.0;
|
|
m_b[0] = 0.0;
|
|
m_b[1] = 0.0;
|
|
}
|
|
protected:
|
|
TYPE m_x[2]; //!< X history
|
|
TYPE m_y[2]; //!< Y histiry
|
|
TYPE m_a[3]; //!< A bi-Quad coef
|
|
TYPE m_b[2]; //!< B bi-Quad coef
|
|
public:
|
|
/**
|
|
* @brief Set the bi-quad value and type
|
|
* @param[in] _type Type of biquad.
|
|
* @param[in] _frequencyCut Cut Frequency. [0..sampleRate/2]
|
|
* @param[in] _qualityFactor Q factor of quality (good value of 0.707 ==> permit to not ower gain) limit [0.01 .. 10]
|
|
* @param[in] _gain Gain to apply (for notch, peak, lowShelf and highShelf) limit : -30, +30
|
|
* @param[in] _sampleRate Sample rate of the signal
|
|
*/
|
|
void setBiquad(enum audio::algo::drain::biQuadType _type, double _frequencyCut, double _qualityFactor, double _gain, float _sampleRate) {
|
|
reset();
|
|
if (_sampleRate < 1) {
|
|
m_a[0] = 1.0;
|
|
m_a[1] = 0.0;
|
|
m_a[2] = 0.0;
|
|
m_b[0] = 0.0;
|
|
m_b[1] = 0.0;
|
|
return;
|
|
}
|
|
if (_frequencyCut > _sampleRate/2) {
|
|
_frequencyCut = _sampleRate/2;
|
|
} else if (_frequencyCut < 0) {
|
|
_frequencyCut = 0;
|
|
}
|
|
if (_qualityFactor < 0.01) {
|
|
_qualityFactor = 0.01;
|
|
}
|
|
double norm;
|
|
double V = etk::pow(10.0, etk::abs(_gain) / 20.0);
|
|
double K = etk::tan(M_PI * _frequencyCut / _sampleRate);
|
|
switch (_type) {
|
|
case biQuadType_none:
|
|
m_a[0] = 1.0;
|
|
m_a[1] = 0.0;
|
|
m_a[2] = 0.0;
|
|
m_b[0] = 0.0;
|
|
m_b[1] = 0.0;
|
|
break;
|
|
case biQuadType_lowPass:
|
|
norm = 1.0 / (1.0 + K / _qualityFactor + K * K);
|
|
m_a[0] = K * K * norm;
|
|
m_a[1] = m_a[0] * 2.0;
|
|
m_a[2] = m_a[0];
|
|
m_b[0] = 2.0 * (K * K - 1.0) * norm;
|
|
m_b[1] = (1.0 - K / _qualityFactor + K * K) * norm;
|
|
break;
|
|
case biQuadType_highPass:
|
|
norm = 1.0 / (1.0 + K / _qualityFactor + K * K);
|
|
m_a[0] = 1.0 * norm;
|
|
m_a[1] = m_a[0] * -2.0;
|
|
m_a[2] = m_a[0];
|
|
m_b[0] = 2.0 * (K * K - 1.0) * norm;
|
|
m_b[1] = (1.0 - K / _qualityFactor + K * K) * norm;
|
|
break;
|
|
case biQuadType_bandPass:
|
|
norm = 1.0 / (1.0 + K / _qualityFactor + K * K);
|
|
m_a[0] = K / _qualityFactor * norm;
|
|
m_a[1] = 0.0;
|
|
m_a[2] = m_a[0] * -1.0;
|
|
m_b[0] = 2.0 * (K * K - 1.0) * norm;
|
|
m_b[1] = (1.0 - K / _qualityFactor + K * K) * norm;
|
|
break;
|
|
case biQuadType_notch:
|
|
norm = 1.0 / (1.0 + K / _qualityFactor + K * K);
|
|
m_a[0] = (1.0 + K * K) * norm;
|
|
m_a[1] = 2.0 * (K * K - 1.0) * norm;
|
|
m_a[2] = m_a[0];
|
|
m_b[0] = m_a[1];
|
|
m_b[1] = (1.0 - K / _qualityFactor + K * K) * norm;
|
|
break;
|
|
case biQuadType_peak:
|
|
if (_gain >= 0.0) {
|
|
norm = 1.0 / (1.0 + 1.0/_qualityFactor * K + K * K);
|
|
m_a[0] = (1.0 + V/_qualityFactor * K + K * K) * norm;
|
|
m_a[1] = 2.0 * (K * K - 1.0) * norm;
|
|
m_a[2] = (1.0 - V/_qualityFactor * K + K * K) * norm;
|
|
m_b[0] = m_a[1];
|
|
m_b[1] = (1.0 - 1.0/_qualityFactor * K + K * K) * norm;
|
|
} else {
|
|
norm = 1.0 / (1.0 + V/_qualityFactor * K + K * K);
|
|
m_a[0] = (1.0 + 1.0/_qualityFactor * K + K * K) * norm;
|
|
m_a[1] = 2.0 * (K * K - 1.0) * norm;
|
|
m_a[2] = (1.0 - 1.0/_qualityFactor * K + K * K) * norm;
|
|
m_b[0] = m_a[1];
|
|
m_b[1] = (1.0 - V/_qualityFactor * K + K * K) * norm;
|
|
}
|
|
break;
|
|
case biQuadType_lowShelf:
|
|
if (_gain >= 0) {
|
|
norm = 1.0 / (1.0 + M_SQRT2 * K + K * K);
|
|
m_a[0] = (1.0 + etk::sqrt(2.0*V) * K + V * K * K) * norm;
|
|
m_a[1] = 2.0 * (V * K * K - 1.0) * norm;
|
|
m_a[2] = (1.0 - etk::sqrt(2.0*V) * K + V * K * K) * norm;
|
|
m_b[0] = 2.0 * (K * K - 1.0) * norm;
|
|
m_b[1] = (1.0 - M_SQRT2 * K + K * K) * norm;
|
|
} else {
|
|
norm = 1.0 / (1.0 + etk::sqrt(2.0*V) * K + V * K * K);
|
|
m_a[0] = (1.0 + M_SQRT2 * K + K * K) * norm;
|
|
m_a[1] = 2.0 * (K * K - 1.0) * norm;
|
|
m_a[2] = (1.0 - M_SQRT2 * K + K * K) * norm;
|
|
m_b[0] = 2.0 * (V * K * K - 1.0) * norm;
|
|
m_b[1] = (1.0 - etk::sqrt(2.0*V) * K + V * K * K) * norm;
|
|
}
|
|
break;
|
|
case biQuadType_highShelf:
|
|
if (_gain >= 0) {
|
|
norm = 1.0 / (1.0 + M_SQRT2 * K + K * K);
|
|
m_a[0] = (V + etk::sqrt(2.0*V) * K + K * K) * norm;
|
|
m_a[1] = 2.0 * (K * K - V) * norm;
|
|
m_a[2] = (V - etk::sqrt(2.0*V) * K + K * K) * norm;
|
|
m_b[0] = 2.0 * (K * K - 1.0) * norm;
|
|
m_b[1] = (1.0 - M_SQRT2 * K + K * K) * norm;
|
|
} else {
|
|
norm = 1.0 / (V + etk::sqrt(2.0*V) * K + K * K);
|
|
m_a[0] = (1.0 + M_SQRT2 * K + K * K) * norm;
|
|
m_a[1] = 2.0 * (K * K - 1.0) * norm;
|
|
m_a[2] = (1.0 - M_SQRT2 * K + K * K) * norm;
|
|
m_b[0] = 2.0 * (K * K - V) * norm;
|
|
m_b[1] = (V - etk::sqrt(2.0*V) * K + K * K) * norm;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/**
|
|
* @brief Set direct Coefficients
|
|
*/
|
|
void setBiquadCoef(TYPE _a0, TYPE _a1, TYPE _a2, TYPE _b0, TYPE _b1) {
|
|
m_a[0] = _a0;
|
|
m_a[1] = _a1;
|
|
m_a[2] = _a2;
|
|
m_b[0] = _b0;
|
|
m_b[1] = _b1;
|
|
reset();
|
|
}
|
|
/**
|
|
* @brief Get direct Coefficients
|
|
*/
|
|
void getBiquadCoef(TYPE& _a0, TYPE& _a1, TYPE& _a2, TYPE& _b0, TYPE& _b1) {
|
|
_a0 = m_a[0];
|
|
_a1 = m_a[1];
|
|
_a2 = m_a[2];
|
|
_b0 = m_b[0];
|
|
_b1 = m_b[1];
|
|
}
|
|
/**
|
|
* @brief Get direct Coefficients
|
|
*/
|
|
etk::Vector<TYPE> getCoef() {
|
|
etk::Vector<TYPE> out;
|
|
out.pushBack(m_a[0]);
|
|
out.pushBack(m_a[1]);
|
|
out.pushBack(m_a[2]);
|
|
out.pushBack(m_b[0]);
|
|
out.pushBack(m_b[1]);
|
|
return out;
|
|
}
|
|
/**
|
|
* @brief Reset bequad filter (only history not value).
|
|
*/
|
|
void reset() {
|
|
m_x[0] = 0;
|
|
m_y[1] = 0;
|
|
m_x[0] = 0;
|
|
m_y[1] = 0;
|
|
}
|
|
protected:
|
|
/**
|
|
* @brief process single sample in float.
|
|
* @param[in] _sample Sample to process
|
|
* @return updataed value
|
|
*/
|
|
TYPE process(TYPE _sample) {
|
|
TYPE result;
|
|
// compute
|
|
result = m_a[0] * _sample
|
|
+ m_a[1] * m_x[0]
|
|
+ m_a[2] * m_x[1]
|
|
- m_b[0] * m_y[0]
|
|
- m_b[1] * m_y[1];
|
|
//update history of X
|
|
m_x[1] = m_x[0];
|
|
m_x[0] = _sample;
|
|
//update history of Y
|
|
m_y[1] = m_y[0];
|
|
m_y[0] = result;
|
|
return result;
|
|
}
|
|
public:
|
|
/**
|
|
* @brief Porcess function.
|
|
* param[in] _input Pointer on the input data.
|
|
* param[in,out] _output Poirter on the output data (can be the same as input (inplace availlable).
|
|
* param[in] _nbChunk Number of qample to process.
|
|
* param[in] _inputOffset Offset to add when read input data.
|
|
* param[in] _outputOffset Offset to add when write output data.
|
|
*/
|
|
void process(const TYPE* _input,
|
|
TYPE* _output,
|
|
size_t _nbChunk,
|
|
int32_t _inputOffset,
|
|
int32_t _outputOffset) {
|
|
for (size_t iii=0; iii<_nbChunk; ++iii) {
|
|
// process in float the biquad.
|
|
*_output = process(*_input);
|
|
// move to the sample on the same channel.
|
|
_input += _inputOffset;
|
|
_output += _outputOffset;
|
|
}
|
|
}
|
|
/**
|
|
* @brief calculate respond of the filter:
|
|
* @param[in] _sampleRate input qample rate
|
|
* @retrun list of frequency/power in dB
|
|
*/
|
|
etk::Vector<etk::Pair<float,float> > calculateTheory(double _sampleRate){
|
|
etk::Vector<etk::Pair<float,float> > out;
|
|
double norm;
|
|
bool buildLinear = true;
|
|
size_t len = 512;
|
|
for (size_t iii=0; iii < len; iii++) {
|
|
double w;
|
|
if (buildLinear == true) {
|
|
// 0 to pi, linear scale
|
|
w = iii / (len - 1.0) * M_PI;
|
|
} else {
|
|
// 0.001 to 1, times pi, log scale
|
|
w = etk::exp(etk::log(1.0 / 0.001) * iii / (len - 1.0)) * 0.001 * M_PI;
|
|
}
|
|
double freq = iii / (len - 1.0) * _sampleRate / 2.0;
|
|
double phi = etk::pow(etk::sin(w/2.0), 2.0);
|
|
double y = etk::log( etk::pow((m_a[0]+m_a[1]+m_a[2]).getDouble(), 2.0)
|
|
- 4.0*((m_a[0]*m_a[1]).getDouble() + 4.0*(m_a[0]*m_a[2]).getDouble() + (m_a[1]*m_a[2]).getDouble())*phi
|
|
+ 16.0*(m_a[0]*m_a[2]).getDouble()*phi*phi)
|
|
- etk::log( etk::pow(1.0+(m_b[0]+m_b[1]).getDouble(), 2.0)
|
|
- 4.0*((m_b[0]).getDouble() + 4.0*(m_b[1]).getDouble() + (m_b[0]*m_b[1]).getDouble())*phi
|
|
+ 16.0*m_b[1].getDouble()*phi*phi);
|
|
y = y * 10.0 / M_LN10;
|
|
if (y <= -200) {
|
|
y = -200.0;
|
|
}
|
|
//APPL_DEBUG("theory = " << freq << " power=" << y);
|
|
out.pushBack(etk::makePair<float,float>(freq, y));
|
|
}
|
|
return out;
|
|
}
|
|
};
|
|
}
|
|
}
|
|
}
|
|
|