webrtc/talk/p2p/base/stun_unittest.cc
pbos@webrtc.org 371243dfa3 Remove std:: prefixes from C functions in talk/.
std::memcpy -> memcpy for instance. This change was motivated by a
compile report complaining that std::rand() was used instead of rand(),
probably with a stdlib.h include instead of cstdlib. Use of C functions
without the std:: prefix is a lot more common, so removing std:: to
address this.

BUG=
R=tommi@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/9559004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@5657 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-03-07 15:22:04 +00:00

1460 lines
56 KiB
C++

/*
* libjingle
* Copyright 2004 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string>
#include "talk/base/bytebuffer.h"
#include "talk/base/gunit.h"
#include "talk/base/logging.h"
#include "talk/base/messagedigest.h"
#include "talk/base/scoped_ptr.h"
#include "talk/base/socketaddress.h"
#include "talk/p2p/base/stun.h"
namespace cricket {
class StunTest : public ::testing::Test {
protected:
void CheckStunHeader(const StunMessage& msg, StunMessageType expected_type,
size_t expected_length) {
ASSERT_EQ(expected_type, msg.type());
ASSERT_EQ(expected_length, msg.length());
}
void CheckStunTransactionID(const StunMessage& msg,
const unsigned char* expectedID, size_t length) {
ASSERT_EQ(length, msg.transaction_id().size());
ASSERT_EQ(length == kStunTransactionIdLength + 4, msg.IsLegacy());
ASSERT_EQ(length == kStunTransactionIdLength, !msg.IsLegacy());
ASSERT_EQ(0, memcmp(msg.transaction_id().c_str(), expectedID, length));
}
void CheckStunAddressAttribute(const StunAddressAttribute* addr,
StunAddressFamily expected_family,
int expected_port,
talk_base::IPAddress expected_address) {
ASSERT_EQ(expected_family, addr->family());
ASSERT_EQ(expected_port, addr->port());
if (addr->family() == STUN_ADDRESS_IPV4) {
in_addr v4_address = expected_address.ipv4_address();
in_addr stun_address = addr->ipaddr().ipv4_address();
ASSERT_EQ(0, memcmp(&v4_address, &stun_address, sizeof(stun_address)));
} else if (addr->family() == STUN_ADDRESS_IPV6) {
in6_addr v6_address = expected_address.ipv6_address();
in6_addr stun_address = addr->ipaddr().ipv6_address();
ASSERT_EQ(0, memcmp(&v6_address, &stun_address, sizeof(stun_address)));
} else {
ASSERT_TRUE(addr->family() == STUN_ADDRESS_IPV6 ||
addr->family() == STUN_ADDRESS_IPV4);
}
}
size_t ReadStunMessageTestCase(StunMessage* msg,
const unsigned char* testcase,
size_t size) {
const char* input = reinterpret_cast<const char*>(testcase);
talk_base::ByteBuffer buf(input, size);
if (msg->Read(&buf)) {
// Returns the size the stun message should report itself as being
return (size - 20);
} else {
return 0;
}
}
};
// Sample STUN packets with various attributes
// Gathered by wiresharking pjproject's pjnath test programs
// pjproject available at www.pjsip.org
static const unsigned char kStunMessageWithIPv6MappedAddress[] = {
0x00, 0x01, 0x00, 0x18, // message header
0x21, 0x12, 0xa4, 0x42, // transaction id
0x29, 0x1f, 0xcd, 0x7c,
0xba, 0x58, 0xab, 0xd7,
0xf2, 0x41, 0x01, 0x00,
0x00, 0x01, 0x00, 0x14, // Address type (mapped), length
0x00, 0x02, 0xb8, 0x81, // family (IPv6), port
0x24, 0x01, 0xfa, 0x00, // an IPv6 address
0x00, 0x04, 0x10, 0x00,
0xbe, 0x30, 0x5b, 0xff,
0xfe, 0xe5, 0x00, 0xc3
};
static const unsigned char kStunMessageWithIPv4MappedAddress[] = {
0x01, 0x01, 0x00, 0x0c, // binding response, length 12
0x21, 0x12, 0xa4, 0x42, // magic cookie
0x29, 0x1f, 0xcd, 0x7c, // transaction ID
0xba, 0x58, 0xab, 0xd7,
0xf2, 0x41, 0x01, 0x00,
0x00, 0x01, 0x00, 0x08, // Mapped, 8 byte length
0x00, 0x01, 0x9d, 0xfc, // AF_INET, unxor-ed port
0xac, 0x17, 0x44, 0xe6 // IPv4 address
};
// Test XOR-mapped IP addresses:
static const unsigned char kStunMessageWithIPv6XorMappedAddress[] = {
0x01, 0x01, 0x00, 0x18, // message header (binding response)
0x21, 0x12, 0xa4, 0x42, // magic cookie (rfc5389)
0xe3, 0xa9, 0x46, 0xe1, // transaction ID
0x7c, 0x00, 0xc2, 0x62,
0x54, 0x08, 0x01, 0x00,
0x00, 0x20, 0x00, 0x14, // Address Type (XOR), length
0x00, 0x02, 0xcb, 0x5b, // family, XOR-ed port
0x05, 0x13, 0x5e, 0x42, // XOR-ed IPv6 address
0xe3, 0xad, 0x56, 0xe1,
0xc2, 0x30, 0x99, 0x9d,
0xaa, 0xed, 0x01, 0xc3
};
static const unsigned char kStunMessageWithIPv4XorMappedAddress[] = {
0x01, 0x01, 0x00, 0x0c, // message header (binding response)
0x21, 0x12, 0xa4, 0x42, // magic cookie
0x29, 0x1f, 0xcd, 0x7c, // transaction ID
0xba, 0x58, 0xab, 0xd7,
0xf2, 0x41, 0x01, 0x00,
0x00, 0x20, 0x00, 0x08, // address type (xor), length
0x00, 0x01, 0xfc, 0xb5, // family (AF_INET), XOR-ed port
0x8d, 0x05, 0xe0, 0xa4 // IPv4 address
};
// ByteString Attribute (username)
static const unsigned char kStunMessageWithByteStringAttribute[] = {
0x00, 0x01, 0x00, 0x0c,
0x21, 0x12, 0xa4, 0x42,
0xe3, 0xa9, 0x46, 0xe1,
0x7c, 0x00, 0xc2, 0x62,
0x54, 0x08, 0x01, 0x00,
0x00, 0x06, 0x00, 0x08, // username attribute (length 8)
0x61, 0x62, 0x63, 0x64, // abcdefgh
0x65, 0x66, 0x67, 0x68
};
// Message with an unknown but comprehensible optional attribute.
// Parsing should succeed despite this unknown attribute.
static const unsigned char kStunMessageWithUnknownAttribute[] = {
0x00, 0x01, 0x00, 0x14,
0x21, 0x12, 0xa4, 0x42,
0xe3, 0xa9, 0x46, 0xe1,
0x7c, 0x00, 0xc2, 0x62,
0x54, 0x08, 0x01, 0x00,
0x00, 0xaa, 0x00, 0x07, // Unknown attribute, length 7 (needs padding!)
0x61, 0x62, 0x63, 0x64, // abcdefg + padding
0x65, 0x66, 0x67, 0x00,
0x00, 0x06, 0x00, 0x03, // Followed by a known attribute we can
0x61, 0x62, 0x63, 0x00 // check for (username of length 3)
};
// ByteString Attribute (username) with padding byte
static const unsigned char kStunMessageWithPaddedByteStringAttribute[] = {
0x00, 0x01, 0x00, 0x08,
0x21, 0x12, 0xa4, 0x42,
0xe3, 0xa9, 0x46, 0xe1,
0x7c, 0x00, 0xc2, 0x62,
0x54, 0x08, 0x01, 0x00,
0x00, 0x06, 0x00, 0x03, // username attribute (length 3)
0x61, 0x62, 0x63, 0xcc // abc
};
// Message with an Unknown Attributes (uint16 list) attribute.
static const unsigned char kStunMessageWithUInt16ListAttribute[] = {
0x00, 0x01, 0x00, 0x0c,
0x21, 0x12, 0xa4, 0x42,
0xe3, 0xa9, 0x46, 0xe1,
0x7c, 0x00, 0xc2, 0x62,
0x54, 0x08, 0x01, 0x00,
0x00, 0x0a, 0x00, 0x06, // username attribute (length 6)
0x00, 0x01, 0x10, 0x00, // three attributes plus padding
0xAB, 0xCU, 0xBE, 0xEF
};
// Error response message (unauthorized)
static const unsigned char kStunMessageWithErrorAttribute[] = {
0x01, 0x11, 0x00, 0x14,
0x21, 0x12, 0xa4, 0x42,
0x29, 0x1f, 0xcd, 0x7c,
0xba, 0x58, 0xab, 0xd7,
0xf2, 0x41, 0x01, 0x00,
0x00, 0x09, 0x00, 0x10,
0x00, 0x00, 0x04, 0x01,
0x55, 0x6e, 0x61, 0x75,
0x74, 0x68, 0x6f, 0x72,
0x69, 0x7a, 0x65, 0x64
};
// Message with an address attribute with an unknown address family,
// and a byte string attribute. Check that we quit reading after the
// bogus address family and don't read the username attribute.
static const unsigned char kStunMessageWithInvalidAddressFamily[] = {
0x01, 0x01, 0x00, 0x18, // binding response, length 24
0x21, 0x12, 0xa4, 0x42, // magic cookie
0x29, 0x1f, 0xcd, 0x7c, // transaction ID
0xba, 0x58, 0xab, 0xd7,
0xf2, 0x41, 0x01, 0x00,
0x00, 0x01, 0x00, 0x08, // Mapped address, 4 byte length
0x00, 0x09, 0xfe, 0xed, // Bogus address family (port unimportant).
0xac, 0x17, 0x44, 0xe6, // Should be skipped.
0x00, 0x06, 0x00, 0x08, // Username attribute (length 8)
0x61, 0x62, 0x63, 0x64, // abcdefgh
0x65, 0x66, 0x67, 0x68
};
// Message with an address attribute with an invalid address length.
// Should fail to be read.
static const unsigned char kStunMessageWithInvalidAddressLength[] = {
0x01, 0x01, 0x00, 0x18, // binding response, length 24
0x21, 0x12, 0xa4, 0x42, // magic cookie
0x29, 0x1f, 0xcd, 0x7c, // transaction ID
0xba, 0x58, 0xab, 0xd7,
0xf2, 0x41, 0x01, 0x00,
0x00, 0x01, 0x00, 0x0c, // Mapped address, 12 byte length
0x00, 0x01, 0xfe, 0xed, // Claims to be AF_INET.
0xac, 0x17, 0x44, 0xe6,
0x00, 0x06, 0x00, 0x08
};
// Sample messages with an invalid length Field
// The actual length in bytes of the invalid messages (including STUN header)
static const int kRealLengthOfInvalidLengthTestCases = 32;
static const unsigned char kStunMessageWithZeroLength[] = {
0x00, 0x01, 0x00, 0x00, // length of 0 (last 2 bytes)
0x21, 0x12, 0xA4, 0x42, // magic cookie
'0', '1', '2', '3', // transaction id
'4', '5', '6', '7',
'8', '9', 'a', 'b',
0x00, 0x20, 0x00, 0x08, // xor mapped address
0x00, 0x01, 0x21, 0x1F,
0x21, 0x12, 0xA4, 0x53,
};
static const unsigned char kStunMessageWithExcessLength[] = {
0x00, 0x01, 0x00, 0x55, // length of 85
0x21, 0x12, 0xA4, 0x42, // magic cookie
'0', '1', '2', '3', // transaction id
'4', '5', '6', '7',
'8', '9', 'a', 'b',
0x00, 0x20, 0x00, 0x08, // xor mapped address
0x00, 0x01, 0x21, 0x1F,
0x21, 0x12, 0xA4, 0x53,
};
static const unsigned char kStunMessageWithSmallLength[] = {
0x00, 0x01, 0x00, 0x03, // length of 3
0x21, 0x12, 0xA4, 0x42, // magic cookie
'0', '1', '2', '3', // transaction id
'4', '5', '6', '7',
'8', '9', 'a', 'b',
0x00, 0x20, 0x00, 0x08, // xor mapped address
0x00, 0x01, 0x21, 0x1F,
0x21, 0x12, 0xA4, 0x53,
};
// RTCP packet, for testing we correctly ignore non stun packet types.
// V=2, P=false, RC=0, Type=200, Len=6, Sender-SSRC=85, etc
static const unsigned char kRtcpPacket[] = {
0x80, 0xc8, 0x00, 0x06, 0x00, 0x00, 0x00, 0x55,
0xce, 0xa5, 0x18, 0x3a, 0x39, 0xcc, 0x7d, 0x09,
0x23, 0xed, 0x19, 0x07, 0x00, 0x00, 0x01, 0x56,
0x00, 0x03, 0x73, 0x50,
};
// RFC5769 Test Vectors
// Software name (request): "STUN test client" (without quotes)
// Software name (response): "test vector" (without quotes)
// Username: "evtj:h6vY" (without quotes)
// Password: "VOkJxbRl1RmTxUk/WvJxBt" (without quotes)
static const unsigned char kRfc5769SampleMsgTransactionId[] = {
0xb7, 0xe7, 0xa7, 0x01, 0xbc, 0x34, 0xd6, 0x86, 0xfa, 0x87, 0xdf, 0xae
};
static const char kRfc5769SampleMsgClientSoftware[] = "STUN test client";
static const char kRfc5769SampleMsgServerSoftware[] = "test vector";
static const char kRfc5769SampleMsgUsername[] = "evtj:h6vY";
static const char kRfc5769SampleMsgPassword[] = "VOkJxbRl1RmTxUk/WvJxBt";
static const talk_base::SocketAddress kRfc5769SampleMsgMappedAddress(
"192.0.2.1", 32853);
static const talk_base::SocketAddress kRfc5769SampleMsgIPv6MappedAddress(
"2001:db8:1234:5678:11:2233:4455:6677", 32853);
static const unsigned char kRfc5769SampleMsgWithAuthTransactionId[] = {
0x78, 0xad, 0x34, 0x33, 0xc6, 0xad, 0x72, 0xc0, 0x29, 0xda, 0x41, 0x2e
};
static const char kRfc5769SampleMsgWithAuthUsername[] =
"\xe3\x83\x9e\xe3\x83\x88\xe3\x83\xaa\xe3\x83\x83\xe3\x82\xaf\xe3\x82\xb9";
static const char kRfc5769SampleMsgWithAuthPassword[] = "TheMatrIX";
static const char kRfc5769SampleMsgWithAuthNonce[] =
"f//499k954d6OL34oL9FSTvy64sA";
static const char kRfc5769SampleMsgWithAuthRealm[] = "example.org";
// 2.1. Sample Request
static const unsigned char kRfc5769SampleRequest[] = {
0x00, 0x01, 0x00, 0x58, // Request type and message length
0x21, 0x12, 0xa4, 0x42, // Magic cookie
0xb7, 0xe7, 0xa7, 0x01, // }
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
0xfa, 0x87, 0xdf, 0xae, // }
0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header
0x53, 0x54, 0x55, 0x4e, // }
0x20, 0x74, 0x65, 0x73, // } User-agent...
0x74, 0x20, 0x63, 0x6c, // } ...name
0x69, 0x65, 0x6e, 0x74, // }
0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header
0x6e, 0x00, 0x01, 0xff, // ICE priority value
0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header
0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker...
0x51, 0x26, 0x3b, 0x36, // } ...for ICE control
0x00, 0x06, 0x00, 0x09, // USERNAME attribute header
0x65, 0x76, 0x74, 0x6a, // }
0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes)
0x59, 0x20, 0x20, 0x20, // }
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
0x9a, 0xea, 0xa7, 0x0c, // }
0xbf, 0xd8, 0xcb, 0x56, // }
0x78, 0x1e, 0xf2, 0xb5, // } HMAC-SHA1 fingerprint
0xb2, 0xd3, 0xf2, 0x49, // }
0xc1, 0xb5, 0x71, 0xa2, // }
0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header
0xe5, 0x7a, 0x3b, 0xcf // CRC32 fingerprint
};
// 2.2. Sample IPv4 Response
static const unsigned char kRfc5769SampleResponse[] = {
0x01, 0x01, 0x00, 0x3c, // Response type and message length
0x21, 0x12, 0xa4, 0x42, // Magic cookie
0xb7, 0xe7, 0xa7, 0x01, // }
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
0xfa, 0x87, 0xdf, 0xae, // }
0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header
0x74, 0x65, 0x73, 0x74, // }
0x20, 0x76, 0x65, 0x63, // } UTF-8 server name
0x74, 0x6f, 0x72, 0x20, // }
0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header
0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port
0xe1, 0x12, 0xa6, 0x43, // Xor'd mapped IPv4 address
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
0x2b, 0x91, 0xf5, 0x99, // }
0xfd, 0x9e, 0x90, 0xc3, // }
0x8c, 0x74, 0x89, 0xf9, // } HMAC-SHA1 fingerprint
0x2a, 0xf9, 0xba, 0x53, // }
0xf0, 0x6b, 0xe7, 0xd7, // }
0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header
0xc0, 0x7d, 0x4c, 0x96 // CRC32 fingerprint
};
// 2.3. Sample IPv6 Response
static const unsigned char kRfc5769SampleResponseIPv6[] = {
0x01, 0x01, 0x00, 0x48, // Response type and message length
0x21, 0x12, 0xa4, 0x42, // Magic cookie
0xb7, 0xe7, 0xa7, 0x01, // }
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
0xfa, 0x87, 0xdf, 0xae, // }
0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header
0x74, 0x65, 0x73, 0x74, // }
0x20, 0x76, 0x65, 0x63, // } UTF-8 server name
0x74, 0x6f, 0x72, 0x20, // }
0x00, 0x20, 0x00, 0x14, // XOR-MAPPED-ADDRESS attribute header
0x00, 0x02, 0xa1, 0x47, // Address family (IPv6) and xor'd mapped port.
0x01, 0x13, 0xa9, 0xfa, // }
0xa5, 0xd3, 0xf1, 0x79, // } Xor'd mapped IPv6 address
0xbc, 0x25, 0xf4, 0xb5, // }
0xbe, 0xd2, 0xb9, 0xd9, // }
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
0xa3, 0x82, 0x95, 0x4e, // }
0x4b, 0xe6, 0x7b, 0xf1, // }
0x17, 0x84, 0xc9, 0x7c, // } HMAC-SHA1 fingerprint
0x82, 0x92, 0xc2, 0x75, // }
0xbf, 0xe3, 0xed, 0x41, // }
0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header
0xc8, 0xfb, 0x0b, 0x4c // CRC32 fingerprint
};
// 2.4. Sample Request with Long-Term Authentication
static const unsigned char kRfc5769SampleRequestLongTermAuth[] = {
0x00, 0x01, 0x00, 0x60, // Request type and message length
0x21, 0x12, 0xa4, 0x42, // Magic cookie
0x78, 0xad, 0x34, 0x33, // }
0xc6, 0xad, 0x72, 0xc0, // } Transaction ID
0x29, 0xda, 0x41, 0x2e, // }
0x00, 0x06, 0x00, 0x12, // USERNAME attribute header
0xe3, 0x83, 0x9e, 0xe3, // }
0x83, 0x88, 0xe3, 0x83, // }
0xaa, 0xe3, 0x83, 0x83, // } Username value (18 bytes) and padding (2 bytes)
0xe3, 0x82, 0xaf, 0xe3, // }
0x82, 0xb9, 0x00, 0x00, // }
0x00, 0x15, 0x00, 0x1c, // NONCE attribute header
0x66, 0x2f, 0x2f, 0x34, // }
0x39, 0x39, 0x6b, 0x39, // }
0x35, 0x34, 0x64, 0x36, // }
0x4f, 0x4c, 0x33, 0x34, // } Nonce value
0x6f, 0x4c, 0x39, 0x46, // }
0x53, 0x54, 0x76, 0x79, // }
0x36, 0x34, 0x73, 0x41, // }
0x00, 0x14, 0x00, 0x0b, // REALM attribute header
0x65, 0x78, 0x61, 0x6d, // }
0x70, 0x6c, 0x65, 0x2e, // } Realm value (11 bytes) and padding (1 byte)
0x6f, 0x72, 0x67, 0x00, // }
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
0xf6, 0x70, 0x24, 0x65, // }
0x6d, 0xd6, 0x4a, 0x3e, // }
0x02, 0xb8, 0xe0, 0x71, // } HMAC-SHA1 fingerprint
0x2e, 0x85, 0xc9, 0xa2, // }
0x8c, 0xa8, 0x96, 0x66 // }
};
// Length parameter is changed to 0x38 from 0x58.
// AddMessageIntegrity will add MI information and update the length param
// accordingly.
static const unsigned char kRfc5769SampleRequestWithoutMI[] = {
0x00, 0x01, 0x00, 0x38, // Request type and message length
0x21, 0x12, 0xa4, 0x42, // Magic cookie
0xb7, 0xe7, 0xa7, 0x01, // }
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
0xfa, 0x87, 0xdf, 0xae, // }
0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header
0x53, 0x54, 0x55, 0x4e, // }
0x20, 0x74, 0x65, 0x73, // } User-agent...
0x74, 0x20, 0x63, 0x6c, // } ...name
0x69, 0x65, 0x6e, 0x74, // }
0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header
0x6e, 0x00, 0x01, 0xff, // ICE priority value
0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header
0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker...
0x51, 0x26, 0x3b, 0x36, // } ...for ICE control
0x00, 0x06, 0x00, 0x09, // USERNAME attribute header
0x65, 0x76, 0x74, 0x6a, // }
0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes)
0x59, 0x20, 0x20, 0x20 // }
};
// This HMAC differs from the RFC 5769 SampleRequest message. This differs
// because spec uses 0x20 for the padding where as our implementation uses 0.
static const unsigned char kCalculatedHmac1[] = {
0x79, 0x07, 0xc2, 0xd2, // }
0xed, 0xbf, 0xea, 0x48, // }
0x0e, 0x4c, 0x76, 0xd8, // } HMAC-SHA1 fingerprint
0x29, 0x62, 0xd5, 0xc3, // }
0x74, 0x2a, 0xf9, 0xe3 // }
};
// Length parameter is changed to 0x1c from 0x3c.
// AddMessageIntegrity will add MI information and update the length param
// accordingly.
static const unsigned char kRfc5769SampleResponseWithoutMI[] = {
0x01, 0x01, 0x00, 0x1c, // Response type and message length
0x21, 0x12, 0xa4, 0x42, // Magic cookie
0xb7, 0xe7, 0xa7, 0x01, // }
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
0xfa, 0x87, 0xdf, 0xae, // }
0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header
0x74, 0x65, 0x73, 0x74, // }
0x20, 0x76, 0x65, 0x63, // } UTF-8 server name
0x74, 0x6f, 0x72, 0x20, // }
0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header
0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port
0xe1, 0x12, 0xa6, 0x43 // Xor'd mapped IPv4 address
};
// This HMAC differs from the RFC 5769 SampleResponse message. This differs
// because spec uses 0x20 for the padding where as our implementation uses 0.
static const unsigned char kCalculatedHmac2[] = {
0x5d, 0x6b, 0x58, 0xbe, // }
0xad, 0x94, 0xe0, 0x7e, // }
0xef, 0x0d, 0xfc, 0x12, // } HMAC-SHA1 fingerprint
0x82, 0xa2, 0xbd, 0x08, // }
0x43, 0x14, 0x10, 0x28 // }
};
// A transaction ID without the 'magic cookie' portion
// pjnat's test programs use this transaction ID a lot.
const unsigned char kTestTransactionId1[] = { 0x029, 0x01f, 0x0cd, 0x07c,
0x0ba, 0x058, 0x0ab, 0x0d7,
0x0f2, 0x041, 0x001, 0x000 };
// They use this one sometimes too.
const unsigned char kTestTransactionId2[] = { 0x0e3, 0x0a9, 0x046, 0x0e1,
0x07c, 0x000, 0x0c2, 0x062,
0x054, 0x008, 0x001, 0x000 };
const in6_addr kIPv6TestAddress1 = { { { 0x24, 0x01, 0xfa, 0x00,
0x00, 0x04, 0x10, 0x00,
0xbe, 0x30, 0x5b, 0xff,
0xfe, 0xe5, 0x00, 0xc3 } } };
const in6_addr kIPv6TestAddress2 = { { { 0x24, 0x01, 0xfa, 0x00,
0x00, 0x04, 0x10, 0x12,
0x06, 0x0c, 0xce, 0xff,
0xfe, 0x1f, 0x61, 0xa4 } } };
// This is kIPv6TestAddress1 xor-ed with kTestTransactionID2.
const in6_addr kIPv6XoredTestAddress = { { { 0x05, 0x13, 0x5e, 0x42,
0xe3, 0xad, 0x56, 0xe1,
0xc2, 0x30, 0x99, 0x9d,
0xaa, 0xed, 0x01, 0xc3 } } };
#ifdef POSIX
const in_addr kIPv4TestAddress1 = { 0xe64417ac };
// This is kIPv4TestAddress xored with the STUN magic cookie.
const in_addr kIPv4XoredTestAddress = { 0x8d05e0a4 };
#elif defined WIN32
// Windows in_addr has a union with a uchar[] array first.
const in_addr kIPv4XoredTestAddress = { { 0x8d, 0x05, 0xe0, 0xa4 } };
const in_addr kIPv4TestAddress1 = { { 0x0ac, 0x017, 0x044, 0x0e6 } };
#endif
const char kTestUserName1[] = "abcdefgh";
const char kTestUserName2[] = "abc";
const char kTestErrorReason[] = "Unauthorized";
const int kTestErrorClass = 4;
const int kTestErrorNumber = 1;
const int kTestErrorCode = 401;
const int kTestMessagePort1 = 59977;
const int kTestMessagePort2 = 47233;
const int kTestMessagePort3 = 56743;
const int kTestMessagePort4 = 40444;
#define ReadStunMessage(X, Y) ReadStunMessageTestCase(X, Y, sizeof(Y));
// Test that the GetStun*Type and IsStun*Type methods work as expected.
TEST_F(StunTest, MessageTypes) {
EXPECT_EQ(STUN_BINDING_RESPONSE,
GetStunSuccessResponseType(STUN_BINDING_REQUEST));
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE,
GetStunErrorResponseType(STUN_BINDING_REQUEST));
EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_INDICATION));
EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_RESPONSE));
EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_ERROR_RESPONSE));
EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_INDICATION));
EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_RESPONSE));
EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_ERROR_RESPONSE));
int types[] = {
STUN_BINDING_REQUEST, STUN_BINDING_INDICATION,
STUN_BINDING_RESPONSE, STUN_BINDING_ERROR_RESPONSE
};
for (int i = 0; i < ARRAY_SIZE(types); ++i) {
EXPECT_EQ(i == 0, IsStunRequestType(types[i]));
EXPECT_EQ(i == 1, IsStunIndicationType(types[i]));
EXPECT_EQ(i == 2, IsStunSuccessResponseType(types[i]));
EXPECT_EQ(i == 3, IsStunErrorResponseType(types[i]));
EXPECT_EQ(1, types[i] & 0xFEEF);
}
}
TEST_F(StunTest, ReadMessageWithIPv4AddressAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4MappedAddress);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
talk_base::IPAddress test_address(kIPv4TestAddress1);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
kTestMessagePort4, test_address);
}
TEST_F(StunTest, ReadMessageWithIPv4XorAddressAttribute) {
StunMessage msg;
StunMessage msg2;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
const StunAddressAttribute* addr =
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
talk_base::IPAddress test_address(kIPv4TestAddress1);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
kTestMessagePort3, test_address);
}
TEST_F(StunTest, ReadMessageWithIPv6AddressAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
talk_base::IPAddress test_address(kIPv6TestAddress1);
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
kTestMessagePort2, test_address);
}
TEST_F(StunTest, ReadMessageWithInvalidAddressAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
talk_base::IPAddress test_address(kIPv6TestAddress1);
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
kTestMessagePort2, test_address);
}
TEST_F(StunTest, ReadMessageWithIPv6XorAddressAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress);
talk_base::IPAddress test_address(kIPv6TestAddress1);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
const StunAddressAttribute* addr =
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
kTestMessagePort1, test_address);
}
// Read the RFC5389 fields from the RFC5769 sample STUN request.
TEST_F(StunTest, ReadRfc5769RequestMessage) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kRfc5769SampleRequest);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId,
kStunTransactionIdLength);
const StunByteStringAttribute* software =
msg.GetByteString(STUN_ATTR_SOFTWARE);
ASSERT_TRUE(software != NULL);
EXPECT_EQ(kRfc5769SampleMsgClientSoftware, software->GetString());
const StunByteStringAttribute* username =
msg.GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(username != NULL);
EXPECT_EQ(kRfc5769SampleMsgUsername, username->GetString());
// Actual M-I value checked in a later test.
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
// Fingerprint checked in a later test, but double-check the value here.
const StunUInt32Attribute* fingerprint =
msg.GetUInt32(STUN_ATTR_FINGERPRINT);
ASSERT_TRUE(fingerprint != NULL);
EXPECT_EQ(0xe57a3bcf, fingerprint->value());
}
// Read the RFC5389 fields from the RFC5769 sample STUN response.
TEST_F(StunTest, ReadRfc5769ResponseMessage) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kRfc5769SampleResponse);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId,
kStunTransactionIdLength);
const StunByteStringAttribute* software =
msg.GetByteString(STUN_ATTR_SOFTWARE);
ASSERT_TRUE(software != NULL);
EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString());
const StunAddressAttribute* mapped_address =
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
ASSERT_TRUE(mapped_address != NULL);
EXPECT_EQ(kRfc5769SampleMsgMappedAddress, mapped_address->GetAddress());
// Actual M-I and fingerprint checked in later tests.
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
}
// Read the RFC5389 fields from the RFC5769 sample STUN response for IPv6.
TEST_F(StunTest, ReadRfc5769ResponseMessageIPv6) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kRfc5769SampleResponseIPv6);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId,
kStunTransactionIdLength);
const StunByteStringAttribute* software =
msg.GetByteString(STUN_ATTR_SOFTWARE);
ASSERT_TRUE(software != NULL);
EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString());
const StunAddressAttribute* mapped_address =
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
ASSERT_TRUE(mapped_address != NULL);
EXPECT_EQ(kRfc5769SampleMsgIPv6MappedAddress, mapped_address->GetAddress());
// Actual M-I and fingerprint checked in later tests.
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
}
// Read the RFC5389 fields from the RFC5769 sample STUN response with auth.
TEST_F(StunTest, ReadRfc5769RequestMessageLongTermAuth) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kRfc5769SampleRequestLongTermAuth);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
CheckStunTransactionID(msg, kRfc5769SampleMsgWithAuthTransactionId,
kStunTransactionIdLength);
const StunByteStringAttribute* username =
msg.GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(username != NULL);
EXPECT_EQ(kRfc5769SampleMsgWithAuthUsername, username->GetString());
const StunByteStringAttribute* nonce =
msg.GetByteString(STUN_ATTR_NONCE);
ASSERT_TRUE(nonce != NULL);
EXPECT_EQ(kRfc5769SampleMsgWithAuthNonce, nonce->GetString());
const StunByteStringAttribute* realm =
msg.GetByteString(STUN_ATTR_REALM);
ASSERT_TRUE(realm != NULL);
EXPECT_EQ(kRfc5769SampleMsgWithAuthRealm, realm->GetString());
// No fingerprint, actual M-I checked in later tests.
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) == NULL);
}
// The RFC3489 packet in this test is the same as
// kStunMessageWithIPv4MappedAddress, but with a different value where the
// magic cookie was.
TEST_F(StunTest, ReadLegacyMessage) {
unsigned char rfc3489_packet[sizeof(kStunMessageWithIPv4MappedAddress)];
memcpy(rfc3489_packet, kStunMessageWithIPv4MappedAddress,
sizeof(kStunMessageWithIPv4MappedAddress));
// Overwrite the magic cookie here.
memcpy(&rfc3489_packet[4], "ABCD", 4);
StunMessage msg;
size_t size = ReadStunMessage(&msg, rfc3489_packet);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, &rfc3489_packet[4], kStunTransactionIdLength + 4);
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
talk_base::IPAddress test_address(kIPv4TestAddress1);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
kTestMessagePort4, test_address);
}
TEST_F(StunTest, SetIPv6XorAddressAttributeOwner) {
StunMessage msg;
StunMessage msg2;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress);
talk_base::IPAddress test_address(kIPv6TestAddress1);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
const StunAddressAttribute* addr =
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
kTestMessagePort1, test_address);
// Owner with a different transaction ID.
msg2.SetTransactionID("ABCDABCDABCD");
StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL);
addr2.SetIP(addr->ipaddr());
addr2.SetPort(addr->port());
addr2.SetOwner(&msg2);
// The internal IP address shouldn't change.
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
talk_base::ByteBuffer correct_buf;
talk_base::ByteBuffer wrong_buf;
EXPECT_TRUE(addr->Write(&correct_buf));
EXPECT_TRUE(addr2.Write(&wrong_buf));
// But when written out, the buffers should look different.
ASSERT_NE(0,
memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length()));
// And when reading a known good value, the address should be wrong.
addr2.Read(&correct_buf);
ASSERT_NE(addr->ipaddr(), addr2.ipaddr());
addr2.SetIP(addr->ipaddr());
addr2.SetPort(addr->port());
// Try writing with no owner at all, should fail and write nothing.
addr2.SetOwner(NULL);
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
wrong_buf.Consume(wrong_buf.Length());
EXPECT_FALSE(addr2.Write(&wrong_buf));
ASSERT_EQ(0U, wrong_buf.Length());
}
TEST_F(StunTest, SetIPv4XorAddressAttributeOwner) {
// Unlike the IPv6XorAddressAttributeOwner test, IPv4 XOR address attributes
// should _not_ be affected by a change in owner. IPv4 XOR address uses the
// magic cookie value which is fixed.
StunMessage msg;
StunMessage msg2;
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress);
talk_base::IPAddress test_address(kIPv4TestAddress1);
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
const StunAddressAttribute* addr =
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
kTestMessagePort3, test_address);
// Owner with a different transaction ID.
msg2.SetTransactionID("ABCDABCDABCD");
StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL);
addr2.SetIP(addr->ipaddr());
addr2.SetPort(addr->port());
addr2.SetOwner(&msg2);
// The internal IP address shouldn't change.
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
talk_base::ByteBuffer correct_buf;
talk_base::ByteBuffer wrong_buf;
EXPECT_TRUE(addr->Write(&correct_buf));
EXPECT_TRUE(addr2.Write(&wrong_buf));
// The same address data should be written.
ASSERT_EQ(0,
memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length()));
// And an attribute should be able to un-XOR an address belonging to a message
// with a different transaction ID.
EXPECT_TRUE(addr2.Read(&correct_buf));
ASSERT_EQ(addr->ipaddr(), addr2.ipaddr());
// However, no owner is still an error, should fail and write nothing.
addr2.SetOwner(NULL);
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
wrong_buf.Consume(wrong_buf.Length());
EXPECT_FALSE(addr2.Write(&wrong_buf));
}
TEST_F(StunTest, CreateIPv6AddressAttribute) {
talk_base::IPAddress test_ip(kIPv6TestAddress2);
StunAddressAttribute* addr =
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
talk_base::SocketAddress test_addr(test_ip, kTestMessagePort2);
addr->SetAddress(test_addr);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
kTestMessagePort2, test_ip);
delete addr;
}
TEST_F(StunTest, CreateIPv4AddressAttribute) {
struct in_addr test_in_addr;
test_in_addr.s_addr = 0xBEB0B0BE;
talk_base::IPAddress test_ip(test_in_addr);
StunAddressAttribute* addr =
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
talk_base::SocketAddress test_addr(test_ip, kTestMessagePort2);
addr->SetAddress(test_addr);
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
kTestMessagePort2, test_ip);
delete addr;
}
// Test that we don't care what order we set the parts of an address
TEST_F(StunTest, CreateAddressInArbitraryOrder) {
StunAddressAttribute* addr =
StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
// Port first
addr->SetPort(kTestMessagePort1);
addr->SetIP(talk_base::IPAddress(kIPv4TestAddress1));
ASSERT_EQ(kTestMessagePort1, addr->port());
ASSERT_EQ(talk_base::IPAddress(kIPv4TestAddress1), addr->ipaddr());
StunAddressAttribute* addr2 =
StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
// IP first
addr2->SetIP(talk_base::IPAddress(kIPv4TestAddress1));
addr2->SetPort(kTestMessagePort2);
ASSERT_EQ(kTestMessagePort2, addr2->port());
ASSERT_EQ(talk_base::IPAddress(kIPv4TestAddress1), addr2->ipaddr());
delete addr;
delete addr2;
}
TEST_F(StunTest, WriteMessageWithIPv6AddressAttribute) {
StunMessage msg;
size_t size = sizeof(kStunMessageWithIPv6MappedAddress);
talk_base::IPAddress test_ip(kIPv6TestAddress1);
msg.SetType(STUN_BINDING_REQUEST);
msg.SetTransactionID(
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
kStunTransactionIdLength));
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
StunAddressAttribute* addr =
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
talk_base::SocketAddress test_addr(test_ip, kTestMessagePort2);
addr->SetAddress(test_addr);
EXPECT_TRUE(msg.AddAttribute(addr));
CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6MappedAddress));
int len1 = static_cast<int>(out.Length());
std::string bytes;
out.ReadString(&bytes, len1);
ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv6MappedAddress, len1));
}
TEST_F(StunTest, WriteMessageWithIPv4AddressAttribute) {
StunMessage msg;
size_t size = sizeof(kStunMessageWithIPv4MappedAddress);
talk_base::IPAddress test_ip(kIPv4TestAddress1);
msg.SetType(STUN_BINDING_RESPONSE);
msg.SetTransactionID(
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
kStunTransactionIdLength));
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
StunAddressAttribute* addr =
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
talk_base::SocketAddress test_addr(test_ip, kTestMessagePort4);
addr->SetAddress(test_addr);
EXPECT_TRUE(msg.AddAttribute(addr));
CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4MappedAddress));
int len1 = static_cast<int>(out.Length());
std::string bytes;
out.ReadString(&bytes, len1);
ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv4MappedAddress, len1));
}
TEST_F(StunTest, WriteMessageWithIPv6XorAddressAttribute) {
StunMessage msg;
size_t size = sizeof(kStunMessageWithIPv6XorMappedAddress);
talk_base::IPAddress test_ip(kIPv6TestAddress1);
msg.SetType(STUN_BINDING_RESPONSE);
msg.SetTransactionID(
std::string(reinterpret_cast<const char*>(kTestTransactionId2),
kStunTransactionIdLength));
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
StunAddressAttribute* addr =
StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
talk_base::SocketAddress test_addr(test_ip, kTestMessagePort1);
addr->SetAddress(test_addr);
EXPECT_TRUE(msg.AddAttribute(addr));
CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6XorMappedAddress));
int len1 = static_cast<int>(out.Length());
std::string bytes;
out.ReadString(&bytes, len1);
ASSERT_EQ(0,
memcmp(bytes.c_str(), kStunMessageWithIPv6XorMappedAddress, len1));
}
TEST_F(StunTest, WriteMessageWithIPv4XoreAddressAttribute) {
StunMessage msg;
size_t size = sizeof(kStunMessageWithIPv4XorMappedAddress);
talk_base::IPAddress test_ip(kIPv4TestAddress1);
msg.SetType(STUN_BINDING_RESPONSE);
msg.SetTransactionID(
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
kStunTransactionIdLength));
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
StunAddressAttribute* addr =
StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
talk_base::SocketAddress test_addr(test_ip, kTestMessagePort3);
addr->SetAddress(test_addr);
EXPECT_TRUE(msg.AddAttribute(addr));
CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4XorMappedAddress));
int len1 = static_cast<int>(out.Length());
std::string bytes;
out.ReadString(&bytes, len1);
ASSERT_EQ(0,
memcmp(bytes.c_str(), kStunMessageWithIPv4XorMappedAddress, len1));
}
TEST_F(StunTest, ReadByteStringAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithByteStringAttribute);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
const StunByteStringAttribute* username =
msg.GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(username != NULL);
EXPECT_EQ(kTestUserName1, username->GetString());
}
TEST_F(StunTest, ReadPaddedByteStringAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg,
kStunMessageWithPaddedByteStringAttribute);
ASSERT_NE(0U, size);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
const StunByteStringAttribute* username =
msg.GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(username != NULL);
EXPECT_EQ(kTestUserName2, username->GetString());
}
TEST_F(StunTest, ReadErrorCodeAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithErrorAttribute);
CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, size);
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
const StunErrorCodeAttribute* errorcode = msg.GetErrorCode();
ASSERT_TRUE(errorcode != NULL);
EXPECT_EQ(kTestErrorClass, errorcode->eclass());
EXPECT_EQ(kTestErrorNumber, errorcode->number());
EXPECT_EQ(kTestErrorReason, errorcode->reason());
EXPECT_EQ(kTestErrorCode, errorcode->code());
}
TEST_F(StunTest, ReadMessageWithAUInt16ListAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithUInt16ListAttribute);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
const StunUInt16ListAttribute* types = msg.GetUnknownAttributes();
ASSERT_TRUE(types != NULL);
EXPECT_EQ(3U, types->Size());
EXPECT_EQ(0x1U, types->GetType(0));
EXPECT_EQ(0x1000U, types->GetType(1));
EXPECT_EQ(0xAB0CU, types->GetType(2));
}
TEST_F(StunTest, ReadMessageWithAnUnknownAttribute) {
StunMessage msg;
size_t size = ReadStunMessage(&msg, kStunMessageWithUnknownAttribute);
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
// Parsing should have succeeded and there should be a USERNAME attribute
const StunByteStringAttribute* username =
msg.GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(username != NULL);
EXPECT_EQ(kTestUserName2, username->GetString());
}
TEST_F(StunTest, WriteMessageWithAnErrorCodeAttribute) {
StunMessage msg;
size_t size = sizeof(kStunMessageWithErrorAttribute);
msg.SetType(STUN_BINDING_ERROR_RESPONSE);
msg.SetTransactionID(
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
kStunTransactionIdLength));
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
StunErrorCodeAttribute* errorcode = StunAttribute::CreateErrorCode();
errorcode->SetCode(kTestErrorCode);
errorcode->SetReason(kTestErrorReason);
EXPECT_TRUE(msg.AddAttribute(errorcode));
CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, (size - 20));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
ASSERT_EQ(size, out.Length());
// No padding.
ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithErrorAttribute, size));
}
TEST_F(StunTest, WriteMessageWithAUInt16ListAttribute) {
StunMessage msg;
size_t size = sizeof(kStunMessageWithUInt16ListAttribute);
msg.SetType(STUN_BINDING_REQUEST);
msg.SetTransactionID(
std::string(reinterpret_cast<const char*>(kTestTransactionId2),
kStunTransactionIdLength));
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
StunUInt16ListAttribute* list = StunAttribute::CreateUnknownAttributes();
list->AddType(0x1U);
list->AddType(0x1000U);
list->AddType(0xAB0CU);
EXPECT_TRUE(msg.AddAttribute(list));
CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
ASSERT_EQ(size, out.Length());
// Check everything up to the padding.
ASSERT_EQ(0,
memcmp(out.Data(), kStunMessageWithUInt16ListAttribute, size - 2));
}
// Test that we fail to read messages with invalid lengths.
void CheckFailureToRead(const unsigned char* testcase, size_t length) {
StunMessage msg;
const char* input = reinterpret_cast<const char*>(testcase);
talk_base::ByteBuffer buf(input, length);
ASSERT_FALSE(msg.Read(&buf));
}
TEST_F(StunTest, FailToReadInvalidMessages) {
CheckFailureToRead(kStunMessageWithZeroLength,
kRealLengthOfInvalidLengthTestCases);
CheckFailureToRead(kStunMessageWithSmallLength,
kRealLengthOfInvalidLengthTestCases);
CheckFailureToRead(kStunMessageWithExcessLength,
kRealLengthOfInvalidLengthTestCases);
}
// Test that we properly fail to read a non-STUN message.
TEST_F(StunTest, FailToReadRtcpPacket) {
CheckFailureToRead(kRtcpPacket, sizeof(kRtcpPacket));
}
// Check our STUN message validation code against the RFC5769 test messages.
TEST_F(StunTest, ValidateMessageIntegrity) {
// Try the messages from RFC 5769.
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleRequest),
sizeof(kRfc5769SampleRequest),
kRfc5769SampleMsgPassword));
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleRequest),
sizeof(kRfc5769SampleRequest),
"InvalidPassword"));
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleResponse),
sizeof(kRfc5769SampleResponse),
kRfc5769SampleMsgPassword));
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleResponse),
sizeof(kRfc5769SampleResponse),
"InvalidPassword"));
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6),
sizeof(kRfc5769SampleResponseIPv6),
kRfc5769SampleMsgPassword));
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6),
sizeof(kRfc5769SampleResponseIPv6),
"InvalidPassword"));
// We first need to compute the key for the long-term authentication HMAC.
std::string key;
ComputeStunCredentialHash(kRfc5769SampleMsgWithAuthUsername,
kRfc5769SampleMsgWithAuthRealm, kRfc5769SampleMsgWithAuthPassword, &key);
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleRequestLongTermAuth),
sizeof(kRfc5769SampleRequestLongTermAuth), key));
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kRfc5769SampleRequestLongTermAuth),
sizeof(kRfc5769SampleRequestLongTermAuth),
"InvalidPassword"));
// Try some edge cases.
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kStunMessageWithZeroLength),
sizeof(kStunMessageWithZeroLength),
kRfc5769SampleMsgPassword));
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kStunMessageWithExcessLength),
sizeof(kStunMessageWithExcessLength),
kRfc5769SampleMsgPassword));
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(kStunMessageWithSmallLength),
sizeof(kStunMessageWithSmallLength),
kRfc5769SampleMsgPassword));
// Test that munging a single bit anywhere in the message causes the
// message-integrity check to fail, unless it is after the M-I attribute.
char buf[sizeof(kRfc5769SampleRequest)];
memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest));
for (size_t i = 0; i < sizeof(buf); ++i) {
buf[i] ^= 0x01;
if (i > 0)
buf[i - 1] ^= 0x01;
EXPECT_EQ(i >= sizeof(buf) - 8, StunMessage::ValidateMessageIntegrity(
buf, sizeof(buf), kRfc5769SampleMsgPassword));
}
}
// Validate that we generate correct MESSAGE-INTEGRITY attributes.
// Note the use of IceMessage instead of StunMessage; this is necessary because
// the RFC5769 test messages used include attributes not found in basic STUN.
TEST_F(StunTest, AddMessageIntegrity) {
IceMessage msg;
talk_base::ByteBuffer buf(
reinterpret_cast<const char*>(kRfc5769SampleRequestWithoutMI),
sizeof(kRfc5769SampleRequestWithoutMI));
EXPECT_TRUE(msg.Read(&buf));
EXPECT_TRUE(msg.AddMessageIntegrity(kRfc5769SampleMsgPassword));
const StunByteStringAttribute* mi_attr =
msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
EXPECT_EQ(20U, mi_attr->length());
EXPECT_EQ(0, memcmp(
mi_attr->bytes(), kCalculatedHmac1, sizeof(kCalculatedHmac1)));
talk_base::ByteBuffer buf1;
EXPECT_TRUE(msg.Write(&buf1));
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(buf1.Data()), buf1.Length(),
kRfc5769SampleMsgPassword));
IceMessage msg2;
talk_base::ByteBuffer buf2(
reinterpret_cast<const char*>(kRfc5769SampleResponseWithoutMI),
sizeof(kRfc5769SampleResponseWithoutMI));
EXPECT_TRUE(msg2.Read(&buf2));
EXPECT_TRUE(msg2.AddMessageIntegrity(kRfc5769SampleMsgPassword));
const StunByteStringAttribute* mi_attr2 =
msg2.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
EXPECT_EQ(20U, mi_attr2->length());
EXPECT_EQ(
0, memcmp(mi_attr2->bytes(), kCalculatedHmac2, sizeof(kCalculatedHmac2)));
talk_base::ByteBuffer buf3;
EXPECT_TRUE(msg2.Write(&buf3));
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
reinterpret_cast<const char*>(buf3.Data()), buf3.Length(),
kRfc5769SampleMsgPassword));
}
// Check our STUN message validation code against the RFC5769 test messages.
TEST_F(StunTest, ValidateFingerprint) {
EXPECT_TRUE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(kRfc5769SampleRequest),
sizeof(kRfc5769SampleRequest)));
EXPECT_TRUE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(kRfc5769SampleResponse),
sizeof(kRfc5769SampleResponse)));
EXPECT_TRUE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6),
sizeof(kRfc5769SampleResponseIPv6)));
EXPECT_FALSE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(kStunMessageWithZeroLength),
sizeof(kStunMessageWithZeroLength)));
EXPECT_FALSE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(kStunMessageWithExcessLength),
sizeof(kStunMessageWithExcessLength)));
EXPECT_FALSE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(kStunMessageWithSmallLength),
sizeof(kStunMessageWithSmallLength)));
// Test that munging a single bit anywhere in the message causes the
// fingerprint check to fail.
char buf[sizeof(kRfc5769SampleRequest)];
memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest));
for (size_t i = 0; i < sizeof(buf); ++i) {
buf[i] ^= 0x01;
if (i > 0)
buf[i - 1] ^= 0x01;
EXPECT_FALSE(StunMessage::ValidateFingerprint(buf, sizeof(buf)));
}
// Put them all back to normal and the check should pass again.
buf[sizeof(buf) - 1] ^= 0x01;
EXPECT_TRUE(StunMessage::ValidateFingerprint(buf, sizeof(buf)));
}
TEST_F(StunTest, AddFingerprint) {
IceMessage msg;
talk_base::ByteBuffer buf(
reinterpret_cast<const char*>(kRfc5769SampleRequestWithoutMI),
sizeof(kRfc5769SampleRequestWithoutMI));
EXPECT_TRUE(msg.Read(&buf));
EXPECT_TRUE(msg.AddFingerprint());
talk_base::ByteBuffer buf1;
EXPECT_TRUE(msg.Write(&buf1));
EXPECT_TRUE(StunMessage::ValidateFingerprint(
reinterpret_cast<const char*>(buf1.Data()), buf1.Length()));
}
// Sample "GTURN" relay message.
static const unsigned char kRelayMessage[] = {
0x00, 0x01, 0x00, 88, // message header
0x21, 0x12, 0xA4, 0x42, // magic cookie
'0', '1', '2', '3', // transaction id
'4', '5', '6', '7',
'8', '9', 'a', 'b',
0x00, 0x01, 0x00, 8, // mapped address
0x00, 0x01, 0x00, 13,
0x00, 0x00, 0x00, 17,
0x00, 0x06, 0x00, 12, // username
'a', 'b', 'c', 'd',
'e', 'f', 'g', 'h',
'i', 'j', 'k', 'l',
0x00, 0x0d, 0x00, 4, // lifetime
0x00, 0x00, 0x00, 11,
0x00, 0x0f, 0x00, 4, // magic cookie
0x72, 0xc6, 0x4b, 0xc6,
0x00, 0x10, 0x00, 4, // bandwidth
0x00, 0x00, 0x00, 6,
0x00, 0x11, 0x00, 8, // destination address
0x00, 0x01, 0x00, 13,
0x00, 0x00, 0x00, 17,
0x00, 0x12, 0x00, 8, // source address 2
0x00, 0x01, 0x00, 13,
0x00, 0x00, 0x00, 17,
0x00, 0x13, 0x00, 7, // data
'a', 'b', 'c', 'd',
'e', 'f', 'g', 0 // DATA must be padded per rfc5766.
};
// Test that we can read the GTURN-specific fields.
TEST_F(StunTest, ReadRelayMessage) {
RelayMessage msg, msg2;
const char* input = reinterpret_cast<const char*>(kRelayMessage);
size_t size = sizeof(kRelayMessage);
talk_base::ByteBuffer buf(input, size);
EXPECT_TRUE(msg.Read(&buf));
EXPECT_EQ(STUN_BINDING_REQUEST, msg.type());
EXPECT_EQ(size - 20, msg.length());
EXPECT_EQ("0123456789ab", msg.transaction_id());
msg2.SetType(STUN_BINDING_REQUEST);
msg2.SetTransactionID("0123456789ab");
in_addr legacy_in_addr;
legacy_in_addr.s_addr = htonl(17U);
talk_base::IPAddress legacy_ip(legacy_in_addr);
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
ASSERT_TRUE(addr != NULL);
EXPECT_EQ(1, addr->family());
EXPECT_EQ(13, addr->port());
EXPECT_EQ(legacy_ip, addr->ipaddr());
StunAddressAttribute* addr2 =
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
addr2->SetPort(13);
addr2->SetIP(legacy_ip);
EXPECT_TRUE(msg2.AddAttribute(addr2));
const StunByteStringAttribute* bytes = msg.GetByteString(STUN_ATTR_USERNAME);
ASSERT_TRUE(bytes != NULL);
EXPECT_EQ(12U, bytes->length());
EXPECT_EQ("abcdefghijkl", bytes->GetString());
StunByteStringAttribute* bytes2 =
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
bytes2->CopyBytes("abcdefghijkl");
EXPECT_TRUE(msg2.AddAttribute(bytes2));
const StunUInt32Attribute* uval = msg.GetUInt32(STUN_ATTR_LIFETIME);
ASSERT_TRUE(uval != NULL);
EXPECT_EQ(11U, uval->value());
StunUInt32Attribute* uval2 = StunAttribute::CreateUInt32(STUN_ATTR_LIFETIME);
uval2->SetValue(11);
EXPECT_TRUE(msg2.AddAttribute(uval2));
bytes = msg.GetByteString(STUN_ATTR_MAGIC_COOKIE);
ASSERT_TRUE(bytes != NULL);
EXPECT_EQ(4U, bytes->length());
EXPECT_EQ(0,
memcmp(bytes->bytes(),
TURN_MAGIC_COOKIE_VALUE,
sizeof(TURN_MAGIC_COOKIE_VALUE)));
bytes2 = StunAttribute::CreateByteString(STUN_ATTR_MAGIC_COOKIE);
bytes2->CopyBytes(reinterpret_cast<const char*>(TURN_MAGIC_COOKIE_VALUE),
sizeof(TURN_MAGIC_COOKIE_VALUE));
EXPECT_TRUE(msg2.AddAttribute(bytes2));
uval = msg.GetUInt32(STUN_ATTR_BANDWIDTH);
ASSERT_TRUE(uval != NULL);
EXPECT_EQ(6U, uval->value());
uval2 = StunAttribute::CreateUInt32(STUN_ATTR_BANDWIDTH);
uval2->SetValue(6);
EXPECT_TRUE(msg2.AddAttribute(uval2));
addr = msg.GetAddress(STUN_ATTR_DESTINATION_ADDRESS);
ASSERT_TRUE(addr != NULL);
EXPECT_EQ(1, addr->family());
EXPECT_EQ(13, addr->port());
EXPECT_EQ(legacy_ip, addr->ipaddr());
addr2 = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
addr2->SetPort(13);
addr2->SetIP(legacy_ip);
EXPECT_TRUE(msg2.AddAttribute(addr2));
addr = msg.GetAddress(STUN_ATTR_SOURCE_ADDRESS2);
ASSERT_TRUE(addr != NULL);
EXPECT_EQ(1, addr->family());
EXPECT_EQ(13, addr->port());
EXPECT_EQ(legacy_ip, addr->ipaddr());
addr2 = StunAttribute::CreateAddress(STUN_ATTR_SOURCE_ADDRESS2);
addr2->SetPort(13);
addr2->SetIP(legacy_ip);
EXPECT_TRUE(msg2.AddAttribute(addr2));
bytes = msg.GetByteString(STUN_ATTR_DATA);
ASSERT_TRUE(bytes != NULL);
EXPECT_EQ(7U, bytes->length());
EXPECT_EQ("abcdefg", bytes->GetString());
bytes2 = StunAttribute::CreateByteString(STUN_ATTR_DATA);
bytes2->CopyBytes("abcdefg");
EXPECT_TRUE(msg2.AddAttribute(bytes2));
talk_base::ByteBuffer out;
EXPECT_TRUE(msg.Write(&out));
EXPECT_EQ(size, out.Length());
size_t len1 = out.Length();
std::string outstring;
out.ReadString(&outstring, len1);
EXPECT_EQ(0, memcmp(outstring.c_str(), input, len1));
talk_base::ByteBuffer out2;
EXPECT_TRUE(msg2.Write(&out2));
EXPECT_EQ(size, out2.Length());
size_t len2 = out2.Length();
std::string outstring2;
out2.ReadString(&outstring2, len2);
EXPECT_EQ(0, memcmp(outstring2.c_str(), input, len2));
}
} // namespace cricket