2015-05-05 22:23:02 +02:00

318 lines
11 KiB
C++

/** @file
* @author Edouard DUPIN
* @copyright 2015, Edouard DUPIN, all right reserved
* @license APACHE v2.0 (see license file)
*/
#include <test/debug.h>
#include <etk/etk.h>
#include <audio/algo/chunkware/Compressor.h>
#include <audio/algo/chunkware/Limiter.h>
#include <audio/algo/chunkware/Gate.h>
#include <etk/os/FSNode.h>
#include <etk/chrono.h>
#include <unistd.h>
#undef __class__
#define __class__ "test"
static std::vector<double> convert(const std::vector<int16_t>& _data) {
std::vector<double> out;
out.resize(_data.size(), 0.0);
for (size_t iii=0; iii<_data.size(); ++iii) {
out[iii] = _data[iii];
out[iii] /= 32768.0;
out[iii] *= 2.1;
//APPL_INFO(" in=" << _data[iii] << " => " << out[iii]);
}
return out;
}
static std::vector<int16_t> convert(const std::vector<double>& _data) {
std::vector<int16_t> out;
out.resize(_data.size(), 0.0);
for (size_t iii=0; iii<_data.size(); ++iii) {
out[iii] = int16_t(std::avg(-32768.0, _data[iii]*32768.0, 32767.0));
}
return out;
}
class Performance {
private:
std11::chrono::steady_clock::time_point m_timeStart;
std11::chrono::steady_clock::time_point m_timeStop;
std11::chrono::nanoseconds m_totalTimeProcessing;
std11::chrono::nanoseconds m_minProcessing;
std11::chrono::nanoseconds m_maxProcessing;
int32_t m_totalIteration;
public:
Performance() :
m_totalTimeProcessing(0),
m_minProcessing(99999999999999LL),
m_maxProcessing(0),
m_totalIteration(0) {
}
void tic() {
m_timeStart = std11::chrono::steady_clock::now();
}
void toc() {
m_timeStop = std11::chrono::steady_clock::now();
std11::chrono::nanoseconds time = m_timeStop - m_timeStart;
m_minProcessing = std::min(m_minProcessing, time);
m_maxProcessing = std::max(m_maxProcessing, time);
m_totalTimeProcessing += time;
m_totalIteration++;
}
std11::chrono::nanoseconds getTotalTimeProcessing() {
return m_totalTimeProcessing;
}
std11::chrono::nanoseconds getMinProcessing() {
return m_minProcessing;
}
std11::chrono::nanoseconds getMaxProcessing() {
return m_maxProcessing;
}
int32_t getTotalIteration() {
return m_totalIteration;
}
};
void performanceCompressor() {
std::vector<double> input;
input.resize(8192, 0);
std::vector<double> output;
output.resize(8192, 0);
double sampleRate = 48000.0;
{
double phase = 0;
double baseCycle = 2.0*M_PI/sampleRate * 1280.0;
for (int32_t iii=0; iii<input.size(); iii++) {
input[iii] = cos(phase) * 5.0;
phase += baseCycle;
if (phase >= 2*M_PI) {
phase -= 2*M_PI;
}
}
}
APPL_PRINT("Start compressor performance ...");
Performance perfo;
audio::algo::chunkware::Compressor algo;
algo.setThreshold(-10);
algo.setRatio(-5);
algo.init();
for (int32_t iii=0; iii<4096; ++iii) {
perfo.tic();
algo.process(&output[0], &input[0], input.size(), 1, audio::format_double);
perfo.toc();
usleep(1000);
}
APPL_PRINT("Performance Compressor (double): ");
APPL_PRINT(" blockSize=" << input.size() << " sample");
APPL_PRINT(" min < avg < max =" << perfo.getMinProcessing().count() << "ns < "
<< perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration() << "ns < "
<< perfo.getMaxProcessing().count() << "ns ");
APPL_PRINT(" min < avg < max= " << (float((perfo.getMinProcessing().count()*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "% < "
<< (float(((perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration())*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "% < "
<< (float((perfo.getMaxProcessing().count()*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "%");
}
void performanceLimiter() {
std::vector<double> input;
input.resize(8192, 0);
std::vector<double> output;
output.resize(8192, 0);
double sampleRate = 48000.0;
{
double phase = 0;
double baseCycle = 2.0*M_PI/sampleRate * 1280.0;
for (int32_t iii=0; iii<input.size(); iii++) {
input[iii] = cos(phase) * 5.0;
phase += baseCycle;
if (phase >= 2*M_PI) {
phase -= 2*M_PI;
}
}
}
APPL_PRINT("Start Limiter performance ...");
Performance perfo;
audio::algo::chunkware::Limiter algo;
algo.setSampleRate(48000);
algo.setThreshold(0);
algo.setAttack(0.1);
algo.setRelease(2);
algo.init(1);
for (int32_t iii=0; iii<4096; ++iii) {
perfo.tic();
algo.process(&output[0], &input[0], input.size(), 1, audio::format_double);
perfo.toc();
usleep(1000);
}
APPL_PRINT("Performance Limiter (double): ");
APPL_PRINT(" blockSize=" << input.size() << " sample");
APPL_PRINT(" min < avg < max =" << perfo.getMinProcessing().count() << "ns < "
<< perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration() << "ns < "
<< perfo.getMaxProcessing().count() << "ns ");
APPL_PRINT(" min < avg < max = " << (float((perfo.getMinProcessing().count()*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "% < "
<< (float(((perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration())*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "% < "
<< (float((perfo.getMaxProcessing().count()*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "%");
}
void performanceGate() {
std::vector<double> input;
input.resize(8192, 0);
std::vector<double> output;
output.resize(8192, 0);
double sampleRate = 48000.0;
{
double phase = 0;
double baseCycle = 2.0*M_PI/sampleRate * 1280.0;
for (int32_t iii=0; iii<input.size(); iii++) {
input[iii] = cos(phase) * 5.0;
phase += baseCycle;
if (phase >= 2*M_PI) {
phase -= 2*M_PI;
}
}
}
APPL_PRINT("Start Gate performance ...");
Performance perfo;
audio::algo::chunkware::Gate algo;
algo.setSampleRate(48000);
algo.setThreshold(0);
algo.setAttack(0.1);
algo.setRelease(2);
algo.init();
for (int32_t iii=0; iii<4096; ++iii) {
perfo.tic();
algo.process(&output[0], &input[0], input.size(), 1, audio::format_double);
perfo.toc();
usleep(1000);
}
APPL_PRINT("Performance Gate (double): ");
APPL_PRINT(" blockSize=" << input.size() << " sample");
APPL_PRINT(" min < avg < max =" << perfo.getMinProcessing().count() << "ns < "
<< perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration() << "ns < "
<< perfo.getMaxProcessing().count() << "ns ");
APPL_PRINT(" min < avg < max = " << (float((perfo.getMinProcessing().count()*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "% < "
<< (float(((perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration())*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "% < "
<< (float((perfo.getMaxProcessing().count()*sampleRate)/double(input.size()))/1000000000.0)*100.0 << "%");
}
int main(int _argc, const char** _argv) {
// the only one init for etk:
etk::init(_argc, _argv);
std::string inputName = "";
bool performance = false;
bool perf = false;
int64_t sampleRate = 48000;
for (int32_t iii=0; iii<_argc ; ++iii) {
std::string data = _argv[iii];
if (etk::start_with(data,"--in=")) {
inputName = &data[5];
} else if (data == "--performance") {
performance = true;
} else if (data == "--perf") {
perf = true;
} else if (etk::start_with(data,"--sample-rate=")) {
data = &data[14];
sampleRate = etk::string_to_int32_t(data);
} else if ( data == "-h"
|| data == "--help") {
APPL_PRINT("Help : ");
APPL_PRINT(" ./xxx --fb=file.raw --mic=file.raw");
APPL_PRINT(" --in=YYY.raw inout file");
APPL_PRINT(" --performance Generate signal to force algo to maximum process time");
APPL_PRINT(" --perf Enable performence test (little slower but real performence test)");
APPL_PRINT(" --sample-rate=XXXX Signal sample rate (default 48000)");
exit(0);
}
}
// PERFORMANCE test only ....
if (performance == true) {
performanceCompressor();
performanceLimiter();
performanceGate();
return 0;
}
if (inputName == "") {
APPL_ERROR("Can not Process missing parameters...");
exit(-1);
}
APPL_INFO("Read input:");
std::vector<double> inputData = convert(etk::FSNodeReadAllDataType<int16_t>(inputName));
APPL_INFO(" " << inputData.size() << " samples");
// resize output :
std::vector<double> output;
output.resize(inputData.size(), 0);
// process in chunk of 256 samples
int32_t blockSize = 256;
Performance perfo;
/*
audio::algo::chunkware::Compressor algo;
algo.setThreshold(-10);
algo.setRatio(-5);
int32_t lastPourcent = -1;
for (int32_t iii=0; iii<output.size()/blockSize; ++iii) {
if (lastPourcent != 100*iii / (output.size()/blockSize)) {
lastPourcent = 100*iii / (output.size()/blockSize);
APPL_INFO("Process : " << iii*blockSize << "/" << int32_t(output.size()/blockSize)*blockSize << " " << lastPourcent << "/100");
} else {
APPL_VERBOSE("Process : " << iii*blockSize << "/" << int32_t(output.size()/blockSize)*blockSize);
}
perfo.tic();
algo.process(audio::format_double, &output[iii*blockSize], &inputData[iii*blockSize], blockSize, 1);
if (perf == true) {
perfo.toc();
usleep(1000);
}
}
*/
audio::algo::chunkware::Limiter algo;
algo.setSampleRate(48000);
algo.setThreshold(0);
algo.setAttack(0.1);
algo.setRelease(2);
algo.init(1);
int32_t lastPourcent = -1;
for (int32_t iii=0; iii<output.size()/blockSize; ++iii) {
if (lastPourcent != 100*iii / (output.size()/blockSize)) {
lastPourcent = 100*iii / (output.size()/blockSize);
APPL_INFO("Process : " << iii*blockSize << "/" << int32_t(output.size()/blockSize)*blockSize << " " << lastPourcent << "/100");
} else {
APPL_VERBOSE("Process : " << iii*blockSize << "/" << int32_t(output.size()/blockSize)*blockSize);
}
perfo.tic();
algo.process(&output[iii*blockSize], &inputData[iii*blockSize], blockSize, 1, audio::format_double);
if (perf == true) {
perfo.toc();
usleep(1000);
}
}
if (perf == true) {
APPL_INFO("Performance Result: ");
APPL_INFO(" blockSize=" << blockSize << " sample");
APPL_INFO(" min=" << perfo.getMinProcessing().count() << " ns");
APPL_INFO(" max=" << perfo.getMaxProcessing().count() << " ns");
APPL_INFO(" avg=" << perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration() << " ns");
APPL_INFO(" min=" << (float((perfo.getMinProcessing().count()*sampleRate)/blockSize)/1000000000.0)*100.0 << " %");
APPL_INFO(" max=" << (float((perfo.getMaxProcessing().count()*sampleRate)/blockSize)/1000000000.0)*100.0 << " %");
APPL_INFO(" avg=" << (float(((perfo.getTotalTimeProcessing().count()/perfo.getTotalIteration())*sampleRate)/blockSize)/1000000000.0)*100.0 << " %");
}
etk::FSNodeWriteAllDataType<int16_t>("output.raw", convert(output));
}