
Doing the same for the 16-24kHz band than was done in the 8-16kHz. Results look and sound as nice. BUG=webrtc:3146 R=andrew@webrtc.org, bjornv@webrtc.org, kwiberg@webrtc.org Review URL: https://webrtc-codereview.appspot.com/29139004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7865 4adac7df-926f-26a2-2b94-8c16560cd09d
459 lines
16 KiB
C++
459 lines
16 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/audio_processing/audio_buffer.h"
|
|
|
|
#include "webrtc/common_audio/resampler/push_sinc_resampler.h"
|
|
#include "webrtc/common_audio/signal_processing/include/signal_processing_library.h"
|
|
#include "webrtc/modules/audio_processing/channel_buffer.h"
|
|
#include "webrtc/modules/audio_processing/common.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
bool HasKeyboardChannel(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
return false;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return true;
|
|
}
|
|
assert(false);
|
|
return false;
|
|
}
|
|
|
|
int KeyboardChannelIndex(AudioProcessing::ChannelLayout layout) {
|
|
switch (layout) {
|
|
case AudioProcessing::kMono:
|
|
case AudioProcessing::kStereo:
|
|
assert(false);
|
|
return -1;
|
|
case AudioProcessing::kMonoAndKeyboard:
|
|
return 1;
|
|
case AudioProcessing::kStereoAndKeyboard:
|
|
return 2;
|
|
}
|
|
assert(false);
|
|
return -1;
|
|
}
|
|
|
|
template <typename T>
|
|
void StereoToMono(const T* left, const T* right, T* out,
|
|
int samples_per_channel) {
|
|
for (int i = 0; i < samples_per_channel; ++i)
|
|
out[i] = (left[i] + right[i]) / 2;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
AudioBuffer::AudioBuffer(int input_samples_per_channel,
|
|
int num_input_channels,
|
|
int process_samples_per_channel,
|
|
int num_process_channels,
|
|
int output_samples_per_channel)
|
|
: input_samples_per_channel_(input_samples_per_channel),
|
|
num_input_channels_(num_input_channels),
|
|
proc_samples_per_channel_(process_samples_per_channel),
|
|
num_proc_channels_(num_process_channels),
|
|
output_samples_per_channel_(output_samples_per_channel),
|
|
num_bands_(1),
|
|
samples_per_split_channel_(proc_samples_per_channel_),
|
|
mixed_low_pass_valid_(false),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
keyboard_data_(NULL),
|
|
channels_(new IFChannelBuffer(proc_samples_per_channel_,
|
|
num_proc_channels_)) {
|
|
assert(input_samples_per_channel_ > 0);
|
|
assert(proc_samples_per_channel_ > 0);
|
|
assert(output_samples_per_channel_ > 0);
|
|
assert(num_input_channels_ > 0 && num_input_channels_ <= 2);
|
|
assert(num_proc_channels_ <= num_input_channels);
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
input_buffer_.reset(new ChannelBuffer<float>(input_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_ ||
|
|
output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Create an intermediate buffer for resampling.
|
|
process_buffer_.reset(new ChannelBuffer<float>(proc_samples_per_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
input_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_.push_back(
|
|
new PushSincResampler(input_samples_per_channel_,
|
|
proc_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
output_resamplers_.reserve(num_proc_channels_);
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_.push_back(
|
|
new PushSincResampler(proc_samples_per_channel_,
|
|
output_samples_per_channel_));
|
|
}
|
|
}
|
|
|
|
if (proc_samples_per_channel_ == kSamplesPer32kHzChannel ||
|
|
proc_samples_per_channel_ == kSamplesPer48kHzChannel) {
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
num_bands_ = proc_samples_per_channel_ / samples_per_split_channel_;
|
|
split_channels_.push_back(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
split_channels_.push_back(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
splitting_filter_.reset(new SplittingFilter(num_proc_channels_));
|
|
if (proc_samples_per_channel_ == kSamplesPer48kHzChannel) {
|
|
split_channels_.push_back(new IFChannelBuffer(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
}
|
|
bands_.reset(new int16_t*[num_proc_channels_ * kMaxNumBands]);
|
|
bands_f_.reset(new float*[num_proc_channels_ * kMaxNumBands]);
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
void AudioBuffer::CopyFrom(const float* const* data,
|
|
int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout) {
|
|
assert(samples_per_channel == input_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_input_channels_);
|
|
InitForNewData();
|
|
|
|
if (HasKeyboardChannel(layout)) {
|
|
keyboard_data_ = data[KeyboardChannelIndex(layout)];
|
|
}
|
|
|
|
// Downmix.
|
|
const float* const* data_ptr = data;
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
StereoToMono(data[0],
|
|
data[1],
|
|
input_buffer_->channel(0),
|
|
input_samples_per_channel_);
|
|
data_ptr = input_buffer_->channels();
|
|
}
|
|
|
|
// Resample.
|
|
if (input_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
input_resamplers_[i]->Resample(data_ptr[i],
|
|
input_samples_per_channel_,
|
|
process_buffer_->channel(i),
|
|
proc_samples_per_channel_);
|
|
}
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
|
|
// Convert to the S16 range.
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
FloatToFloatS16(data_ptr[i], proc_samples_per_channel_,
|
|
channels_->fbuf()->channel(i));
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyTo(int samples_per_channel,
|
|
AudioProcessing::ChannelLayout layout,
|
|
float* const* data) {
|
|
assert(samples_per_channel == output_samples_per_channel_);
|
|
assert(ChannelsFromLayout(layout) == num_proc_channels_);
|
|
|
|
// Convert to the float range.
|
|
float* const* data_ptr = data;
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
// Convert to an intermediate buffer for subsequent resampling.
|
|
data_ptr = process_buffer_->channels();
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
FloatS16ToFloat(channels_->fbuf()->channel(i), proc_samples_per_channel_,
|
|
data_ptr[i]);
|
|
}
|
|
|
|
// Resample.
|
|
if (output_samples_per_channel_ != proc_samples_per_channel_) {
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
output_resamplers_[i]->Resample(data_ptr[i],
|
|
proc_samples_per_channel_,
|
|
data[i],
|
|
output_samples_per_channel_);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InitForNewData() {
|
|
keyboard_data_ = NULL;
|
|
mixed_low_pass_valid_ = false;
|
|
reference_copied_ = false;
|
|
activity_ = AudioFrame::kVadUnknown;
|
|
}
|
|
|
|
const int16_t* AudioBuffer::data_const(int channel) const {
|
|
return channels_const()[channel];
|
|
}
|
|
|
|
int16_t* AudioBuffer::data(int channel) {
|
|
return channels()[channel];
|
|
}
|
|
|
|
const int16_t* const* AudioBuffer::channels_const() const {
|
|
return channels_->ibuf_const()->channels();
|
|
}
|
|
|
|
int16_t* const* AudioBuffer::channels() {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->ibuf()->channels();
|
|
}
|
|
|
|
const int16_t* const* AudioBuffer::split_bands_const(int channel) const {
|
|
// This is necessary to make sure that the int16_t data is up to date in the
|
|
// IFChannelBuffer.
|
|
// TODO(aluebs): Having to depend on this to get the updated data is bug
|
|
// prone. One solution is to have ChannelBuffer track the bands as well.
|
|
for (int i = 0; i < kMaxNumBands; ++i) {
|
|
int16_t* const* channels =
|
|
const_cast<int16_t* const*>(split_channels_const(static_cast<Band>(i)));
|
|
bands_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
|
|
}
|
|
return &bands_[kMaxNumBands * channel];
|
|
}
|
|
|
|
int16_t* const* AudioBuffer::split_bands(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
// This is necessary to make sure that the int16_t data is up to date and the
|
|
// float data is marked as invalid in the IFChannelBuffer.
|
|
for (int i = 0; i < kMaxNumBands; ++i) {
|
|
int16_t* const* channels = split_channels(static_cast<Band>(i));
|
|
bands_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
|
|
}
|
|
return &bands_[kMaxNumBands * channel];
|
|
}
|
|
|
|
const int16_t* const* AudioBuffer::split_channels_const(Band band) const {
|
|
if (split_channels_.size() > static_cast<size_t>(band)) {
|
|
return split_channels_[band]->ibuf_const()->channels();
|
|
} else {
|
|
return band == kBand0To8kHz ? channels_->ibuf_const()->channels() : NULL;
|
|
}
|
|
}
|
|
|
|
int16_t* const* AudioBuffer::split_channels(Band band) {
|
|
mixed_low_pass_valid_ = false;
|
|
if (split_channels_.size() > static_cast<size_t>(band)) {
|
|
return split_channels_[band]->ibuf()->channels();
|
|
} else {
|
|
return band == kBand0To8kHz ? channels_->ibuf()->channels() : NULL;
|
|
}
|
|
}
|
|
|
|
const float* AudioBuffer::data_const_f(int channel) const {
|
|
return channels_const_f()[channel];
|
|
}
|
|
|
|
float* AudioBuffer::data_f(int channel) {
|
|
return channels_f()[channel];
|
|
}
|
|
|
|
const float* const* AudioBuffer::channels_const_f() const {
|
|
return channels_->fbuf_const()->channels();
|
|
}
|
|
|
|
float* const* AudioBuffer::channels_f() {
|
|
mixed_low_pass_valid_ = false;
|
|
return channels_->fbuf()->channels();
|
|
}
|
|
|
|
const float* const* AudioBuffer::split_bands_const_f(int channel) const {
|
|
// This is necessary to make sure that the float data is up to date in the
|
|
// IFChannelBuffer.
|
|
for (int i = 0; i < kMaxNumBands; ++i) {
|
|
float* const* channels =
|
|
const_cast<float* const*>(split_channels_const_f(static_cast<Band>(i)));
|
|
bands_f_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
|
|
|
|
}
|
|
return &bands_f_[kMaxNumBands * channel];
|
|
}
|
|
|
|
float* const* AudioBuffer::split_bands_f(int channel) {
|
|
mixed_low_pass_valid_ = false;
|
|
// This is necessary to make sure that the float data is up to date and the
|
|
// int16_t data is marked as invalid in the IFChannelBuffer.
|
|
for (int i = 0; i < kMaxNumBands; ++i) {
|
|
float* const* channels = split_channels_f(static_cast<Band>(i));
|
|
bands_f_[kMaxNumBands * channel + i] = channels ? channels[channel] : NULL;
|
|
|
|
}
|
|
return &bands_f_[kMaxNumBands * channel];
|
|
}
|
|
|
|
const float* const* AudioBuffer::split_channels_const_f(Band band) const {
|
|
if (split_channels_.size() > static_cast<size_t>(band)) {
|
|
return split_channels_[band]->fbuf_const()->channels();
|
|
} else {
|
|
return band == kBand0To8kHz ? channels_->fbuf_const()->channels() : NULL;
|
|
}
|
|
}
|
|
|
|
float* const* AudioBuffer::split_channels_f(Band band) {
|
|
mixed_low_pass_valid_ = false;
|
|
if (split_channels_.size() > static_cast<size_t>(band)) {
|
|
return split_channels_[band]->fbuf()->channels();
|
|
} else {
|
|
return band == kBand0To8kHz ? channels_->fbuf()->channels() : NULL;
|
|
}
|
|
}
|
|
|
|
const int16_t* AudioBuffer::mixed_low_pass_data() {
|
|
// Currently only mixing stereo to mono is supported.
|
|
assert(num_proc_channels_ == 1 || num_proc_channels_ == 2);
|
|
|
|
if (num_proc_channels_ == 1) {
|
|
return split_bands_const(0)[kBand0To8kHz];
|
|
}
|
|
|
|
if (!mixed_low_pass_valid_) {
|
|
if (!mixed_low_pass_channels_.get()) {
|
|
mixed_low_pass_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_, 1));
|
|
}
|
|
StereoToMono(split_bands_const(0)[kBand0To8kHz],
|
|
split_bands_const(1)[kBand0To8kHz],
|
|
mixed_low_pass_channels_->data(),
|
|
samples_per_split_channel_);
|
|
mixed_low_pass_valid_ = true;
|
|
}
|
|
return mixed_low_pass_channels_->data();
|
|
}
|
|
|
|
const int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_->channel(channel);
|
|
}
|
|
|
|
const float* AudioBuffer::keyboard_data() const {
|
|
return keyboard_data_;
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_proc_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return proc_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_keyboard_channel() const {
|
|
// We don't resample the keyboard channel.
|
|
return input_samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::num_bands() const {
|
|
return num_bands_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(proc_samples_per_channel_ == input_samples_per_channel_);
|
|
assert(frame->num_channels_ == num_input_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
InitForNewData();
|
|
activity_ = frame->vad_activity_;
|
|
|
|
if (num_input_channels_ == 2 && num_proc_channels_ == 1) {
|
|
// Downmix directly; no explicit deinterleaving needed.
|
|
int16_t* downmixed = channels_->ibuf()->channel(0);
|
|
for (int i = 0; i < input_samples_per_channel_; ++i) {
|
|
downmixed[i] = (frame->data_[i * 2] + frame->data_[i * 2 + 1]) / 2;
|
|
}
|
|
} else {
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; ++i) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; ++j) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(proc_samples_per_channel_ == output_samples_per_channel_);
|
|
assert(num_proc_channels_ == num_input_channels_);
|
|
assert(frame->num_channels_ == num_proc_channels_);
|
|
assert(frame->samples_per_channel_ == proc_samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
int16_t* deinterleaved = channels_->ibuf()->channel(i);
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < proc_samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_proc_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
if (!low_pass_reference_channels_.get()) {
|
|
low_pass_reference_channels_.reset(
|
|
new ChannelBuffer<int16_t>(samples_per_split_channel_,
|
|
num_proc_channels_));
|
|
}
|
|
for (int i = 0; i < num_proc_channels_; i++) {
|
|
low_pass_reference_channels_->CopyFrom(split_bands_const(i)[kBand0To8kHz],
|
|
i);
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::SplitIntoFrequencyBands() {
|
|
splitting_filter_->Analysis(channels_.get(),
|
|
split_channels_.get());
|
|
}
|
|
|
|
void AudioBuffer::MergeFrequencyBands() {
|
|
splitting_filter_->Synthesis(split_channels_.get(),
|
|
channels_.get());
|
|
}
|
|
|
|
} // namespace webrtc
|