
This is a second version of http://review.webrtc.org/1065006/ which passes the parameters via methods instead of via constructors. BUG=1289 Review URL: https://webrtc-codereview.appspot.com/1065007 git-svn-id: http://webrtc.googlecode.com/svn/trunk@3456 4adac7df-926f-26a2-2b94-8c16560cd09d
430 lines
15 KiB
C++
430 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "webrtc/modules/video_coding/main/source/receiver.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include "webrtc/modules/video_coding/main/interface/video_coding.h"
|
|
#include "webrtc/modules/video_coding/main/source/encoded_frame.h"
|
|
#include "webrtc/modules/video_coding/main/source/internal_defines.h"
|
|
#include "webrtc/modules/video_coding/main/source/media_opt_util.h"
|
|
#include "webrtc/system_wrappers/interface/clock.h"
|
|
#include "webrtc/system_wrappers/interface/trace.h"
|
|
|
|
namespace webrtc {
|
|
|
|
VCMReceiver::VCMReceiver(VCMTiming* timing,
|
|
Clock* clock,
|
|
int32_t vcm_id,
|
|
int32_t receiver_id,
|
|
bool master)
|
|
: crit_sect_(CriticalSectionWrapper::CreateCriticalSection()),
|
|
vcm_id_(vcm_id),
|
|
clock_(clock),
|
|
receiver_id_(receiver_id),
|
|
master_(master),
|
|
jitter_buffer_(clock_, vcm_id, receiver_id, master),
|
|
timing_(timing),
|
|
render_wait_event_(),
|
|
state_(kPassive) {}
|
|
|
|
VCMReceiver::~VCMReceiver() {
|
|
render_wait_event_.Set();
|
|
delete crit_sect_;
|
|
}
|
|
|
|
void VCMReceiver::Reset() {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
if (!jitter_buffer_.Running()) {
|
|
jitter_buffer_.Start();
|
|
} else {
|
|
jitter_buffer_.Flush();
|
|
}
|
|
render_wait_event_.Reset();
|
|
if (master_) {
|
|
state_ = kReceiving;
|
|
} else {
|
|
state_ = kPassive;
|
|
}
|
|
}
|
|
|
|
int32_t VCMReceiver::Initialize() {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
Reset();
|
|
if (!master_) {
|
|
SetNackMode(kNoNack);
|
|
}
|
|
return VCM_OK;
|
|
}
|
|
|
|
void VCMReceiver::UpdateRtt(uint32_t rtt) {
|
|
jitter_buffer_.UpdateRtt(rtt);
|
|
}
|
|
|
|
int32_t VCMReceiver::InsertPacket(const VCMPacket& packet, uint16_t frame_width,
|
|
uint16_t frame_height) {
|
|
// Find an empty frame.
|
|
VCMEncodedFrame* buffer = NULL;
|
|
const int32_t error = jitter_buffer_.GetFrame(packet, buffer);
|
|
if (error == VCM_OLD_PACKET_ERROR) {
|
|
return VCM_OK;
|
|
} else if (error != VCM_OK) {
|
|
return error;
|
|
}
|
|
assert(buffer);
|
|
{
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
|
|
if (frame_width && frame_height) {
|
|
buffer->SetEncodedSize(static_cast<uint32_t>(frame_width),
|
|
static_cast<uint32_t>(frame_height));
|
|
}
|
|
|
|
if (master_) {
|
|
// Only trace the primary receiver to make it possible to parse and plot
|
|
// the trace file.
|
|
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
|
|
VCMId(vcm_id_, receiver_id_),
|
|
"Packet seq_no %u of frame %u at %u",
|
|
packet.seqNum, packet.timestamp,
|
|
MaskWord64ToUWord32(clock_->TimeInMilliseconds()));
|
|
}
|
|
|
|
const int64_t now_ms = clock_->TimeInMilliseconds();
|
|
|
|
int64_t render_time_ms = timing_->RenderTimeMs(packet.timestamp, now_ms);
|
|
|
|
if (render_time_ms < 0) {
|
|
// Render time error. Assume that this is due to some change in the
|
|
// incoming video stream and reset the JB and the timing.
|
|
jitter_buffer_.Flush();
|
|
timing_->Reset(clock_->TimeInMilliseconds());
|
|
return VCM_FLUSH_INDICATOR;
|
|
} else if (render_time_ms < now_ms - kMaxVideoDelayMs) {
|
|
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
|
|
VCMId(vcm_id_, receiver_id_),
|
|
"This frame should have been rendered more than %u ms ago."
|
|
"Flushing jitter buffer and resetting timing.",
|
|
kMaxVideoDelayMs);
|
|
jitter_buffer_.Flush();
|
|
timing_->Reset(clock_->TimeInMilliseconds());
|
|
return VCM_FLUSH_INDICATOR;
|
|
} else if (timing_->TargetVideoDelay() > kMaxVideoDelayMs) {
|
|
WEBRTC_TRACE(webrtc::kTraceWarning, webrtc::kTraceVideoCoding,
|
|
VCMId(vcm_id_, receiver_id_),
|
|
"More than %u ms target delay. Flushing jitter buffer and"
|
|
"resetting timing.", kMaxVideoDelayMs);
|
|
jitter_buffer_.Flush();
|
|
timing_->Reset(clock_->TimeInMilliseconds());
|
|
return VCM_FLUSH_INDICATOR;
|
|
}
|
|
|
|
// First packet received belonging to this frame.
|
|
if (buffer->Length() == 0) {
|
|
const int64_t now_ms = clock_->TimeInMilliseconds();
|
|
if (master_) {
|
|
// Only trace the primary receiver to make it possible to parse and plot
|
|
// the trace file.
|
|
WEBRTC_TRACE(webrtc::kTraceDebug, webrtc::kTraceVideoCoding,
|
|
VCMId(vcm_id_, receiver_id_),
|
|
"First packet of frame %u at %u", packet.timestamp,
|
|
MaskWord64ToUWord32(now_ms));
|
|
}
|
|
render_time_ms = timing_->RenderTimeMs(packet.timestamp, now_ms);
|
|
if (render_time_ms >= 0) {
|
|
buffer->SetRenderTime(render_time_ms);
|
|
} else {
|
|
buffer->SetRenderTime(now_ms);
|
|
}
|
|
}
|
|
|
|
// Insert packet into the jitter buffer both media and empty packets.
|
|
const VCMFrameBufferEnum
|
|
ret = jitter_buffer_.InsertPacket(buffer, packet);
|
|
if (ret == kFlushIndicator) {
|
|
return VCM_FLUSH_INDICATOR;
|
|
} else if (ret < 0) {
|
|
WEBRTC_TRACE(webrtc::kTraceError, webrtc::kTraceVideoCoding,
|
|
VCMId(vcm_id_, receiver_id_),
|
|
"Error inserting packet seq_no=%u, time_stamp=%u",
|
|
packet.seqNum, packet.timestamp);
|
|
return VCM_JITTER_BUFFER_ERROR;
|
|
}
|
|
}
|
|
return VCM_OK;
|
|
}
|
|
|
|
VCMEncodedFrame* VCMReceiver::FrameForDecoding(
|
|
uint16_t max_wait_time_ms,
|
|
int64_t& next_render_time_ms,
|
|
bool render_timing,
|
|
VCMReceiver* dual_receiver) {
|
|
// No need to enter the critical section here since the jitter buffer
|
|
// is thread-safe.
|
|
FrameType incoming_frame_type = kVideoFrameDelta;
|
|
next_render_time_ms = -1;
|
|
const int64_t start_time_ms = clock_->TimeInMilliseconds();
|
|
int64_t ret = jitter_buffer_.NextTimestamp(max_wait_time_ms,
|
|
&incoming_frame_type,
|
|
&next_render_time_ms);
|
|
if (ret < 0) {
|
|
// No timestamp in jitter buffer at the moment.
|
|
return NULL;
|
|
}
|
|
const uint32_t time_stamp = static_cast<uint32_t>(ret);
|
|
|
|
// Update the timing.
|
|
timing_->SetRequiredDelay(jitter_buffer_.EstimatedJitterMs());
|
|
timing_->UpdateCurrentDelay(time_stamp);
|
|
|
|
const int32_t temp_wait_time = max_wait_time_ms -
|
|
static_cast<int32_t>(clock_->TimeInMilliseconds() - start_time_ms);
|
|
uint16_t new_max_wait_time = static_cast<uint16_t>(VCM_MAX(temp_wait_time,
|
|
0));
|
|
|
|
VCMEncodedFrame* frame = NULL;
|
|
|
|
if (render_timing) {
|
|
frame = FrameForDecoding(new_max_wait_time, next_render_time_ms,
|
|
dual_receiver);
|
|
} else {
|
|
frame = FrameForRendering(new_max_wait_time, next_render_time_ms,
|
|
dual_receiver);
|
|
}
|
|
|
|
if (frame != NULL) {
|
|
bool retransmitted = false;
|
|
const int64_t last_packet_time_ms =
|
|
jitter_buffer_.LastPacketTime(frame, &retransmitted);
|
|
if (last_packet_time_ms >= 0 && !retransmitted) {
|
|
// We don't want to include timestamps which have suffered from
|
|
// retransmission here, since we compensate with extra retransmission
|
|
// delay within the jitter estimate.
|
|
timing_->IncomingTimestamp(time_stamp, last_packet_time_ms);
|
|
}
|
|
if (dual_receiver != NULL) {
|
|
dual_receiver->UpdateState(*frame);
|
|
}
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
VCMEncodedFrame* VCMReceiver::FrameForDecoding(
|
|
uint16_t max_wait_time_ms,
|
|
int64_t next_render_time_ms,
|
|
VCMReceiver* dual_receiver) {
|
|
// How long can we wait until we must decode the next frame.
|
|
uint32_t wait_time_ms = timing_->MaxWaitingTime(
|
|
next_render_time_ms, clock_->TimeInMilliseconds());
|
|
|
|
// Try to get a complete frame from the jitter buffer.
|
|
VCMEncodedFrame* frame = jitter_buffer_.GetCompleteFrameForDecoding(0);
|
|
|
|
if (frame == NULL && max_wait_time_ms == 0 && wait_time_ms > 0) {
|
|
// If we're not allowed to wait for frames to get complete we must
|
|
// calculate if it's time to decode, and if it's not we will just return
|
|
// for now.
|
|
return NULL;
|
|
}
|
|
|
|
if (frame == NULL && VCM_MIN(wait_time_ms, max_wait_time_ms) == 0) {
|
|
// No time to wait for a complete frame, check if we have an incomplete.
|
|
const bool dual_receiver_enabled_and_passive = (dual_receiver != NULL &&
|
|
dual_receiver->State() == kPassive &&
|
|
dual_receiver->NackMode() == kNackInfinite);
|
|
if (dual_receiver_enabled_and_passive &&
|
|
!jitter_buffer_.CompleteSequenceWithNextFrame()) {
|
|
// Jitter buffer state might get corrupt with this frame.
|
|
dual_receiver->CopyJitterBufferStateFromReceiver(*this);
|
|
frame = jitter_buffer_.GetFrameForDecoding();
|
|
assert(frame);
|
|
} else {
|
|
frame = jitter_buffer_.GetFrameForDecoding();
|
|
}
|
|
}
|
|
if (frame == NULL) {
|
|
// Wait for a complete frame.
|
|
frame = jitter_buffer_.GetCompleteFrameForDecoding(max_wait_time_ms);
|
|
}
|
|
if (frame == NULL) {
|
|
// Get an incomplete frame.
|
|
if (timing_->MaxWaitingTime(next_render_time_ms,
|
|
clock_->TimeInMilliseconds()) > 0) {
|
|
// Still time to wait for a complete frame.
|
|
return NULL;
|
|
}
|
|
|
|
// No time left to wait, we must decode this frame now.
|
|
const bool dual_receiver_enabled_and_passive = (dual_receiver != NULL &&
|
|
dual_receiver->State() == kPassive &&
|
|
dual_receiver->NackMode() == kNackInfinite);
|
|
if (dual_receiver_enabled_and_passive &&
|
|
!jitter_buffer_.CompleteSequenceWithNextFrame()) {
|
|
// Jitter buffer state might get corrupt with this frame.
|
|
dual_receiver->CopyJitterBufferStateFromReceiver(*this);
|
|
}
|
|
|
|
frame = jitter_buffer_.GetFrameForDecoding();
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
VCMEncodedFrame* VCMReceiver::FrameForRendering(uint16_t max_wait_time_ms,
|
|
int64_t next_render_time_ms,
|
|
VCMReceiver* dual_receiver) {
|
|
// How long MUST we wait until we must decode the next frame. This is
|
|
// different for the case where we have a renderer which can render at a
|
|
// specified time. Here we must wait as long as possible before giving the
|
|
// frame to the decoder, which will render the frame as soon as it has been
|
|
// decoded.
|
|
uint32_t wait_time_ms = timing_->MaxWaitingTime(
|
|
next_render_time_ms, clock_->TimeInMilliseconds());
|
|
if (max_wait_time_ms < wait_time_ms) {
|
|
// If we're not allowed to wait until the frame is supposed to be rendered
|
|
// we will have to return NULL for now.
|
|
return NULL;
|
|
}
|
|
// Wait until it's time to render.
|
|
render_wait_event_.Wait(wait_time_ms);
|
|
|
|
// Get a complete frame if possible.
|
|
VCMEncodedFrame* frame = jitter_buffer_.GetCompleteFrameForDecoding(0);
|
|
|
|
if (frame == NULL) {
|
|
// Get an incomplete frame.
|
|
const bool dual_receiver_enabled_and_passive = (dual_receiver != NULL &&
|
|
dual_receiver->State() == kPassive &&
|
|
dual_receiver->NackMode() == kNackInfinite);
|
|
if (dual_receiver_enabled_and_passive &&
|
|
!jitter_buffer_.CompleteSequenceWithNextFrame()) {
|
|
// Jitter buffer state might get corrupt with this frame.
|
|
dual_receiver->CopyJitterBufferStateFromReceiver(*this);
|
|
}
|
|
|
|
frame = jitter_buffer_.GetFrameForDecoding();
|
|
}
|
|
return frame;
|
|
}
|
|
|
|
void VCMReceiver::ReleaseFrame(VCMEncodedFrame* frame) {
|
|
jitter_buffer_.ReleaseFrame(frame);
|
|
}
|
|
|
|
void VCMReceiver::ReceiveStatistics(uint32_t* bitrate,
|
|
uint32_t* framerate) {
|
|
assert(bitrate);
|
|
assert(framerate);
|
|
jitter_buffer_.IncomingRateStatistics(framerate, bitrate);
|
|
*bitrate /= 1000; // Should be in kbps.
|
|
}
|
|
|
|
void VCMReceiver::ReceivedFrameCount(VCMFrameCount* frame_count) const {
|
|
assert(frame_count);
|
|
jitter_buffer_.FrameStatistics(&frame_count->numDeltaFrames,
|
|
&frame_count->numKeyFrames);
|
|
}
|
|
|
|
uint32_t VCMReceiver::DiscardedPackets() const {
|
|
return jitter_buffer_.num_discarded_packets();
|
|
}
|
|
|
|
void VCMReceiver::SetNackMode(VCMNackMode nackMode) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
// Default to always having NACK enabled in hybrid mode.
|
|
jitter_buffer_.SetNackMode(nackMode, kLowRttNackMs, -1);
|
|
if (!master_) {
|
|
state_ = kPassive; // The dual decoder defaults to passive.
|
|
}
|
|
}
|
|
|
|
void VCMReceiver::SetNackSettings(size_t max_nack_list_size,
|
|
int max_packet_age_to_nack) {
|
|
jitter_buffer_.SetNackSettings(max_nack_list_size,
|
|
max_packet_age_to_nack);
|
|
}
|
|
|
|
VCMNackMode VCMReceiver::NackMode() const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
return jitter_buffer_.nack_mode();
|
|
}
|
|
|
|
VCMNackStatus VCMReceiver::NackList(uint16_t* nack_list,
|
|
uint16_t* size) {
|
|
bool extended = false;
|
|
uint16_t nack_list_size = 0;
|
|
uint16_t* internal_nack_list = jitter_buffer_.CreateNackList(&nack_list_size,
|
|
&extended);
|
|
if (internal_nack_list == NULL && nack_list_size == 0xffff) {
|
|
// This combination is used to trigger key frame requests.
|
|
*size = 0;
|
|
return kNackKeyFrameRequest;
|
|
}
|
|
if (nack_list_size > *size) {
|
|
*size = nack_list_size;
|
|
return kNackNeedMoreMemory;
|
|
}
|
|
if (internal_nack_list != NULL && nack_list_size > 0) {
|
|
memcpy(nack_list, internal_nack_list, nack_list_size * sizeof(uint16_t));
|
|
}
|
|
*size = nack_list_size;
|
|
return kNackOk;
|
|
}
|
|
|
|
// Decide whether we should change decoder state. This should be done if the
|
|
// dual decoder has caught up with the decoder decoding with packet losses.
|
|
bool VCMReceiver::DualDecoderCaughtUp(VCMEncodedFrame* dual_frame,
|
|
VCMReceiver& dual_receiver) const {
|
|
if (dual_frame == NULL) {
|
|
return false;
|
|
}
|
|
if (jitter_buffer_.LastDecodedTimestamp() == dual_frame->TimeStamp()) {
|
|
dual_receiver.UpdateState(kWaitForPrimaryDecode);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void VCMReceiver::CopyJitterBufferStateFromReceiver(
|
|
const VCMReceiver& receiver) {
|
|
jitter_buffer_.CopyFrom(receiver.jitter_buffer_);
|
|
}
|
|
|
|
VCMReceiverState VCMReceiver::State() const {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
return state_;
|
|
}
|
|
|
|
void VCMReceiver::UpdateState(VCMReceiverState new_state) {
|
|
CriticalSectionScoped cs(crit_sect_);
|
|
assert(!(state_ == kPassive && new_state == kWaitForPrimaryDecode));
|
|
state_ = new_state;
|
|
}
|
|
|
|
void VCMReceiver::UpdateState(const VCMEncodedFrame& frame) {
|
|
if (jitter_buffer_.nack_mode() == kNoNack) {
|
|
// Dual decoder mode has not been enabled.
|
|
return;
|
|
}
|
|
// Update the dual receiver state.
|
|
if (frame.Complete() && frame.FrameType() == kVideoFrameKey) {
|
|
UpdateState(kPassive);
|
|
}
|
|
if (State() == kWaitForPrimaryDecode &&
|
|
frame.Complete() && !frame.MissingFrame()) {
|
|
UpdateState(kPassive);
|
|
}
|
|
if (frame.MissingFrame() || !frame.Complete()) {
|
|
// State was corrupted, enable dual receiver.
|
|
UpdateState(kReceiving);
|
|
}
|
|
}
|
|
} // namespace webrtc
|