4b00560a6e
Review URL: http://webrtc-codereview.appspot.com/301005 git-svn-id: http://webrtc.googlecode.com/svn/trunk@1081 4adac7df-926f-26a2-2b94-8c16560cd09d
544 lines
15 KiB
C++
544 lines
15 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#if _WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
#include "trace.h"
|
|
#include "overuse_detector.h"
|
|
#include "remote_rate_control.h"
|
|
#include <math.h>
|
|
#include <stdlib.h> //abs
|
|
|
|
#ifdef MATLAB
|
|
extern MatlabEngine eng; // global variable defined elsewhere
|
|
#endif
|
|
|
|
#define INIT_CAPACITY_SLOPE 8.0/512.0
|
|
#define DETECTOR_THRESHOLD 25.0
|
|
#define OVER_USING_TIME_THRESHOLD 100
|
|
#define MIN_FRAME_PERIOD_HISTORY_LEN 60
|
|
|
|
namespace webrtc {
|
|
OverUseDetector::OverUseDetector()
|
|
:
|
|
_firstPacket(true),
|
|
_currentFrame(),
|
|
_prevFrame(),
|
|
_numOfDeltas(0),
|
|
_slope(INIT_CAPACITY_SLOPE),
|
|
_offset(0),
|
|
_E(),
|
|
_processNoise(),
|
|
_avgNoise(0.0),
|
|
_varNoise(500),
|
|
_threshold(DETECTOR_THRESHOLD),
|
|
_tsDeltaHist(),
|
|
_prevOffset(0.0),
|
|
_timeOverUsing(-1),
|
|
_overUseCounter(0),
|
|
_hypothesis(kBwNormal)
|
|
#ifdef DEBUG_FILE
|
|
,_debugFile(NULL)
|
|
#endif
|
|
#ifdef MATLAB
|
|
,_plot1(NULL),
|
|
_plot2(NULL),
|
|
_plot3(NULL),
|
|
_plot4(NULL)
|
|
#endif
|
|
{
|
|
_E[0][0] = 100;
|
|
_E[1][1] = 1e-1;
|
|
_E[0][1] = _E[1][0] = 0;
|
|
_processNoise[0] = 1e-10;
|
|
_processNoise[1] = 1e-2;
|
|
#ifdef DEBUG_FILE
|
|
_debugFile = fopen("detectorData.txt", "w");
|
|
if (_debugFile)
|
|
fprintf(_debugFile, "data = [\n");
|
|
#endif
|
|
}
|
|
|
|
OverUseDetector::~OverUseDetector()
|
|
{
|
|
#ifdef DEBUG_FILE
|
|
if (_debugFile) {
|
|
fprintf(_debugFile, "];\n");
|
|
fclose(_debugFile);
|
|
}
|
|
#endif
|
|
#ifdef MATLAB
|
|
if (_plot1)
|
|
{
|
|
eng.DeletePlot(_plot1);
|
|
_plot1 = NULL;
|
|
}
|
|
if (_plot2)
|
|
{
|
|
eng.DeletePlot(_plot2);
|
|
_plot2 = NULL;
|
|
}
|
|
if (_plot3)
|
|
{
|
|
eng.DeletePlot(_plot3);
|
|
_plot3 = NULL;
|
|
}
|
|
if (_plot4)
|
|
{
|
|
eng.DeletePlot(_plot4);
|
|
_plot4 = NULL;
|
|
}
|
|
#endif
|
|
while (!_tsDeltaHist.Empty())
|
|
{
|
|
ListItem* item = _tsDeltaHist.First();
|
|
delete static_cast<double*>(item->GetItem());
|
|
_tsDeltaHist.Erase(item);
|
|
}
|
|
}
|
|
|
|
void OverUseDetector::Reset()
|
|
{
|
|
_firstPacket = true;
|
|
_currentFrame._size = 0;
|
|
_currentFrame._completeTimeMs = -1;
|
|
_currentFrame._timestamp = -1;
|
|
_prevFrame._size = 0;
|
|
_prevFrame._completeTimeMs = -1;
|
|
_prevFrame._timestamp = -1;
|
|
_numOfDeltas = 0;
|
|
_slope = INIT_CAPACITY_SLOPE;
|
|
_offset = 0;
|
|
_E[0][0] = 100;
|
|
_E[1][1] = 1e-1;
|
|
_E[0][1] = _E[1][0] = 0;
|
|
_processNoise[0] = 1e-10;
|
|
_processNoise[1] = 1e-2;
|
|
_avgNoise = 0.0;
|
|
_varNoise = 500;
|
|
_threshold = DETECTOR_THRESHOLD;
|
|
_prevOffset = 0.0;
|
|
_timeOverUsing = -1;
|
|
_overUseCounter = 0;
|
|
_hypothesis = kBwNormal;
|
|
while (!_tsDeltaHist.Empty())
|
|
{
|
|
ListItem* item = _tsDeltaHist.First();
|
|
delete static_cast<double*>(item->GetItem());
|
|
_tsDeltaHist.Erase(item);
|
|
}
|
|
}
|
|
|
|
bool OverUseDetector::Update(const WebRtcRTPHeader& rtpHeader,
|
|
const WebRtc_UWord16 packetSize,
|
|
const WebRtc_Word64 nowMS)
|
|
{
|
|
#ifdef MATLAB
|
|
// Create plots
|
|
const WebRtc_Word64 startTimeMs = nowMS;
|
|
if (_plot1 == NULL)
|
|
{
|
|
_plot1 = eng.NewPlot(new MatlabPlot());
|
|
_plot1->AddLine(1000, "b.", "scatter");
|
|
}
|
|
if (_plot2 == NULL)
|
|
{
|
|
_plot2 = eng.NewPlot(new MatlabPlot());
|
|
_plot2->AddTimeLine(30, "b", "offset", startTimeMs);
|
|
_plot2->AddTimeLine(30, "r--", "limitPos", startTimeMs);
|
|
_plot2->AddTimeLine(30, "k.", "trigger", startTimeMs);
|
|
_plot2->AddTimeLine(30, "ko", "detection", startTimeMs);
|
|
//_plot2->AddTimeLine(30, "g", "slowMean", startTimeMs);
|
|
}
|
|
if (_plot3 == NULL)
|
|
{
|
|
_plot3 = eng.NewPlot(new MatlabPlot());
|
|
_plot3->AddTimeLine(30, "b", "noiseVar", startTimeMs);
|
|
}
|
|
if (_plot4 == NULL)
|
|
{
|
|
_plot4 = eng.NewPlot(new MatlabPlot());
|
|
//_plot4->AddTimeLine(60, "b", "p11", startTimeMs);
|
|
//_plot4->AddTimeLine(60, "r", "p12", startTimeMs);
|
|
_plot4->AddTimeLine(60, "g", "p22", startTimeMs);
|
|
//_plot4->AddTimeLine(60, "g--", "p22_hat", startTimeMs);
|
|
//_plot4->AddTimeLine(30, "b.-", "deltaFs", startTimeMs);
|
|
}
|
|
|
|
#endif
|
|
|
|
bool wrapped = false;
|
|
bool completeFrame = false;
|
|
if (_currentFrame._timestamp == -1)
|
|
{
|
|
_currentFrame._timestamp = rtpHeader.header.timestamp;
|
|
}
|
|
else if (OldTimestamp(rtpHeader.header.timestamp, static_cast<WebRtc_UWord32>(_currentFrame._timestamp), wrapped))
|
|
{
|
|
// Don't update with old data
|
|
return completeFrame;
|
|
}
|
|
else if (rtpHeader.header.timestamp != _currentFrame._timestamp)
|
|
{
|
|
// First packet of a later frame, the previous frame sample is ready
|
|
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "Frame complete at %I64i", _currentFrame._completeTimeMs);
|
|
if (_prevFrame._completeTimeMs >= 0) // This is our second frame
|
|
{
|
|
WebRtc_Word64 tDelta = 0;
|
|
double tsDelta = 0;
|
|
// Check for wrap
|
|
OldTimestamp(static_cast<WebRtc_UWord32>(_prevFrame._timestamp), static_cast<WebRtc_UWord32>(_currentFrame._timestamp), wrapped);
|
|
CompensatedTimeDelta(_currentFrame, _prevFrame, tDelta, tsDelta, wrapped);
|
|
UpdateKalman(tDelta, tsDelta, _currentFrame._size, _prevFrame._size);
|
|
}
|
|
// The new timestamp is now the current frame,
|
|
// and the old timestamp becomes the previous frame.
|
|
_prevFrame = _currentFrame;
|
|
_currentFrame._timestamp = rtpHeader.header.timestamp;
|
|
_currentFrame._size = 0;
|
|
_currentFrame._completeTimeMs = -1;
|
|
completeFrame = true;
|
|
}
|
|
// Accumulate the frame size
|
|
_currentFrame._size += packetSize;
|
|
_currentFrame._completeTimeMs = nowMS;
|
|
return completeFrame;
|
|
}
|
|
|
|
BandwidthUsage OverUseDetector::State() const
|
|
{
|
|
#ifdef _DEBUG
|
|
char logStr[256];
|
|
static BandwidthUsage oldState = kBwNormal;
|
|
if (_hypothesis != oldState)
|
|
{
|
|
switch(_hypothesis)
|
|
{
|
|
case kBwOverusing:
|
|
{
|
|
#ifdef _WIN32
|
|
_snprintf(logStr,256, "State: OVER-USING\n");
|
|
#else
|
|
snprintf(logStr,256, "State: OVER-USING\n");
|
|
#endif
|
|
break;
|
|
}
|
|
case kBwUnderUsing:
|
|
{
|
|
#ifdef _WIN32
|
|
_snprintf(logStr,256, "State: UNDER-USING\n");
|
|
#else
|
|
snprintf(logStr,256, "State: UNDER-USING\n");
|
|
#endif
|
|
break;
|
|
}
|
|
case kBwNormal:
|
|
{
|
|
#ifdef _WIN32
|
|
_snprintf(logStr,256, "State: NORMAL\n");
|
|
#else
|
|
snprintf(logStr,256, "State: NORMAL\n");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
#ifdef _WIN32
|
|
OutputDebugStringA(logStr);
|
|
#else
|
|
//TODO
|
|
#endif
|
|
oldState = _hypothesis;
|
|
}
|
|
#endif
|
|
return _hypothesis;
|
|
}
|
|
|
|
double OverUseDetector::NoiseVar() const
|
|
{
|
|
return _varNoise;
|
|
}
|
|
|
|
void OverUseDetector::SetRateControlRegion(RateControlRegion region)
|
|
{
|
|
switch (region)
|
|
{
|
|
case kRcMaxUnknown:
|
|
{
|
|
_threshold = DETECTOR_THRESHOLD;
|
|
break;
|
|
}
|
|
case kRcAboveMax:
|
|
case kRcNearMax:
|
|
{
|
|
_threshold = DETECTOR_THRESHOLD / 2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void OverUseDetector::CompensatedTimeDelta(const FrameSample& currentFrame, const FrameSample& prevFrame, WebRtc_Word64& tDelta,
|
|
double& tsDelta, bool wrapped)
|
|
{
|
|
_numOfDeltas++;
|
|
if (_numOfDeltas > 1000)
|
|
{
|
|
_numOfDeltas = 1000;
|
|
}
|
|
// Add wrap-around compensation
|
|
WebRtc_Word64 wrapCompensation = 0;
|
|
if (wrapped)
|
|
{
|
|
wrapCompensation = static_cast<WebRtc_Word64>(1)<<32;
|
|
}
|
|
tsDelta = (currentFrame._timestamp + wrapCompensation - prevFrame._timestamp) / 90.0;
|
|
tDelta = currentFrame._completeTimeMs - prevFrame._completeTimeMs;
|
|
assert(tsDelta > 0);
|
|
}
|
|
|
|
double OverUseDetector::CurrentDrift()
|
|
{
|
|
return 1.0;
|
|
}
|
|
|
|
void OverUseDetector::UpdateKalman(WebRtc_Word64 tDelta, double tsDelta, WebRtc_UWord32 frameSize, WebRtc_UWord32 prevFrameSize)
|
|
{
|
|
const double minFramePeriod = UpdateMinFramePeriod(tsDelta);
|
|
const double drift = CurrentDrift();
|
|
// Compensate for drift
|
|
const double tTsDelta = tDelta - tsDelta / drift;
|
|
double fsDelta = static_cast<double>(frameSize) - prevFrameSize;
|
|
|
|
#ifdef DEBUG_FILE
|
|
if (_debugFile) {
|
|
fprintf(_debugFile, "%I64i %f %I64i %lu;\n", tDelta, tsDelta, static_cast<WebRtc_Word64>(fsDelta), frameSize);
|
|
fflush(_debugFile);
|
|
}
|
|
#endif
|
|
|
|
// Update the Kalman filter
|
|
const double scaleFactor = minFramePeriod / (1000.0 / 30.0);
|
|
_E[0][0] += _processNoise[0] * scaleFactor;
|
|
_E[1][1] += _processNoise[1] * scaleFactor;
|
|
|
|
if ((_hypothesis == kBwOverusing && _offset < _prevOffset) ||
|
|
(_hypothesis == kBwUnderUsing && _offset > _prevOffset))
|
|
{
|
|
_E[1][1] += 10 * _processNoise[1] * scaleFactor;
|
|
}
|
|
|
|
const double h[2] = {fsDelta, 1.0};
|
|
const double Eh[2] = {_E[0][0]*h[0] + _E[0][1]*h[1],
|
|
_E[1][0]*h[0] + _E[1][1]*h[1]};
|
|
|
|
const double residual = tTsDelta - _slope*h[0] - _offset;
|
|
|
|
const bool stableState = (BWE_MIN(_numOfDeltas, 60) * abs(_offset) < _threshold);
|
|
// We try to filter out very late frames. For instance periodic key
|
|
// frames doesn't fit the Gaussian model well.
|
|
if (abs(residual) < 3 * sqrt(_varNoise))
|
|
{
|
|
UpdateNoiseEstimate(residual, minFramePeriod, stableState);
|
|
}
|
|
else
|
|
{
|
|
UpdateNoiseEstimate(3 * sqrt(_varNoise), minFramePeriod, stableState);
|
|
}
|
|
|
|
const double denom = _varNoise + h[0]*Eh[0] + h[1]*Eh[1];
|
|
|
|
const double K[2] = {Eh[0] / denom,
|
|
Eh[1] / denom};
|
|
|
|
const double IKh[2][2] = {{1.0 - K[0]*h[0], -K[0]*h[1]},
|
|
{-K[1]*h[0], 1.0 - K[1]*h[1]}};
|
|
const double e00 = _E[0][0];
|
|
const double e01 = _E[0][1];
|
|
|
|
// Update state
|
|
_E[0][0] = e00 * IKh[0][0] + _E[1][0] * IKh[0][1];
|
|
_E[0][1] = e01 * IKh[0][0] + _E[1][1] * IKh[0][1];
|
|
_E[1][0] = e00 * IKh[1][0] + _E[1][0] * IKh[1][1];
|
|
_E[1][1] = e01 * IKh[1][0] + _E[1][1] * IKh[1][1];
|
|
|
|
// Covariance matrix, must be positive semi-definite
|
|
assert(_E[0][0] + _E[1][1] >= 0 &&
|
|
_E[0][0] * _E[1][1] - _E[0][1] * _E[1][0] >= 0 &&
|
|
_E[0][0] >= 0);
|
|
|
|
#ifdef MATLAB
|
|
//_plot4->Append("p11",_E[0][0]);
|
|
//_plot4->Append("p12",_E[0][1]);
|
|
_plot4->Append("p22",_E[1][1]);
|
|
//_plot4->Append("p22_hat", 0.5*(_processNoise[1] +
|
|
// sqrt(_processNoise[1]*(_processNoise[1] + 4*_varNoise))));
|
|
//_plot4->Append("deltaFs", fsDelta);
|
|
_plot4->Plot();
|
|
#endif
|
|
_slope = _slope + K[0] * residual;
|
|
_prevOffset = _offset;
|
|
_offset = _offset + K[1] * residual;
|
|
|
|
Detect(tsDelta);
|
|
|
|
#ifdef MATLAB
|
|
_plot1->Append("scatter", static_cast<double>(_currentFrame._size) - _prevFrame._size,
|
|
static_cast<double>(tDelta-tsDelta));
|
|
_plot1->MakeTrend("scatter", "slope", _slope, _offset, "k-");
|
|
_plot1->MakeTrend("scatter", "thresholdPos", _slope, _offset + 2 * sqrt(_varNoise), "r-");
|
|
_plot1->MakeTrend("scatter", "thresholdNeg", _slope, _offset - 2 * sqrt(_varNoise), "r-");
|
|
_plot1->Plot();
|
|
|
|
_plot2->Append("offset", _offset);
|
|
_plot2->Append("limitPos", _threshold/BWE_MIN(_numOfDeltas, 60));
|
|
_plot2->Plot();
|
|
|
|
_plot3->Append("noiseVar", _varNoise);
|
|
_plot3->Plot();
|
|
#endif
|
|
}
|
|
|
|
double OverUseDetector::UpdateMinFramePeriod(double tsDelta)
|
|
{
|
|
double minFramePeriod = tsDelta;
|
|
if (_tsDeltaHist.GetSize() >= MIN_FRAME_PERIOD_HISTORY_LEN)
|
|
{
|
|
ListItem* firstItem = _tsDeltaHist.First();
|
|
delete static_cast<double*>(firstItem->GetItem());
|
|
_tsDeltaHist.Erase(firstItem);
|
|
}
|
|
for (ListItem* item = _tsDeltaHist.First();
|
|
item != NULL;
|
|
item = _tsDeltaHist.Next(item))
|
|
{
|
|
const double* histDelta = static_cast<double*>(item->GetItem());
|
|
minFramePeriod = BWE_MIN(*histDelta, minFramePeriod);
|
|
}
|
|
_tsDeltaHist.PushBack(new double(tsDelta));
|
|
return minFramePeriod;
|
|
}
|
|
|
|
void OverUseDetector::UpdateNoiseEstimate(double residual, double tsDelta, bool stableState)
|
|
{
|
|
if (!stableState)
|
|
{
|
|
return;
|
|
}
|
|
// Faster filter during startup to faster adapt to the jitter level of the network
|
|
// alpha is tuned for 30 frames per second, but
|
|
double alpha = 0.01;
|
|
if (_numOfDeltas > 10*30)
|
|
{
|
|
alpha = 0.002;
|
|
}
|
|
// Only update the noise estimate if we're not over-using
|
|
// beta is a function of alpha and the time delta since
|
|
// the previous update.
|
|
const double beta = pow(1 - alpha, tsDelta * 30.0 / 1000.0);
|
|
_avgNoise = beta * _avgNoise + (1 - beta) * residual;
|
|
_varNoise = beta * _varNoise + (1 - beta) * (_avgNoise - residual) * (_avgNoise - residual);
|
|
if (_varNoise < 1e-7)
|
|
{
|
|
_varNoise = 1e-7;
|
|
}
|
|
}
|
|
|
|
BandwidthUsage OverUseDetector::Detect(double tsDelta)
|
|
{
|
|
if (_numOfDeltas < 2)
|
|
{
|
|
return kBwNormal;
|
|
}
|
|
const double T = BWE_MIN(_numOfDeltas, 60) * _offset;
|
|
if (abs(T) > _threshold)
|
|
{
|
|
if (_offset > 0)
|
|
{
|
|
if (_timeOverUsing == -1)
|
|
{
|
|
// Initialize the timer. Assume that we've been
|
|
// over-using half of the time since the previous
|
|
// sample.
|
|
_timeOverUsing = tsDelta / 2;
|
|
}
|
|
else
|
|
{
|
|
// Increment timer
|
|
_timeOverUsing += tsDelta;
|
|
}
|
|
_overUseCounter++;
|
|
if (_timeOverUsing > OVER_USING_TIME_THRESHOLD && _overUseCounter > 1)
|
|
{
|
|
if (_offset >= _prevOffset)
|
|
{
|
|
#ifdef _DEBUG
|
|
if (_hypothesis != kBwOverusing)
|
|
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwOverusing");
|
|
#endif
|
|
_timeOverUsing = 0;
|
|
_overUseCounter = 0;
|
|
_hypothesis = kBwOverusing;
|
|
#ifdef MATLAB
|
|
_plot2->Append("detection",_offset); // plot it later
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef MATLAB
|
|
_plot2->Append("trigger",_offset); // plot it later
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
#ifdef _DEBUG
|
|
if (_hypothesis != kBwUnderUsing)
|
|
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwUnderUsing");
|
|
#endif
|
|
_timeOverUsing = -1;
|
|
_overUseCounter = 0;
|
|
_hypothesis = kBwUnderUsing;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#ifdef _DEBUG
|
|
if (_hypothesis != kBwNormal)
|
|
WEBRTC_TRACE(kTraceStream, kTraceRtpRtcp, -1, "BWE: kBwNormal");
|
|
#endif
|
|
_timeOverUsing = -1;
|
|
_overUseCounter = 0;
|
|
_hypothesis = kBwNormal;
|
|
}
|
|
return _hypothesis;
|
|
}
|
|
|
|
bool OverUseDetector::OldTimestamp(WebRtc_UWord32 newTimestamp, WebRtc_UWord32 existingTimestamp, bool& wrapped)
|
|
{
|
|
wrapped = (newTimestamp < 0x0000ffff && existingTimestamp > 0xffff0000) ||
|
|
(newTimestamp > 0xffff0000 && existingTimestamp < 0x0000ffff);
|
|
if (existingTimestamp > newTimestamp && !wrapped)
|
|
{
|
|
return true;
|
|
}
|
|
else if (existingTimestamp <= newTimestamp && !wrapped)
|
|
{
|
|
return false;
|
|
}
|
|
else if (existingTimestamp < newTimestamp && wrapped)
|
|
{
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
} // namespace webrtc
|