webrtc/talk/base/sslstreamadapter_unittest.cc

935 lines
30 KiB
C++

/*
* libjingle
* Copyright 2011, Google Inc.
* Portions Copyright 2011, RTFM, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <algorithm>
#include <set>
#include <string>
#include "talk/base/gunit.h"
#include "talk/base/helpers.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/ssladapter.h"
#include "talk/base/sslconfig.h"
#include "talk/base/sslidentity.h"
#include "talk/base/sslstreamadapter.h"
#include "talk/base/stream.h"
static const int kBlockSize = 4096;
static const char kAES_CM_HMAC_SHA1_80[] = "AES_CM_128_HMAC_SHA1_80";
static const char kAES_CM_HMAC_SHA1_32[] = "AES_CM_128_HMAC_SHA1_32";
static const char kExporterLabel[] = "label";
static const unsigned char kExporterContext[] = "context";
static int kExporterContextLen = sizeof(kExporterContext);
static const char kRSA_PRIVATE_KEY_PEM[] =
"-----BEGIN RSA PRIVATE KEY-----\n"
"MIICXQIBAAKBgQDCueE4a9hDMZ3sbVZdlXOz9ZA+cvzie3zJ9gXnT/BCt9P4b9HE\n"
"vD/tr73YBqD3Wr5ZWScmyGYF9EMn0r3rzBxv6oooLU5TdUvOm4rzUjkCLQaQML8o\n"
"NxXq+qW/j3zUKGikLhaaAl/amaX2zSWUsRQ1CpngQ3+tmDNH4/25TncNmQIDAQAB\n"
"AoGAUcuU0Id0k10fMjYHZk4mCPzot2LD2Tr4Aznl5vFMQipHzv7hhZtx2xzMSRcX\n"
"vG+Qr6VkbcUWHgApyWubvZXCh3+N7Vo2aYdMAQ8XqmFpBdIrL5CVdVfqFfEMlgEy\n"
"LSZNG5klnrIfl3c7zQVovLr4eMqyl2oGfAqPQz75+fecv1UCQQD6wNHch9NbAG1q\n"
"yuFEhMARB6gDXb+5SdzFjjtTWW5uJfm4DcZLoYyaIZm0uxOwsUKd0Rsma+oGitS1\n"
"CXmuqfpPAkEAxszyN3vIdpD44SREEtyKZBMNOk5pEIIGdbeMJC5/XHvpxww9xkoC\n"
"+39NbvUZYd54uT+rafbx4QZKc0h9xA/HlwJBAL37lYVWy4XpPv1olWCKi9LbUCqs\n"
"vvQtyD1N1BkEayy9TQRsO09WKOcmigRqsTJwOx7DLaTgokEuspYvhagWVPUCQE/y\n"
"0+YkTbYBD1Xbs9SyBKXCU6uDJRWSdO6aZi2W1XloC9gUwDMiSJjD1Wwt/YsyYPJ+\n"
"/Hyc5yFL2l0KZimW/vkCQQCjuZ/lPcH46EuzhdbRfumDOG5N3ld7UhGI1TIRy17W\n"
"dGF90cG33/L6BfS8Ll+fkkW/2AMRk8FDvF4CZi2nfW4L\n"
"-----END RSA PRIVATE KEY-----\n";
static const char kCERT_PEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBmTCCAQICCQCPNJORW/M13DANBgkqhkiG9w0BAQUFADARMQ8wDQYDVQQDDAZ3\n"
"ZWJydGMwHhcNMTMwNjE0MjIzMDAxWhcNMTQwNjE0MjIzMDAxWjARMQ8wDQYDVQQD\n"
"DAZ3ZWJydGMwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMK54Thr2EMxnext\n"
"Vl2Vc7P1kD5y/OJ7fMn2BedP8EK30/hv0cS8P+2vvdgGoPdavllZJybIZgX0QyfS\n"
"vevMHG/qiigtTlN1S86bivNSOQItBpAwvyg3Fer6pb+PfNQoaKQuFpoCX9qZpfbN\n"
"JZSxFDUKmeBDf62YM0fj/blOdw2ZAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAECMt\n"
"UZb35H8TnjGx4XPzco/kbnurMLFFWcuve/DwTsuf10Ia9N4md8LY0UtgIgtyNqWc\n"
"ZwyRMwxONF6ty3wcaIiPbGqiAa55T3YRuPibkRmck9CjrmM9JAtyvqHnpHd2TsBD\n"
"qCV42aXS3onOXDQ1ibuWq0fr0//aj0wo4KV474c=\n"
"-----END CERTIFICATE-----\n";
#define MAYBE_SKIP_TEST(feature) \
if (!(talk_base::SSLStreamAdapter::feature())) { \
LOG(LS_INFO) << "Feature disabled... skipping"; \
return; \
}
class SSLStreamAdapterTestBase;
class SSLDummyStream : public talk_base::StreamInterface,
public sigslot::has_slots<> {
public:
explicit SSLDummyStream(SSLStreamAdapterTestBase *test,
const std::string &side,
talk_base::FifoBuffer *in,
talk_base::FifoBuffer *out) :
test_(test),
side_(side),
in_(in),
out_(out),
first_packet_(true) {
in_->SignalEvent.connect(this, &SSLDummyStream::OnEventIn);
out_->SignalEvent.connect(this, &SSLDummyStream::OnEventOut);
}
virtual talk_base::StreamState GetState() const { return talk_base::SS_OPEN; }
virtual talk_base::StreamResult Read(void* buffer, size_t buffer_len,
size_t* read, int* error) {
talk_base::StreamResult r;
r = in_->Read(buffer, buffer_len, read, error);
if (r == talk_base::SR_BLOCK)
return talk_base::SR_BLOCK;
if (r == talk_base::SR_EOS)
return talk_base::SR_EOS;
if (r != talk_base::SR_SUCCESS) {
ADD_FAILURE();
return talk_base::SR_ERROR;
}
return talk_base::SR_SUCCESS;
}
// Catch readability events on in and pass them up.
virtual void OnEventIn(talk_base::StreamInterface *stream, int sig,
int err) {
int mask = (talk_base::SE_READ | talk_base::SE_CLOSE);
if (sig & mask) {
LOG(LS_INFO) << "SSLDummyStream::OnEvent side=" << side_ << " sig="
<< sig << " forwarding upward";
PostEvent(sig & mask, 0);
}
}
// Catch writeability events on out and pass them up.
virtual void OnEventOut(talk_base::StreamInterface *stream, int sig,
int err) {
if (sig & talk_base::SE_WRITE) {
LOG(LS_INFO) << "SSLDummyStream::OnEvent side=" << side_ << " sig="
<< sig << " forwarding upward";
PostEvent(sig & talk_base::SE_WRITE, 0);
}
}
// Write to the outgoing FifoBuffer
talk_base::StreamResult WriteData(const void* data, size_t data_len,
size_t* written, int* error) {
return out_->Write(data, data_len, written, error);
}
// Defined later
virtual talk_base::StreamResult Write(const void* data, size_t data_len,
size_t* written, int* error);
virtual void Close() {
LOG(LS_INFO) << "Closing outbound stream";
out_->Close();
}
private:
SSLStreamAdapterTestBase *test_;
const std::string side_;
talk_base::FifoBuffer *in_;
talk_base::FifoBuffer *out_;
bool first_packet_;
};
static const int kFifoBufferSize = 4096;
class SSLStreamAdapterTestBase : public testing::Test,
public sigslot::has_slots<> {
public:
SSLStreamAdapterTestBase(const std::string& client_cert_pem,
const std::string& client_private_key_pem,
bool dtls) :
client_buffer_(kFifoBufferSize), server_buffer_(kFifoBufferSize),
client_stream_(
new SSLDummyStream(this, "c2s", &client_buffer_, &server_buffer_)),
server_stream_(
new SSLDummyStream(this, "s2c", &server_buffer_, &client_buffer_)),
client_ssl_(talk_base::SSLStreamAdapter::Create(client_stream_)),
server_ssl_(talk_base::SSLStreamAdapter::Create(server_stream_)),
client_identity_(NULL), server_identity_(NULL),
delay_(0), mtu_(1460), loss_(0), lose_first_packet_(false),
damage_(false), dtls_(dtls),
handshake_wait_(5000), identities_set_(false) {
// Set use of the test RNG to get predictable loss patterns.
talk_base::SetRandomTestMode(true);
// Set up the slots
client_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent);
server_ssl_->SignalEvent.connect(this, &SSLStreamAdapterTestBase::OnEvent);
if (!client_cert_pem.empty() && !client_private_key_pem.empty()) {
client_identity_ = talk_base::SSLIdentity::FromPEMStrings(
client_private_key_pem, client_cert_pem);
} else {
client_identity_ = talk_base::SSLIdentity::Generate("client");
}
server_identity_ = talk_base::SSLIdentity::Generate("server");
client_ssl_->SetIdentity(client_identity_);
server_ssl_->SetIdentity(server_identity_);
}
~SSLStreamAdapterTestBase() {
// Put it back for the next test.
talk_base::SetRandomTestMode(false);
talk_base::CleanupSSL();
}
static void SetUpTestCase() {
talk_base::InitializeSSL();
}
virtual void OnEvent(talk_base::StreamInterface *stream, int sig, int err) {
LOG(LS_INFO) << "SSLStreamAdapterTestBase::OnEvent sig=" << sig;
if (sig & talk_base::SE_READ) {
ReadData(stream);
}
if ((stream == client_ssl_.get()) && (sig & talk_base::SE_WRITE)) {
WriteData();
}
}
void SetPeerIdentitiesByCertificate(bool correct) {
LOG(LS_INFO) << "Setting peer identities by certificate";
if (correct) {
client_ssl_->SetPeerCertificate(server_identity_->certificate().
GetReference());
server_ssl_->SetPeerCertificate(client_identity_->certificate().
GetReference());
} else {
// If incorrect, set up to expect our own certificate at the peer
client_ssl_->SetPeerCertificate(client_identity_->certificate().
GetReference());
server_ssl_->SetPeerCertificate(server_identity_->certificate().
GetReference());
}
identities_set_ = true;
}
void SetPeerIdentitiesByDigest(bool correct) {
unsigned char digest[20];
size_t digest_len;
bool rv;
LOG(LS_INFO) << "Setting peer identities by digest";
rv = server_identity_->certificate().ComputeDigest(talk_base::DIGEST_SHA_1,
digest, 20,
&digest_len);
ASSERT_TRUE(rv);
if (!correct) {
LOG(LS_INFO) << "Setting bogus digest for server cert";
digest[0]++;
}
rv = client_ssl_->SetPeerCertificateDigest(talk_base::DIGEST_SHA_1, digest,
digest_len);
ASSERT_TRUE(rv);
rv = client_identity_->certificate().ComputeDigest(talk_base::DIGEST_SHA_1,
digest, 20, &digest_len);
ASSERT_TRUE(rv);
if (!correct) {
LOG(LS_INFO) << "Setting bogus digest for client cert";
digest[0]++;
}
rv = server_ssl_->SetPeerCertificateDigest(talk_base::DIGEST_SHA_1, digest,
digest_len);
ASSERT_TRUE(rv);
identities_set_ = true;
}
void TestHandshake(bool expect_success = true) {
server_ssl_->SetMode(dtls_ ? talk_base::SSL_MODE_DTLS :
talk_base::SSL_MODE_TLS);
client_ssl_->SetMode(dtls_ ? talk_base::SSL_MODE_DTLS :
talk_base::SSL_MODE_TLS);
if (!dtls_) {
// Make sure we simulate a reliable network for TLS.
// This is just a check to make sure that people don't write wrong
// tests.
ASSERT((mtu_ == 1460) && (loss_ == 0) && (lose_first_packet_ == 0));
}
if (!identities_set_)
SetPeerIdentitiesByDigest(true);
// Start the handshake
int rv;
server_ssl_->SetServerRole();
rv = server_ssl_->StartSSLWithPeer();
ASSERT_EQ(0, rv);
rv = client_ssl_->StartSSLWithPeer();
ASSERT_EQ(0, rv);
// Now run the handshake
if (expect_success) {
EXPECT_TRUE_WAIT((client_ssl_->GetState() == talk_base::SS_OPEN)
&& (server_ssl_->GetState() == talk_base::SS_OPEN),
handshake_wait_);
} else {
EXPECT_TRUE_WAIT(client_ssl_->GetState() == talk_base::SS_CLOSED,
handshake_wait_);
}
}
talk_base::StreamResult DataWritten(SSLDummyStream *from, const void *data,
size_t data_len, size_t *written,
int *error) {
// Randomly drop loss_ percent of packets
if (talk_base::CreateRandomId() % 100 < static_cast<uint32>(loss_)) {
LOG(LS_INFO) << "Randomly dropping packet, size=" << data_len;
*written = data_len;
return talk_base::SR_SUCCESS;
}
if (dtls_ && (data_len > mtu_)) {
LOG(LS_INFO) << "Dropping packet > mtu, size=" << data_len;
*written = data_len;
return talk_base::SR_SUCCESS;
}
// Optionally damage application data (type 23). Note that we don't damage
// handshake packets and we damage the last byte to keep the header
// intact but break the MAC.
if (damage_ && (*static_cast<const unsigned char *>(data) == 23)) {
std::vector<char> buf(data_len);
LOG(LS_INFO) << "Damaging packet";
memcpy(&buf[0], data, data_len);
buf[data_len - 1]++;
return from->WriteData(&buf[0], data_len, written, error);
}
return from->WriteData(data, data_len, written, error);
}
void SetDelay(int delay) {
delay_ = delay;
}
int GetDelay() { return delay_; }
void SetLoseFirstPacket(bool lose) {
lose_first_packet_ = lose;
}
bool GetLoseFirstPacket() { return lose_first_packet_; }
void SetLoss(int percent) {
loss_ = percent;
}
void SetDamage() {
damage_ = true;
}
void SetMtu(size_t mtu) {
mtu_ = mtu;
}
void SetHandshakeWait(int wait) {
handshake_wait_ = wait;
}
void SetDtlsSrtpCiphers(const std::vector<std::string> &ciphers,
bool client) {
if (client)
client_ssl_->SetDtlsSrtpCiphers(ciphers);
else
server_ssl_->SetDtlsSrtpCiphers(ciphers);
}
bool GetDtlsSrtpCipher(bool client, std::string *retval) {
if (client)
return client_ssl_->GetDtlsSrtpCipher(retval);
else
return server_ssl_->GetDtlsSrtpCipher(retval);
}
bool GetPeerCertificate(bool client, talk_base::SSLCertificate** cert) {
if (client)
return client_ssl_->GetPeerCertificate(cert);
else
return server_ssl_->GetPeerCertificate(cert);
}
bool ExportKeyingMaterial(const char *label,
const unsigned char *context,
size_t context_len,
bool use_context,
bool client,
unsigned char *result,
size_t result_len) {
if (client)
return client_ssl_->ExportKeyingMaterial(label,
context, context_len,
use_context,
result, result_len);
else
return server_ssl_->ExportKeyingMaterial(label,
context, context_len,
use_context,
result, result_len);
}
// To be implemented by subclasses.
virtual void WriteData() = 0;
virtual void ReadData(talk_base::StreamInterface *stream) = 0;
virtual void TestTransfer(int size) = 0;
protected:
talk_base::FifoBuffer client_buffer_;
talk_base::FifoBuffer server_buffer_;
SSLDummyStream *client_stream_; // freed by client_ssl_ destructor
SSLDummyStream *server_stream_; // freed by server_ssl_ destructor
talk_base::scoped_ptr<talk_base::SSLStreamAdapter> client_ssl_;
talk_base::scoped_ptr<talk_base::SSLStreamAdapter> server_ssl_;
talk_base::SSLIdentity *client_identity_; // freed by client_ssl_ destructor
talk_base::SSLIdentity *server_identity_; // freed by server_ssl_ destructor
int delay_;
size_t mtu_;
int loss_;
bool lose_first_packet_;
bool damage_;
bool dtls_;
int handshake_wait_;
bool identities_set_;
};
class SSLStreamAdapterTestTLS : public SSLStreamAdapterTestBase {
public:
SSLStreamAdapterTestTLS() :
SSLStreamAdapterTestBase("", "", false) {
};
// Test data transfer for TLS
virtual void TestTransfer(int size) {
LOG(LS_INFO) << "Starting transfer test with " << size << " bytes";
// Create some dummy data to send.
size_t received;
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Start sending
WriteData();
// Wait for the client to close
EXPECT_TRUE_WAIT(server_ssl_->GetState() == talk_base::SS_CLOSED, 10000);
// Now check the data
recv_stream_.GetSize(&received);
EXPECT_EQ(static_cast<size_t>(size), received);
EXPECT_EQ(0, memcmp(send_stream_.GetBuffer(),
recv_stream_.GetBuffer(), size));
}
void WriteData() {
size_t position, tosend, size;
talk_base::StreamResult rv;
size_t sent;
char block[kBlockSize];
send_stream_.GetSize(&size);
if (!size)
return;
for (;;) {
send_stream_.GetPosition(&position);
if (send_stream_.Read(block, sizeof(block), &tosend, NULL) !=
talk_base::SR_EOS) {
rv = client_ssl_->Write(block, tosend, &sent, 0);
if (rv == talk_base::SR_SUCCESS) {
send_stream_.SetPosition(position + sent);
LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else if (rv == talk_base::SR_BLOCK) {
LOG(LS_VERBOSE) << "Blocked...";
send_stream_.SetPosition(position);
break;
} else {
ADD_FAILURE();
break;
}
} else {
// Now close
LOG(LS_INFO) << "Wrote " << position << " bytes. Closing";
client_ssl_->Close();
break;
}
}
};
virtual void ReadData(talk_base::StreamInterface *stream) {
char buffer[1600];
size_t bread;
int err2;
talk_base::StreamResult r;
for (;;) {
r = stream->Read(buffer, sizeof(buffer), &bread, &err2);
if (r == talk_base::SR_ERROR || r == talk_base::SR_EOS) {
// Unfortunately, errors are the way that the stream adapter
// signals close in OpenSSL
stream->Close();
return;
}
if (r == talk_base::SR_BLOCK)
break;
ASSERT_EQ(talk_base::SR_SUCCESS, r);
LOG(LS_INFO) << "Read " << bread;
recv_stream_.Write(buffer, bread, NULL, NULL);
}
}
private:
talk_base::MemoryStream send_stream_;
talk_base::MemoryStream recv_stream_;
};
class SSLStreamAdapterTestDTLS : public SSLStreamAdapterTestBase {
public:
SSLStreamAdapterTestDTLS() :
SSLStreamAdapterTestBase("", "", true),
packet_size_(1000), count_(0), sent_(0) {
}
SSLStreamAdapterTestDTLS(const std::string& cert_pem,
const std::string& private_key_pem) :
SSLStreamAdapterTestBase(cert_pem, private_key_pem, true),
packet_size_(1000), count_(0), sent_(0) {
}
virtual void WriteData() {
unsigned char *packet = new unsigned char[1600];
do {
memset(packet, sent_ & 0xff, packet_size_);
*(reinterpret_cast<uint32_t *>(packet)) = sent_;
size_t sent;
int rv = client_ssl_->Write(packet, packet_size_, &sent, 0);
if (rv == talk_base::SR_SUCCESS) {
LOG(LS_VERBOSE) << "Sent: " << sent_;
sent_++;
} else if (rv == talk_base::SR_BLOCK) {
LOG(LS_VERBOSE) << "Blocked...";
break;
} else {
ADD_FAILURE();
break;
}
} while (sent_ < count_);
delete [] packet;
}
virtual void ReadData(talk_base::StreamInterface *stream) {
unsigned char buffer[2000];
size_t bread;
int err2;
talk_base::StreamResult r;
for (;;) {
r = stream->Read(buffer, 2000, &bread, &err2);
if (r == talk_base::SR_ERROR) {
// Unfortunately, errors are the way that the stream adapter
// signals close right now
stream->Close();
return;
}
if (r == talk_base::SR_BLOCK)
break;
ASSERT_EQ(talk_base::SR_SUCCESS, r);
LOG(LS_INFO) << "Read " << bread;
// Now parse the datagram
ASSERT_EQ(packet_size_, bread);
unsigned char* ptr_to_buffer = buffer;
uint32_t packet_num = *(reinterpret_cast<uint32_t *>(ptr_to_buffer));
for (size_t i = 4; i < packet_size_; i++) {
ASSERT_EQ((packet_num & 0xff), buffer[i]);
}
received_.insert(packet_num);
}
}
virtual void TestTransfer(int count) {
count_ = count;
WriteData();
EXPECT_TRUE_WAIT(sent_ == count_, 10000);
LOG(LS_INFO) << "sent_ == " << sent_;
if (damage_) {
WAIT(false, 2000);
EXPECT_EQ(0U, received_.size());
} else if (loss_ == 0) {
EXPECT_EQ_WAIT(static_cast<size_t>(sent_), received_.size(), 1000);
} else {
LOG(LS_INFO) << "Sent " << sent_ << " packets; received " <<
received_.size();
}
};
private:
size_t packet_size_;
int count_;
int sent_;
std::set<int> received_;
};
talk_base::StreamResult SSLDummyStream::Write(const void* data, size_t data_len,
size_t* written, int* error) {
*written = data_len;
LOG(LS_INFO) << "Writing to loopback " << data_len;
if (first_packet_) {
first_packet_ = false;
if (test_->GetLoseFirstPacket()) {
LOG(LS_INFO) << "Losing initial packet of length " << data_len;
return talk_base::SR_SUCCESS;
}
}
return test_->DataWritten(this, data, data_len, written, error);
return talk_base::SR_SUCCESS;
};
class SSLStreamAdapterTestDTLSFromPEMStrings : public SSLStreamAdapterTestDTLS {
public:
SSLStreamAdapterTestDTLSFromPEMStrings() :
SSLStreamAdapterTestDTLS(kCERT_PEM, kRSA_PRIVATE_KEY_PEM) {
}
};
// Basic tests: TLS
// Test that we cannot read/write if we have not yet handshaked.
// This test only applies to NSS because OpenSSL has passthrough
// semantics for I/O before the handshake is started.
#if SSL_USE_NSS
TEST_F(SSLStreamAdapterTestTLS, TestNoReadWriteBeforeConnect) {
talk_base::StreamResult rv;
char block[kBlockSize];
size_t dummy;
rv = client_ssl_->Write(block, sizeof(block), &dummy, NULL);
ASSERT_EQ(talk_base::SR_BLOCK, rv);
rv = client_ssl_->Read(block, sizeof(block), &dummy, NULL);
ASSERT_EQ(talk_base::SR_BLOCK, rv);
}
#endif
// Test that we can make a handshake work
TEST_F(SSLStreamAdapterTestTLS, TestTLSConnect) {
TestHandshake();
};
// Test transfer -- trivial
TEST_F(SSLStreamAdapterTestTLS, TestTLSTransfer) {
TestHandshake();
TestTransfer(100000);
};
// Test read-write after close.
TEST_F(SSLStreamAdapterTestTLS, ReadWriteAfterClose) {
TestHandshake();
TestTransfer(100000);
client_ssl_->Close();
talk_base::StreamResult rv;
char block[kBlockSize];
size_t dummy;
// It's an error to write after closed.
rv = client_ssl_->Write(block, sizeof(block), &dummy, NULL);
ASSERT_EQ(talk_base::SR_ERROR, rv);
// But after closed read gives you EOS.
rv = client_ssl_->Read(block, sizeof(block), &dummy, NULL);
ASSERT_EQ(talk_base::SR_EOS, rv);
};
// Test a handshake with a bogus peer digest
TEST_F(SSLStreamAdapterTestTLS, TestTLSBogusDigest) {
SetPeerIdentitiesByDigest(false);
TestHandshake(false);
};
// Test a handshake with a peer certificate
TEST_F(SSLStreamAdapterTestTLS, TestTLSPeerCertificate) {
SetPeerIdentitiesByCertificate(true);
TestHandshake();
};
// Test a handshake with a bogus peer certificate
TEST_F(SSLStreamAdapterTestTLS, TestTLSBogusPeerCertificate) {
SetPeerIdentitiesByCertificate(false);
TestHandshake(false);
};
// Test moving a bunch of data
// Basic tests: DTLS
// Test that we can make a handshake work
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSConnect) {
MAYBE_SKIP_TEST(HaveDtls);
TestHandshake();
};
// Test that we can make a handshake work if the first packet in
// each direction is lost. This gives us predictable loss
// rather than having to tune random
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSConnectWithLostFirstPacket) {
MAYBE_SKIP_TEST(HaveDtls);
SetLoseFirstPacket(true);
TestHandshake();
};
// Test a handshake with loss and delay
TEST_F(SSLStreamAdapterTestDTLS,
TestDTLSConnectWithLostFirstPacketDelay2s) {
MAYBE_SKIP_TEST(HaveDtls);
SetLoseFirstPacket(true);
SetDelay(2000);
SetHandshakeWait(20000);
TestHandshake();
};
// Test a handshake with small MTU
TEST_F(SSLStreamAdapterTestDTLS, DISABLED_TestDTLSConnectWithSmallMtu) {
MAYBE_SKIP_TEST(HaveDtls);
SetMtu(700);
SetHandshakeWait(20000);
TestHandshake();
};
// Test transfer -- trivial
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSTransfer) {
MAYBE_SKIP_TEST(HaveDtls);
TestHandshake();
TestTransfer(100);
};
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSTransferWithLoss) {
MAYBE_SKIP_TEST(HaveDtls);
TestHandshake();
SetLoss(10);
TestTransfer(100);
};
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSTransferWithDamage) {
MAYBE_SKIP_TEST(HaveDtls);
SetDamage(); // Must be called first because first packet
// write happens at end of handshake.
TestHandshake();
TestTransfer(100);
};
// Test DTLS-SRTP with all high ciphers
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpHigh) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
std::vector<std::string> high;
high.push_back(kAES_CM_HMAC_SHA1_80);
SetDtlsSrtpCiphers(high, true);
SetDtlsSrtpCiphers(high, false);
TestHandshake();
std::string client_cipher;
ASSERT_TRUE(GetDtlsSrtpCipher(true, &client_cipher));
std::string server_cipher;
ASSERT_TRUE(GetDtlsSrtpCipher(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, kAES_CM_HMAC_SHA1_80);
};
// Test DTLS-SRTP with all low ciphers
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpLow) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
std::vector<std::string> low;
low.push_back(kAES_CM_HMAC_SHA1_32);
SetDtlsSrtpCiphers(low, true);
SetDtlsSrtpCiphers(low, false);
TestHandshake();
std::string client_cipher;
ASSERT_TRUE(GetDtlsSrtpCipher(true, &client_cipher));
std::string server_cipher;
ASSERT_TRUE(GetDtlsSrtpCipher(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, kAES_CM_HMAC_SHA1_32);
};
// Test DTLS-SRTP with a mismatch -- should not converge
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpHighLow) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
std::vector<std::string> high;
high.push_back(kAES_CM_HMAC_SHA1_80);
std::vector<std::string> low;
low.push_back(kAES_CM_HMAC_SHA1_32);
SetDtlsSrtpCiphers(high, true);
SetDtlsSrtpCiphers(low, false);
TestHandshake();
std::string client_cipher;
ASSERT_FALSE(GetDtlsSrtpCipher(true, &client_cipher));
std::string server_cipher;
ASSERT_FALSE(GetDtlsSrtpCipher(false, &server_cipher));
};
// Test DTLS-SRTP with each side being mixed -- should select high
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSSrtpMixed) {
MAYBE_SKIP_TEST(HaveDtlsSrtp);
std::vector<std::string> mixed;
mixed.push_back(kAES_CM_HMAC_SHA1_80);
mixed.push_back(kAES_CM_HMAC_SHA1_32);
SetDtlsSrtpCiphers(mixed, true);
SetDtlsSrtpCiphers(mixed, false);
TestHandshake();
std::string client_cipher;
ASSERT_TRUE(GetDtlsSrtpCipher(true, &client_cipher));
std::string server_cipher;
ASSERT_TRUE(GetDtlsSrtpCipher(false, &server_cipher));
ASSERT_EQ(client_cipher, server_cipher);
ASSERT_EQ(client_cipher, kAES_CM_HMAC_SHA1_80);
};
// Test an exporter
TEST_F(SSLStreamAdapterTestDTLS, TestDTLSExporter) {
MAYBE_SKIP_TEST(HaveExporter);
TestHandshake();
unsigned char client_out[20];
unsigned char server_out[20];
bool result;
result = ExportKeyingMaterial(kExporterLabel,
kExporterContext, kExporterContextLen,
true, true,
client_out, sizeof(client_out));
ASSERT_TRUE(result);
result = ExportKeyingMaterial(kExporterLabel,
kExporterContext, kExporterContextLen,
true, false,
server_out, sizeof(server_out));
ASSERT_TRUE(result);
ASSERT_TRUE(!memcmp(client_out, server_out, sizeof(client_out)));
}
// Test data transfer using certs created from strings.
TEST_F(SSLStreamAdapterTestDTLSFromPEMStrings, TestTransfer) {
MAYBE_SKIP_TEST(HaveDtls);
TestHandshake();
TestTransfer(100);
}
// Test getting the remote certificate.
TEST_F(SSLStreamAdapterTestDTLSFromPEMStrings, TestDTLSGetPeerCertificate) {
MAYBE_SKIP_TEST(HaveDtls);
// Peer certificates haven't been received yet.
talk_base::scoped_ptr<talk_base::SSLCertificate> client_peer_cert;
ASSERT_FALSE(GetPeerCertificate(true, client_peer_cert.accept()));
ASSERT_FALSE(client_peer_cert != NULL);
talk_base::scoped_ptr<talk_base::SSLCertificate> server_peer_cert;
ASSERT_FALSE(GetPeerCertificate(false, server_peer_cert.accept()));
ASSERT_FALSE(server_peer_cert != NULL);
TestHandshake();
// The client should have a peer certificate after the handshake.
ASSERT_TRUE(GetPeerCertificate(true, client_peer_cert.accept()));
ASSERT_TRUE(client_peer_cert != NULL);
// It's not kCERT_PEM.
std::string client_peer_string = client_peer_cert->ToPEMString();
ASSERT_NE(kCERT_PEM, client_peer_string);
// It must not have a chain, because the test certs are self-signed.
talk_base::SSLCertChain* client_peer_chain;
ASSERT_FALSE(client_peer_cert->GetChain(&client_peer_chain));
// The server should have a peer certificate after the handshake.
ASSERT_TRUE(GetPeerCertificate(false, server_peer_cert.accept()));
ASSERT_TRUE(server_peer_cert != NULL);
// It's kCERT_PEM
ASSERT_EQ(kCERT_PEM, server_peer_cert->ToPEMString());
// It must not have a chain, because the test certs are self-signed.
talk_base::SSLCertChain* server_peer_chain;
ASSERT_FALSE(server_peer_cert->GetChain(&server_peer_chain));
}