webrtc/talk/media/base/videoadapter.cc
magjed@webrtc.org f58b455cf7 cricket::VideoAdapter: Drop frames before spending time converting/scaling, not after.
In VideoCapturer::OnFrameCaptured, we currently convert cricket::CapturedFrame to cricket::VideoFrame and then send that to VideoAdapter::AdaptFrame. AdaptFrame may then decide to drop the frame. It would be faster to drop the frame before converting to cricket::VideoFrame.

This CL refactors VideoAdapter with a new function AdaptFrameResolution that takes captured resolution as input and output adapted resolution, or 0x0 if the frame should be dropped. Using that function, frames can be dropped before any conversion takes place.

R=fbarchard@google.com, perkj@webrtc.org, tommi@webrtc.org

Committed: https://code.google.com/p/webrtc/source/detail?r=7702

Committed: https://code.google.com/p/webrtc/source/detail?r=7707

Review URL: https://webrtc-codereview.appspot.com/29949004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7721 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-11-19 18:09:14 +00:00

804 lines
29 KiB
C++

// libjingle
// Copyright 2010 Google Inc.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. The name of the author may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
// EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
// OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
// WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
// OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
// ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "talk/media/base/videoadapter.h"
#include <limits.h> // For INT_MAX
#include "talk/media/base/constants.h"
#include "talk/media/base/videocommon.h"
#include "talk/media/base/videoframe.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/timeutils.h"
namespace cricket {
// TODO(fbarchard): Make downgrades settable
static const int kMaxCpuDowngrades = 2; // Downgrade at most 2 times for CPU.
// The number of cpu samples to require before adapting. This value depends on
// the cpu monitor sampling frequency being 2000ms.
static const int kCpuLoadMinSamples = 3;
// The amount of weight to give to each new cpu load sample. The lower the
// value, the slower we'll adapt to changing cpu conditions.
static const float kCpuLoadWeightCoefficient = 0.4f;
// The seed value for the cpu load moving average.
static const float kCpuLoadInitialAverage = 0.5f;
// Desktop needs 1/8 scale for HD (1280 x 720) to QQVGA (160 x 90)
static const float kScaleFactors[] = {
1.f / 1.f, // Full size.
3.f / 4.f, // 3/4 scale.
1.f / 2.f, // 1/2 scale.
3.f / 8.f, // 3/8 scale.
1.f / 4.f, // 1/4 scale.
3.f / 16.f, // 3/16 scale.
1.f / 8.f, // 1/8 scale.
0.f // End of table.
};
// TODO(fbarchard): Use this table (optionally) for CPU and GD as well.
static const float kViewScaleFactors[] = {
1.f / 1.f, // Full size.
3.f / 4.f, // 3/4 scale.
2.f / 3.f, // 2/3 scale. // Allow 1080p to 720p.
1.f / 2.f, // 1/2 scale.
3.f / 8.f, // 3/8 scale.
1.f / 3.f, // 1/3 scale. // Allow 1080p to 360p.
1.f / 4.f, // 1/4 scale.
3.f / 16.f, // 3/16 scale.
1.f / 8.f, // 1/8 scale.
0.f // End of table.
};
const float* VideoAdapter::GetViewScaleFactors() const {
return scale_third_ ? kViewScaleFactors : kScaleFactors;
}
// For resolutions that would scale down a little instead of up a little,
// bias toward scaling up a little. This will tend to choose 3/4 scale instead
// of 2/3 scale, when the 2/3 is not an exact match.
static const float kUpBias = -0.9f;
// Find the scale factor that, when applied to width and height, is closest
// to num_pixels.
float VideoAdapter::FindScale(const float* scale_factors,
const float upbias,
int width, int height,
int target_num_pixels) {
const float kMinNumPixels = 160 * 90;
if (!target_num_pixels) {
return 0.f;
}
float best_distance = static_cast<float>(INT_MAX);
float best_scale = 1.f; // Default to unscaled if nothing matches.
float pixels = static_cast<float>(width * height);
for (int i = 0; ; ++i) {
float scale = scale_factors[i];
float test_num_pixels = pixels * scale * scale;
// Do not consider scale factors that produce too small images.
// Scale factor of 0 at end of table will also exit here.
if (test_num_pixels < kMinNumPixels) {
break;
}
float diff = target_num_pixels - test_num_pixels;
// If resolution is higher than desired, bias the difference based on
// preference for slightly larger for nearest, or avoid completely if
// looking for lower resolutions only.
if (diff < 0) {
diff = diff * kUpBias;
}
if (diff < best_distance) {
best_distance = diff;
best_scale = scale;
if (best_distance == 0) { // Found exact match.
break;
}
}
}
return best_scale;
}
// Find the closest scale factor.
float VideoAdapter::FindClosestScale(int width, int height,
int target_num_pixels) {
return FindScale(kScaleFactors, kUpBias,
width, height, target_num_pixels);
}
// Find the closest view scale factor.
float VideoAdapter::FindClosestViewScale(int width, int height,
int target_num_pixels) {
return FindScale(GetViewScaleFactors(), kUpBias,
width, height, target_num_pixels);
}
// Finds the scale factor that, when applied to width and height, produces
// fewer than num_pixels.
static const float kUpAvoidBias = -1000000000.f;
float VideoAdapter::FindLowerScale(int width, int height,
int target_num_pixels) {
return FindScale(GetViewScaleFactors(), kUpAvoidBias,
width, height, target_num_pixels);
}
// There are several frame sizes used by Adapter. This explains them
// input_format - set once by server to frame size expected from the camera.
// The input frame size is also updated in every call to AdaptFrame.
// output_format - size that output would like to be. Includes framerate.
// The output frame size is also updated in every call to AdaptFrame.
// output_num_pixels - size that output should be constrained to. Used to
// compute output_format from in_frame.
// in_frame - actual camera captured frame size, which is typically the same
// as input_format. This can also be rotated or cropped for aspect ratio.
// out_frame - actual frame output by adapter. Should be a direct scale of
// in_frame maintaining rotation and aspect ratio.
// OnOutputFormatRequest - server requests you send this resolution based on
// view requests.
// OnEncoderResolutionRequest - encoder requests you send this resolution based
// on bandwidth
// OnCpuLoadUpdated - cpu monitor requests you send this resolution based on
// cpu load.
///////////////////////////////////////////////////////////////////////
// Implementation of VideoAdapter
VideoAdapter::VideoAdapter()
: output_num_pixels_(INT_MAX),
scale_third_(false),
frames_in_(0),
frames_out_(0),
frames_scaled_(0),
adaption_changes_(0),
previous_width_(0),
previous_height_(0),
black_output_(false),
is_black_(false),
interval_next_frame_(0) {
}
VideoAdapter::~VideoAdapter() {
}
void VideoAdapter::SetInputFormat(const VideoFormat& format) {
rtc::CritScope cs(&critical_section_);
int64 old_input_interval = input_format_.interval;
input_format_ = format;
output_format_.interval = rtc::_max(
output_format_.interval, input_format_.interval);
if (old_input_interval != input_format_.interval) {
LOG(LS_INFO) << "VAdapt input interval changed from "
<< old_input_interval << " to " << input_format_.interval;
}
}
void CoordinatedVideoAdapter::SetInputFormat(const VideoFormat& format) {
int previous_width = input_format().width;
int previous_height = input_format().height;
bool is_resolution_change = previous_width > 0 && format.width > 0 &&
(previous_width != format.width ||
previous_height != format.height);
VideoAdapter::SetInputFormat(format);
if (is_resolution_change) {
int width, height;
// Trigger the adaptation logic again, to potentially reset the adaptation
// state for things like view requests that may not longer be capping
// output (or may now cap output).
AdaptToMinimumFormat(&width, &height);
LOG(LS_INFO) << "VAdapt Input Resolution Change: "
<< "Previous input resolution: "
<< previous_width << "x" << previous_height
<< " New input resolution: "
<< format.width << "x" << format.height
<< " New output resolution: "
<< width << "x" << height;
}
}
void CoordinatedVideoAdapter::set_cpu_smoothing(bool enable) {
LOG(LS_INFO) << "CPU smoothing is now "
<< (enable ? "enabled" : "disabled");
cpu_smoothing_ = enable;
}
void VideoAdapter::SetOutputFormat(const VideoFormat& format) {
rtc::CritScope cs(&critical_section_);
int64 old_output_interval = output_format_.interval;
output_format_ = format;
output_num_pixels_ = output_format_.width * output_format_.height;
output_format_.interval = rtc::_max(
output_format_.interval, input_format_.interval);
if (old_output_interval != output_format_.interval) {
LOG(LS_INFO) << "VAdapt output interval changed from "
<< old_output_interval << " to " << output_format_.interval;
}
}
const VideoFormat& VideoAdapter::input_format() {
rtc::CritScope cs(&critical_section_);
return input_format_;
}
bool VideoAdapter::drops_all_frames() const {
return output_num_pixels_ == 0;
}
const VideoFormat& VideoAdapter::output_format() {
rtc::CritScope cs(&critical_section_);
return output_format_;
}
void VideoAdapter::SetBlackOutput(bool black) {
rtc::CritScope cs(&critical_section_);
black_output_ = black;
}
bool VideoAdapter::IsBlackOutput() {
rtc::CritScope cs(&critical_section_);
return black_output_;
}
// Constrain output resolution to this many pixels overall
void VideoAdapter::SetOutputNumPixels(int num_pixels) {
output_num_pixels_ = num_pixels;
}
int VideoAdapter::GetOutputNumPixels() const {
return output_num_pixels_;
}
VideoFormat VideoAdapter::AdaptFrameResolution(int in_width, int in_height) {
rtc::CritScope cs(&critical_section_);
++frames_in_;
SetInputFormat(VideoFormat(
in_width, in_height, input_format_.interval, input_format_.fourcc));
// Drop the input frame if necessary.
bool should_drop = false;
if (!output_num_pixels_) {
// Drop all frames as the output format is 0x0.
should_drop = true;
} else {
// Drop some frames based on input fps and output fps.
// Normally output fps is less than input fps.
// TODO(fbarchard): Consider adjusting interval to reflect the adjusted
// interval between frames after dropping some frames.
interval_next_frame_ += input_format_.interval;
if (output_format_.interval > 0) {
if (interval_next_frame_ >= output_format_.interval) {
interval_next_frame_ %= output_format_.interval;
} else {
should_drop = true;
}
}
}
if (should_drop) {
// Show VAdapt log every 90 frames dropped. (3 seconds)
if ((frames_in_ - frames_out_) % 90 == 0) {
// TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed
// in default calls.
LOG(LS_INFO) << "VAdapt Drop Frame: scaled " << frames_scaled_
<< " / out " << frames_out_
<< " / in " << frames_in_
<< " Changes: " << adaption_changes_
<< " Input: " << in_width
<< "x" << in_height
<< " i" << input_format_.interval
<< " Output: i" << output_format_.interval;
}
return VideoFormat(); // Drop frame.
}
const float scale = VideoAdapter::FindClosestViewScale(
in_width, in_height, output_num_pixels_);
const int output_width = static_cast<int>(in_width * scale + .5f);
const int output_height = static_cast<int>(in_height * scale + .5f);
++frames_out_;
if (scale != 1)
++frames_scaled_;
// Show VAdapt log every 90 frames output. (3 seconds)
// TODO(fbarchard): Consider GetLogSeverity() to change interval to less
// for LS_VERBOSE and more for LS_INFO.
bool show = (frames_out_) % 90 == 0;
// TODO(fbarchard): LOG the previous output resolution and track input
// resolution changes as well. Consider dropping the statistics into their
// own class which could be queried publically.
bool changed = false;
if (previous_width_ && (previous_width_ != output_width ||
previous_height_ != output_height)) {
show = true;
++adaption_changes_;
changed = true;
}
if (show) {
// TODO(fbarchard): Reduce to LS_VERBOSE when adapter info is not needed
// in default calls.
LOG(LS_INFO) << "VAdapt Frame: scaled " << frames_scaled_
<< " / out " << frames_out_
<< " / in " << frames_in_
<< " Changes: " << adaption_changes_
<< " Input: " << in_width
<< "x" << in_height
<< " i" << input_format_.interval
<< " Scale: " << scale
<< " Output: " << output_width
<< "x" << output_height
<< " i" << output_format_.interval
<< " Changed: " << (changed ? "true" : "false");
}
output_format_.width = output_width;
output_format_.height = output_height;
previous_width_ = output_width;
previous_height_ = output_height;
return output_format_;
}
// TODO(fbarchard): Add AdaptFrameRate function that only drops frames but
// not resolution.
bool VideoAdapter::AdaptFrame(VideoFrame* in_frame, VideoFrame** out_frame) {
if (!in_frame || !out_frame)
return false;
const VideoFormat adapted_format =
AdaptFrameResolution(static_cast<int>(in_frame->GetWidth()),
static_cast<int>(in_frame->GetHeight()));
rtc::CritScope cs(&critical_section_);
if (adapted_format.IsSize0x0()) {
*out_frame = NULL;
return true;
}
if (!black_output_ &&
in_frame->GetWidth() == static_cast<size_t>(adapted_format.width) &&
in_frame->GetHeight() == static_cast<size_t>(adapted_format.height)) {
// The dimensions are correct and we aren't muting, so use the input frame.
*out_frame = in_frame;
} else {
if (!StretchToOutputFrame(in_frame)) {
LOG(LS_VERBOSE) << "VAdapt Stretch Failed.";
return false;
}
*out_frame = output_frame_.get();
}
return true;
}
void VideoAdapter::set_scale_third(bool enable) {
LOG(LS_INFO) << "Video Adapter third scaling is now "
<< (enable ? "enabled" : "disabled");
scale_third_ = enable;
}
// Scale or Blacken the frame. Returns true if successful.
bool VideoAdapter::StretchToOutputFrame(const VideoFrame* in_frame) {
int output_width = output_format_.width;
int output_height = output_format_.height;
// Create and stretch the output frame if it has not been created yet or its
// size is not same as the expected.
bool stretched = false;
if (!output_frame_ ||
output_frame_->GetWidth() != static_cast<size_t>(output_width) ||
output_frame_->GetHeight() != static_cast<size_t>(output_height)) {
output_frame_.reset(
in_frame->Stretch(output_width, output_height, true, true));
if (!output_frame_) {
LOG(LS_WARNING) << "Adapter failed to stretch frame to "
<< output_width << "x" << output_height;
return false;
}
stretched = true;
is_black_ = false;
}
if (!black_output_) {
if (!stretched) {
// The output frame does not need to be blacken and has not been stretched
// from the input frame yet, stretch the input frame. This is the most
// common case.
in_frame->StretchToFrame(output_frame_.get(), true, true);
}
is_black_ = false;
} else {
if (!is_black_) {
output_frame_->SetToBlack();
is_black_ = true;
}
output_frame_->SetElapsedTime(in_frame->GetElapsedTime());
output_frame_->SetTimeStamp(in_frame->GetTimeStamp());
}
return true;
}
///////////////////////////////////////////////////////////////////////
// Implementation of CoordinatedVideoAdapter
CoordinatedVideoAdapter::CoordinatedVideoAdapter()
: cpu_adaptation_(true),
cpu_smoothing_(false),
gd_adaptation_(true),
view_adaptation_(true),
view_switch_(false),
cpu_downgrade_count_(0),
cpu_load_min_samples_(kCpuLoadMinSamples),
cpu_load_num_samples_(0),
high_system_threshold_(kHighSystemCpuThreshold),
low_system_threshold_(kLowSystemCpuThreshold),
process_threshold_(kProcessCpuThreshold),
view_desired_num_pixels_(INT_MAX),
view_desired_interval_(0),
encoder_desired_num_pixels_(INT_MAX),
cpu_desired_num_pixels_(INT_MAX),
adapt_reason_(ADAPTREASON_NONE),
system_load_average_(kCpuLoadInitialAverage) {
}
// Helper function to UPGRADE or DOWNGRADE a number of pixels
void CoordinatedVideoAdapter::StepPixelCount(
CoordinatedVideoAdapter::AdaptRequest request,
int* num_pixels) {
switch (request) {
case CoordinatedVideoAdapter::DOWNGRADE:
*num_pixels /= 2;
break;
case CoordinatedVideoAdapter::UPGRADE:
*num_pixels *= 2;
break;
default: // No change in pixel count
break;
}
return;
}
// Find the adaptation request of the cpu based on the load. Return UPGRADE if
// the load is low, DOWNGRADE if the load is high, and KEEP otherwise.
CoordinatedVideoAdapter::AdaptRequest CoordinatedVideoAdapter::FindCpuRequest(
int current_cpus, int max_cpus,
float process_load, float system_load) {
// Downgrade if system is high and plugin is at least more than midrange.
if (system_load >= high_system_threshold_ * max_cpus &&
process_load >= process_threshold_ * current_cpus) {
return CoordinatedVideoAdapter::DOWNGRADE;
// Upgrade if system is low.
} else if (system_load < low_system_threshold_ * max_cpus) {
return CoordinatedVideoAdapter::UPGRADE;
}
return CoordinatedVideoAdapter::KEEP;
}
// A remote view request for a new resolution.
void CoordinatedVideoAdapter::OnOutputFormatRequest(const VideoFormat& format) {
rtc::CritScope cs(&request_critical_section_);
if (!view_adaptation_) {
return;
}
// Set output for initial aspect ratio in mediachannel unittests.
int old_num_pixels = GetOutputNumPixels();
SetOutputFormat(format);
SetOutputNumPixels(old_num_pixels);
view_desired_num_pixels_ = format.width * format.height;
view_desired_interval_ = format.interval;
int new_width, new_height;
bool changed = AdaptToMinimumFormat(&new_width, &new_height);
LOG(LS_INFO) << "VAdapt View Request: "
<< format.width << "x" << format.height
<< " Pixels: " << view_desired_num_pixels_
<< " Changed: " << (changed ? "true" : "false")
<< " To: " << new_width << "x" << new_height;
}
void CoordinatedVideoAdapter::set_cpu_load_min_samples(
int cpu_load_min_samples) {
if (cpu_load_min_samples_ != cpu_load_min_samples) {
LOG(LS_INFO) << "VAdapt Change Cpu Adapt Min Samples from: "
<< cpu_load_min_samples_ << " to "
<< cpu_load_min_samples;
cpu_load_min_samples_ = cpu_load_min_samples;
}
}
void CoordinatedVideoAdapter::set_high_system_threshold(
float high_system_threshold) {
ASSERT(high_system_threshold <= 1.0f);
ASSERT(high_system_threshold >= 0.0f);
if (high_system_threshold_ != high_system_threshold) {
LOG(LS_INFO) << "VAdapt Change High System Threshold from: "
<< high_system_threshold_ << " to " << high_system_threshold;
high_system_threshold_ = high_system_threshold;
}
}
void CoordinatedVideoAdapter::set_low_system_threshold(
float low_system_threshold) {
ASSERT(low_system_threshold <= 1.0f);
ASSERT(low_system_threshold >= 0.0f);
if (low_system_threshold_ != low_system_threshold) {
LOG(LS_INFO) << "VAdapt Change Low System Threshold from: "
<< low_system_threshold_ << " to " << low_system_threshold;
low_system_threshold_ = low_system_threshold;
}
}
void CoordinatedVideoAdapter::set_process_threshold(float process_threshold) {
ASSERT(process_threshold <= 1.0f);
ASSERT(process_threshold >= 0.0f);
if (process_threshold_ != process_threshold) {
LOG(LS_INFO) << "VAdapt Change High Process Threshold from: "
<< process_threshold_ << " to " << process_threshold;
process_threshold_ = process_threshold;
}
}
// A Bandwidth GD request for new resolution
void CoordinatedVideoAdapter::OnEncoderResolutionRequest(
int width, int height, AdaptRequest request) {
rtc::CritScope cs(&request_critical_section_);
if (!gd_adaptation_) {
return;
}
int old_encoder_desired_num_pixels = encoder_desired_num_pixels_;
if (KEEP != request) {
int new_encoder_desired_num_pixels = width * height;
int old_num_pixels = GetOutputNumPixels();
if (new_encoder_desired_num_pixels != old_num_pixels) {
LOG(LS_VERBOSE) << "VAdapt GD resolution stale. Ignored";
} else {
// Update the encoder desired format based on the request.
encoder_desired_num_pixels_ = new_encoder_desired_num_pixels;
StepPixelCount(request, &encoder_desired_num_pixels_);
}
}
int new_width, new_height;
bool changed = AdaptToMinimumFormat(&new_width, &new_height);
// Ignore up or keep if no change.
if (DOWNGRADE != request && view_switch_ && !changed) {
encoder_desired_num_pixels_ = old_encoder_desired_num_pixels;
LOG(LS_VERBOSE) << "VAdapt ignoring GD request.";
}
LOG(LS_INFO) << "VAdapt GD Request: "
<< (DOWNGRADE == request ? "down" :
(UPGRADE == request ? "up" : "keep"))
<< " From: " << width << "x" << height
<< " Pixels: " << encoder_desired_num_pixels_
<< " Changed: " << (changed ? "true" : "false")
<< " To: " << new_width << "x" << new_height;
}
// A Bandwidth GD request for new resolution
void CoordinatedVideoAdapter::OnCpuResolutionRequest(AdaptRequest request) {
rtc::CritScope cs(&request_critical_section_);
if (!cpu_adaptation_) {
return;
}
// Update how many times we have downgraded due to the cpu load.
switch (request) {
case DOWNGRADE:
// Ignore downgrades if we have downgraded the maximum times.
if (cpu_downgrade_count_ < kMaxCpuDowngrades) {
++cpu_downgrade_count_;
} else {
LOG(LS_VERBOSE) << "VAdapt CPU load high but do not downgrade "
"because maximum downgrades reached";
SignalCpuAdaptationUnable();
}
break;
case UPGRADE:
if (cpu_downgrade_count_ > 0) {
bool is_min = IsMinimumFormat(cpu_desired_num_pixels_);
if (is_min) {
--cpu_downgrade_count_;
} else {
LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade "
"because cpu is not limiting resolution";
}
} else {
LOG(LS_VERBOSE) << "VAdapt CPU load low but do not upgrade "
"because minimum downgrades reached";
}
break;
case KEEP:
default:
break;
}
if (KEEP != request) {
// TODO(fbarchard): compute stepping up/down from OutputNumPixels but
// clamp to inputpixels / 4 (2 steps)
cpu_desired_num_pixels_ = cpu_downgrade_count_ == 0 ? INT_MAX :
static_cast<int>(input_format().width * input_format().height >>
cpu_downgrade_count_);
}
int new_width, new_height;
bool changed = AdaptToMinimumFormat(&new_width, &new_height);
LOG(LS_INFO) << "VAdapt CPU Request: "
<< (DOWNGRADE == request ? "down" :
(UPGRADE == request ? "up" : "keep"))
<< " Steps: " << cpu_downgrade_count_
<< " Changed: " << (changed ? "true" : "false")
<< " To: " << new_width << "x" << new_height;
}
// A CPU request for new resolution
// TODO(fbarchard): Move outside adapter.
void CoordinatedVideoAdapter::OnCpuLoadUpdated(
int current_cpus, int max_cpus, float process_load, float system_load) {
rtc::CritScope cs(&request_critical_section_);
if (!cpu_adaptation_) {
return;
}
// Update the moving average of system load. Even if we aren't smoothing,
// we'll still calculate this information, in case smoothing is later enabled.
system_load_average_ = kCpuLoadWeightCoefficient * system_load +
(1.0f - kCpuLoadWeightCoefficient) * system_load_average_;
++cpu_load_num_samples_;
if (cpu_smoothing_) {
system_load = system_load_average_;
}
AdaptRequest request = FindCpuRequest(current_cpus, max_cpus,
process_load, system_load);
// Make sure we're not adapting too quickly.
if (request != KEEP) {
if (cpu_load_num_samples_ < cpu_load_min_samples_) {
LOG(LS_VERBOSE) << "VAdapt CPU load high/low but do not adapt until "
<< (cpu_load_min_samples_ - cpu_load_num_samples_)
<< " more samples";
request = KEEP;
}
}
OnCpuResolutionRequest(request);
}
// Called by cpu adapter on up requests.
bool CoordinatedVideoAdapter::IsMinimumFormat(int pixels) {
// Find closest scale factor that matches input resolution to min_num_pixels
// and set that for output resolution. This is not needed for VideoAdapter,
// but provides feedback to unittests and users on expected resolution.
// Actual resolution is based on input frame.
VideoFormat new_output = output_format();
VideoFormat input = input_format();
if (input_format().IsSize0x0()) {
input = new_output;
}
float scale = 1.0f;
if (!input.IsSize0x0()) {
scale = FindClosestScale(input.width,
input.height,
pixels);
}
new_output.width = static_cast<int>(input.width * scale + .5f);
new_output.height = static_cast<int>(input.height * scale + .5f);
int new_pixels = new_output.width * new_output.height;
int num_pixels = GetOutputNumPixels();
return new_pixels <= num_pixels;
}
// Called by all coordinators when there is a change.
bool CoordinatedVideoAdapter::AdaptToMinimumFormat(int* new_width,
int* new_height) {
VideoFormat new_output = output_format();
VideoFormat input = input_format();
if (input_format().IsSize0x0()) {
input = new_output;
}
int old_num_pixels = GetOutputNumPixels();
int min_num_pixels = INT_MAX;
adapt_reason_ = ADAPTREASON_NONE;
// Reduce resolution based on encoder bandwidth (GD).
if (encoder_desired_num_pixels_ &&
(encoder_desired_num_pixels_ < min_num_pixels)) {
adapt_reason_ |= ADAPTREASON_BANDWIDTH;
min_num_pixels = encoder_desired_num_pixels_;
}
// Reduce resolution based on CPU.
if (cpu_adaptation_ && cpu_desired_num_pixels_ &&
(cpu_desired_num_pixels_ <= min_num_pixels)) {
if (cpu_desired_num_pixels_ < min_num_pixels) {
adapt_reason_ = ADAPTREASON_CPU;
} else {
adapt_reason_ |= ADAPTREASON_CPU;
}
min_num_pixels = cpu_desired_num_pixels_;
}
// Round resolution for GD or CPU to allow 1/2 to map to 9/16.
if (!input.IsSize0x0() && min_num_pixels != INT_MAX) {
float scale = FindClosestScale(input.width, input.height, min_num_pixels);
min_num_pixels = static_cast<int>(input.width * scale + .5f) *
static_cast<int>(input.height * scale + .5f);
}
// Reduce resolution based on View Request.
if (view_desired_num_pixels_ <= min_num_pixels) {
if (view_desired_num_pixels_ < min_num_pixels) {
adapt_reason_ = ADAPTREASON_VIEW;
} else {
adapt_reason_ |= ADAPTREASON_VIEW;
}
min_num_pixels = view_desired_num_pixels_;
}
// Snap to a scale factor.
float scale = 1.0f;
if (!input.IsSize0x0()) {
scale = FindLowerScale(input.width, input.height, min_num_pixels);
min_num_pixels = static_cast<int>(input.width * scale + .5f) *
static_cast<int>(input.height * scale + .5f);
}
if (scale == 1.0f) {
adapt_reason_ = ADAPTREASON_NONE;
}
*new_width = new_output.width = static_cast<int>(input.width * scale + .5f);
*new_height = new_output.height = static_cast<int>(input.height * scale +
.5f);
SetOutputNumPixels(min_num_pixels);
new_output.interval = view_desired_interval_;
SetOutputFormat(new_output);
int new_num_pixels = GetOutputNumPixels();
bool changed = new_num_pixels != old_num_pixels;
static const char* kReasons[8] = {
"None",
"CPU",
"BANDWIDTH",
"CPU+BANDWIDTH",
"VIEW",
"CPU+VIEW",
"BANDWIDTH+VIEW",
"CPU+BANDWIDTH+VIEW",
};
LOG(LS_VERBOSE) << "VAdapt Status View: " << view_desired_num_pixels_
<< " GD: " << encoder_desired_num_pixels_
<< " CPU: " << cpu_desired_num_pixels_
<< " Pixels: " << min_num_pixels
<< " Input: " << input.width
<< "x" << input.height
<< " Scale: " << scale
<< " Resolution: " << new_output.width
<< "x" << new_output.height
<< " Changed: " << (changed ? "true" : "false")
<< " Reason: " << kReasons[adapt_reason_];
if (changed) {
// When any adaptation occurs, historic CPU load levels are no longer
// accurate. Clear out our state so we can re-learn at the new normal.
cpu_load_num_samples_ = 0;
system_load_average_ = kCpuLoadInitialAverage;
}
return changed;
}
} // namespace cricket