197 lines
4.7 KiB
C++
197 lines
4.7 KiB
C++
#include <cstdio>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
// http://www.labbookpages.co.uk/audio/beamforming/delaySum.html
|
|
// Number of angle points to calculate
|
|
#define ANGLE_RESOLUTION 100000
|
|
//#define ANGLE_RESOLUTION 32
|
|
|
|
#include <etk/etk.hpp>
|
|
#include <test-debug/debug.hpp>
|
|
#include <etk/os/FSNode.hpp>
|
|
#include <etk/math/Vector3D.hpp>
|
|
#include <etk/math/Matrix4.hpp>
|
|
|
|
const double speedSound = 340.29; // m/s
|
|
|
|
// ./binary > beamPattern.dat
|
|
// > gnuplot
|
|
// gnuplot> call 'beamPattern.gnuplot'
|
|
// gnuplot> call 'polar.gnuplot'
|
|
|
|
|
|
class Direction {
|
|
public:
|
|
double radius; //!< radius distance of the source
|
|
double angleAlpha; //!< angle on the XY plane, 0 is to the right and turning to the left is positive (clock orientation)
|
|
double angleEtha; //!< angle on the XZ plane, 0 is directly ahead, turning upwards is positive
|
|
Direction(double _alpha, double _etha, double _radius) {
|
|
radius = _radius;
|
|
angleAlpha = _alpha;
|
|
angleEtha = _etha;
|
|
}
|
|
};
|
|
|
|
|
|
double calculateDelay(vec3 _pos, Direction _dir) {
|
|
//convert direction in position:
|
|
vec3 posSource(0.0,0.0,_dir.radius);
|
|
//mat4 matrix = etk::matRotate(vec3(0,1,0), _dir.angleAlpha);// * etk::matRotate(vec3(1,0,0), _dir.angleEtha);
|
|
//vec3 pos = matrix * posSource;
|
|
vec3 pos = posSource.rotate(vec3(0,1,0), _dir.angleAlpha);
|
|
double delay = (_pos-pos).length();
|
|
double delayBase = pos.length();
|
|
TEST_DEBUG("posSource : src=" << pos << " to dst=" << _pos << " distance=" << delay);
|
|
TEST_DEBUG(" delta = " << delay - delayBase << " angle=" << _dir.angleAlpha*180/M_PI);
|
|
TEST_DEBUG(" theoric = " << _pos.x() * sin(_dir.angleAlpha));
|
|
return (delay - delayBase) / speedSound;
|
|
}
|
|
|
|
#if 0
|
|
int32_t posCount = 4;
|
|
vec3 positions[4] = {
|
|
{ 0.0, 0, 0},
|
|
{ 0.2, 0, 0},
|
|
{ 0.4, 0, 0},
|
|
{ 0.6, 0, 0},
|
|
};
|
|
#endif
|
|
|
|
#if 0
|
|
int32_t posCount = 4;
|
|
vec3 positions[4] = {
|
|
{ -0.3, 0, 0},
|
|
{ -0.1, 0, 0},
|
|
{ 0.1, 0, 0},
|
|
{ 0.3, 0, 0},
|
|
};
|
|
#endif
|
|
|
|
#if 0
|
|
int32_t posCount = 6;
|
|
vec3 positions[6] = {
|
|
{ -0.1, 0, 0.1},
|
|
{ -0.1, 0, -0.1},
|
|
{ -0.1, 0, -0.2},
|
|
{ 0.1, 0, -0.2},
|
|
{ 0.1, 0, -0.1},
|
|
{ 0.1, 0, 0.1},
|
|
};
|
|
#endif
|
|
|
|
#if 0
|
|
int32_t posCount = 9;
|
|
vec3 positions[9] = {
|
|
{ -0.3, 0, 0.1},
|
|
{ -0.3, 0, -0.1},
|
|
{ -0.3, 0, -0.3},
|
|
{ -0.1, 0, 0.1},
|
|
{ -0.1, 0, -0.1},
|
|
{ -0.1, 0, -0.3},
|
|
{ 0.1, 0, -0.3},
|
|
{ 0.1, 0, -0.1},
|
|
{ 0.1, 0, 0.1},
|
|
};
|
|
#endif
|
|
|
|
#if 0
|
|
int32_t posCount = 4;
|
|
vec3 positions[4] = {
|
|
{ -0.05, 0.05, 0},
|
|
{ -0.05, -0.05, 0},
|
|
{ 0.05, -0.05, 0},
|
|
{ 0.05, 0.05, 0},
|
|
};
|
|
#endif
|
|
|
|
|
|
#if 0
|
|
int32_t posCount = 4;
|
|
vec3 positions[4] = {
|
|
{-0.06, 0, 0},
|
|
{-0.02, 0, 0},
|
|
{ 0.02, 0, 0},
|
|
{ 0.06, 0, 0},
|
|
};
|
|
#endif
|
|
|
|
#if 1
|
|
int32_t posCount = 4;
|
|
vec3 positions[4] = {
|
|
{-0.028, 0, 0.0},
|
|
{-0.028, 0, -0.07},
|
|
{ 0.028, 0, -0.07},
|
|
{ 0.028, 0, 0.0},
|
|
};
|
|
#endif
|
|
#if 0
|
|
int32_t posCount = 6;
|
|
vec3 positions[6] = {
|
|
{-0.028, 0, 0.0},
|
|
{-0.010, 0, 0.0},
|
|
{-0.028, 0, -0.07},
|
|
{ 0.028, 0, -0.07},
|
|
{ 0.010, 0, 0.0},
|
|
{ 0.028, 0, 0.0},
|
|
};
|
|
#endif
|
|
|
|
#if 0
|
|
int32_t posCount = 6;
|
|
vec3 positions[6] = {
|
|
{ 0.1, 0.0, 0.0},
|
|
{ 0.0, 0.1, 0.0},
|
|
{-0.1, 0.0, 0.0},
|
|
{ 0.0,-0.1, 0.0},
|
|
{ 0.05, 0.08, -0.1},
|
|
{-0.05, 0.08, -0.1},
|
|
};
|
|
#endif
|
|
|
|
const double distanceEar = 3;
|
|
|
|
int main(int argc, const char *argv[]) {
|
|
etk::init(argc, argv);
|
|
TEST_INFO("start calculation");
|
|
etk::FSNode node("beamPattern.dat");
|
|
node.fileOpenWrite();
|
|
|
|
double freq = 3000.0; // Signal frequency in Hz
|
|
|
|
|
|
double basicApplyDelay[posCount];
|
|
for (int32_t iii=0; iii<posCount; iii++) {
|
|
basicApplyDelay[iii] = 0.0f;
|
|
basicApplyDelay[iii] = calculateDelay(positions[iii], Direction(0.0/*M_PI/4*/, 0.0, distanceEar));
|
|
TEST_INFO("single delay: " << iii << " pos=" << positions[iii] << " value=" << basicApplyDelay[iii] << " sample 48k=" << basicApplyDelay[iii]*48000.0);
|
|
}
|
|
// Iterate through arrival angle points
|
|
for (int32_t aaa=0; aaa<ANGLE_RESOLUTION; aaa++) {
|
|
// Calculate the planewave arrival angle
|
|
double angle = -180.0 + 360.0 * double(aaa) / double(ANGLE_RESOLUTION-1.0);
|
|
double angleRad = M_PI * double(angle) / 180.0;
|
|
double realSum = 0;
|
|
double imagSum = 0;
|
|
// Iterate through array elements
|
|
for (int32_t iii=0; iii<posCount; iii++) {
|
|
// Calculate element position and wavefront delay
|
|
double delay = calculateDelay(positions[iii], Direction(angleRad, 0.0, distanceEar));
|
|
// Add Wave
|
|
realSum += cos(2.0 * M_PI * freq * (delay-basicApplyDelay[iii]));
|
|
imagSum += sin(2.0 * M_PI * freq * (delay-basicApplyDelay[iii]));
|
|
}
|
|
double output = sqrt(realSum * realSum + imagSum * imagSum) / posCount;
|
|
double logOutput = 20 * log10(output);
|
|
if (logOutput < -50) {
|
|
logOutput = -50;
|
|
}
|
|
char ploppp[4096];
|
|
sprintf(ploppp, "%d %f %f %f %f\n", aaa, angle, angleRad, output, logOutput);
|
|
node.filePuts(ploppp);
|
|
}
|
|
node.fileClose();
|
|
return 0;
|
|
}
|
|
|
|
|