
BUG=314 Review URL: https://webrtc-codereview.appspot.com/1307004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@3809 4adac7df-926f-26a2-2b94-8c16560cd09d
307 lines
8.7 KiB
C++
307 lines
8.7 KiB
C++
/*
|
|
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "audio_buffer.h"
|
|
|
|
#include "signal_processing_library.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
enum {
|
|
kSamplesPer8kHzChannel = 80,
|
|
kSamplesPer16kHzChannel = 160,
|
|
kSamplesPer32kHzChannel = 320
|
|
};
|
|
|
|
void StereoToMono(const int16_t* left, const int16_t* right,
|
|
int16_t* out, int samples_per_channel) {
|
|
assert(left != NULL && right != NULL && out != NULL);
|
|
for (int i = 0; i < samples_per_channel; i++) {
|
|
int32_t data32 = (static_cast<int32_t>(left[i]) +
|
|
static_cast<int32_t>(right[i])) >> 1;
|
|
|
|
out[i] = WebRtcSpl_SatW32ToW16(data32);
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
struct AudioChannel {
|
|
AudioChannel() {
|
|
memset(data, 0, sizeof(data));
|
|
}
|
|
|
|
int16_t data[kSamplesPer32kHzChannel];
|
|
};
|
|
|
|
struct SplitAudioChannel {
|
|
SplitAudioChannel() {
|
|
memset(low_pass_data, 0, sizeof(low_pass_data));
|
|
memset(high_pass_data, 0, sizeof(high_pass_data));
|
|
memset(analysis_filter_state1, 0, sizeof(analysis_filter_state1));
|
|
memset(analysis_filter_state2, 0, sizeof(analysis_filter_state2));
|
|
memset(synthesis_filter_state1, 0, sizeof(synthesis_filter_state1));
|
|
memset(synthesis_filter_state2, 0, sizeof(synthesis_filter_state2));
|
|
}
|
|
|
|
int16_t low_pass_data[kSamplesPer16kHzChannel];
|
|
int16_t high_pass_data[kSamplesPer16kHzChannel];
|
|
|
|
int32_t analysis_filter_state1[6];
|
|
int32_t analysis_filter_state2[6];
|
|
int32_t synthesis_filter_state1[6];
|
|
int32_t synthesis_filter_state2[6];
|
|
};
|
|
|
|
// TODO(andrew): check range of input parameters?
|
|
AudioBuffer::AudioBuffer(int max_num_channels,
|
|
int samples_per_channel)
|
|
: max_num_channels_(max_num_channels),
|
|
num_channels_(0),
|
|
num_mixed_channels_(0),
|
|
num_mixed_low_pass_channels_(0),
|
|
data_was_mixed_(false),
|
|
samples_per_channel_(samples_per_channel),
|
|
samples_per_split_channel_(samples_per_channel),
|
|
reference_copied_(false),
|
|
activity_(AudioFrame::kVadUnknown),
|
|
is_muted_(false),
|
|
data_(NULL),
|
|
channels_(NULL),
|
|
split_channels_(NULL),
|
|
mixed_channels_(NULL),
|
|
mixed_low_pass_channels_(NULL),
|
|
low_pass_reference_channels_(NULL) {
|
|
if (max_num_channels_ > 1) {
|
|
channels_.reset(new AudioChannel[max_num_channels_]);
|
|
mixed_channels_.reset(new AudioChannel[max_num_channels_]);
|
|
mixed_low_pass_channels_.reset(new AudioChannel[max_num_channels_]);
|
|
}
|
|
low_pass_reference_channels_.reset(new AudioChannel[max_num_channels_]);
|
|
|
|
if (samples_per_channel_ == kSamplesPer32kHzChannel) {
|
|
split_channels_.reset(new SplitAudioChannel[max_num_channels_]);
|
|
samples_per_split_channel_ = kSamplesPer16kHzChannel;
|
|
}
|
|
}
|
|
|
|
AudioBuffer::~AudioBuffer() {}
|
|
|
|
int16_t* AudioBuffer::data(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
if (data_ != NULL) {
|
|
return data_;
|
|
}
|
|
|
|
return channels_[channel].data;
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_split_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
if (split_channels_.get() == NULL) {
|
|
return data(channel);
|
|
}
|
|
|
|
return split_channels_[channel].low_pass_data;
|
|
}
|
|
|
|
int16_t* AudioBuffer::high_pass_split_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
if (split_channels_.get() == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
return split_channels_[channel].high_pass_data;
|
|
}
|
|
|
|
int16_t* AudioBuffer::mixed_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_mixed_channels_);
|
|
|
|
return mixed_channels_[channel].data;
|
|
}
|
|
|
|
int16_t* AudioBuffer::mixed_low_pass_data(int channel) const {
|
|
assert(channel >= 0 && channel < num_mixed_low_pass_channels_);
|
|
|
|
return mixed_low_pass_channels_[channel].data;
|
|
}
|
|
|
|
int16_t* AudioBuffer::low_pass_reference(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
if (!reference_copied_) {
|
|
return NULL;
|
|
}
|
|
|
|
return low_pass_reference_channels_[channel].data;
|
|
}
|
|
|
|
int32_t* AudioBuffer::analysis_filter_state1(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
return split_channels_[channel].analysis_filter_state1;
|
|
}
|
|
|
|
int32_t* AudioBuffer::analysis_filter_state2(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
return split_channels_[channel].analysis_filter_state2;
|
|
}
|
|
|
|
int32_t* AudioBuffer::synthesis_filter_state1(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
return split_channels_[channel].synthesis_filter_state1;
|
|
}
|
|
|
|
int32_t* AudioBuffer::synthesis_filter_state2(int channel) const {
|
|
assert(channel >= 0 && channel < num_channels_);
|
|
return split_channels_[channel].synthesis_filter_state2;
|
|
}
|
|
|
|
void AudioBuffer::set_activity(AudioFrame::VADActivity activity) {
|
|
activity_ = activity;
|
|
}
|
|
|
|
AudioFrame::VADActivity AudioBuffer::activity() const {
|
|
return activity_;
|
|
}
|
|
|
|
bool AudioBuffer::is_muted() const {
|
|
return is_muted_;
|
|
}
|
|
|
|
int AudioBuffer::num_channels() const {
|
|
return num_channels_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_channel() const {
|
|
return samples_per_channel_;
|
|
}
|
|
|
|
int AudioBuffer::samples_per_split_channel() const {
|
|
return samples_per_split_channel_;
|
|
}
|
|
|
|
// TODO(andrew): Do deinterleaving and mixing in one step?
|
|
void AudioBuffer::DeinterleaveFrom(AudioFrame* frame) {
|
|
assert(frame->num_channels_ <= max_num_channels_);
|
|
assert(frame->samples_per_channel_ == samples_per_channel_);
|
|
|
|
num_channels_ = frame->num_channels_;
|
|
data_was_mixed_ = false;
|
|
num_mixed_channels_ = 0;
|
|
num_mixed_low_pass_channels_ = 0;
|
|
reference_copied_ = false;
|
|
activity_ = frame->vad_activity_;
|
|
is_muted_ = false;
|
|
if (frame->energy_ == 0) {
|
|
is_muted_ = true;
|
|
}
|
|
|
|
if (num_channels_ == 1) {
|
|
// We can get away with a pointer assignment in this case.
|
|
data_ = frame->data_;
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_channels_; i++) {
|
|
int16_t* deinterleaved = channels_[i].data;
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < samples_per_channel_; j++) {
|
|
deinterleaved[j] = interleaved[interleaved_idx];
|
|
interleaved_idx += num_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
void AudioBuffer::InterleaveTo(AudioFrame* frame, bool data_changed) const {
|
|
assert(frame->num_channels_ == num_channels_);
|
|
assert(frame->samples_per_channel_ == samples_per_channel_);
|
|
frame->vad_activity_ = activity_;
|
|
|
|
if (!data_changed) {
|
|
return;
|
|
}
|
|
|
|
if (num_channels_ == 1) {
|
|
if (data_was_mixed_) {
|
|
memcpy(frame->data_,
|
|
channels_[0].data,
|
|
sizeof(int16_t) * samples_per_channel_);
|
|
} else {
|
|
// These should point to the same buffer in this case.
|
|
assert(data_ == frame->data_);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
int16_t* interleaved = frame->data_;
|
|
for (int i = 0; i < num_channels_; i++) {
|
|
int16_t* deinterleaved = channels_[i].data;
|
|
int interleaved_idx = i;
|
|
for (int j = 0; j < samples_per_channel_; j++) {
|
|
interleaved[interleaved_idx] = deinterleaved[j];
|
|
interleaved_idx += num_channels_;
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO(andrew): would be good to support the no-mix case with pointer
|
|
// assignment.
|
|
// TODO(andrew): handle mixing to multiple channels?
|
|
void AudioBuffer::Mix(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
|
|
StereoToMono(channels_[0].data,
|
|
channels_[1].data,
|
|
channels_[0].data,
|
|
samples_per_channel_);
|
|
|
|
num_channels_ = num_mixed_channels;
|
|
data_was_mixed_ = true;
|
|
}
|
|
|
|
void AudioBuffer::CopyAndMix(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
|
|
StereoToMono(channels_[0].data,
|
|
channels_[1].data,
|
|
mixed_channels_[0].data,
|
|
samples_per_channel_);
|
|
|
|
num_mixed_channels_ = num_mixed_channels;
|
|
}
|
|
|
|
void AudioBuffer::CopyAndMixLowPass(int num_mixed_channels) {
|
|
// We currently only support the stereo to mono case.
|
|
assert(num_channels_ == 2);
|
|
assert(num_mixed_channels == 1);
|
|
|
|
StereoToMono(low_pass_split_data(0),
|
|
low_pass_split_data(1),
|
|
mixed_low_pass_channels_[0].data,
|
|
samples_per_split_channel_);
|
|
|
|
num_mixed_low_pass_channels_ = num_mixed_channels;
|
|
}
|
|
|
|
void AudioBuffer::CopyLowPassToReference() {
|
|
reference_copied_ = true;
|
|
for (int i = 0; i < num_channels_; i++) {
|
|
memcpy(low_pass_reference_channels_[i].data,
|
|
low_pass_split_data(i),
|
|
sizeof(int16_t) * samples_per_split_channel_);
|
|
}
|
|
}
|
|
} // namespace webrtc
|