minyue@webrtc.org abe3f1879c Checking whether ACM uses codec internal or WebRTC DTX.
It was not clear how one could know if ACM is using DTX from WebRTC or codec internal DTX.

This CL makes better use of IsInternalDTXReplacedWithWebRtc() which was designed for G.729 to export such information.

Before
IsInternalDTXReplacedWithWebRtc() gives true only if codec == G729 and G729's internal DTX is replaced with WebRTC DTX.

Now
IsInternalDTXReplacedWithWebRtc() gives true also when codec does not have internal DTX, i.e., must use WebRTC DTX, which is much more logical.

BUG=
R=henrik.lundin@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/35459004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@7870 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-12-11 08:53:21 +00:00

1183 lines
45 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_CODING_MAIN_INTERFACE_AUDIO_CODING_MODULE_H_
#define WEBRTC_MODULES_AUDIO_CODING_MAIN_INTERFACE_AUDIO_CODING_MODULE_H_
#include <vector>
#include "webrtc/common_types.h"
#include "webrtc/modules/audio_coding/main/acm2/acm_codec_database.h"
#include "webrtc/modules/audio_coding/main/interface/audio_coding_module_typedefs.h"
#include "webrtc/modules/audio_coding/neteq/interface/neteq.h"
#include "webrtc/modules/interface/module.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/typedefs.h"
namespace webrtc {
// forward declarations
struct CodecInst;
struct WebRtcRTPHeader;
class AudioFrame;
class RTPFragmentationHeader;
#define WEBRTC_10MS_PCM_AUDIO 960 // 16 bits super wideband 48 kHz
// Callback class used for sending data ready to be packetized
class AudioPacketizationCallback {
public:
virtual ~AudioPacketizationCallback() {}
virtual int32_t SendData(FrameType frame_type,
uint8_t payload_type,
uint32_t timestamp,
const uint8_t* payload_data,
size_t payload_len_bytes,
const RTPFragmentationHeader* fragmentation) = 0;
};
// Callback class used for inband Dtmf detection
class AudioCodingFeedback {
public:
virtual ~AudioCodingFeedback() {}
virtual int32_t IncomingDtmf(const uint8_t digit_dtmf,
const bool end) = 0;
};
// Callback class used for reporting VAD decision
class ACMVADCallback {
public:
virtual ~ACMVADCallback() {}
virtual int32_t InFrameType(int16_t frameType) = 0;
};
// Callback class used for reporting receiver statistics
class ACMVQMonCallback {
public:
virtual ~ACMVQMonCallback() {}
virtual int32_t NetEqStatistics(
const int32_t id, // current ACM id
const uint16_t MIUsValid, // valid voice duration in ms
const uint16_t MIUsReplaced, // concealed voice duration in ms
const uint8_t eventFlags, // concealed voice flags
const uint16_t delayMS) = 0; // average delay in ms
};
class AudioCodingModule: public Module {
protected:
AudioCodingModule() {}
public:
struct Config {
Config()
: id(0),
neteq_config(),
clock(Clock::GetRealTimeClock()) {}
int id;
NetEq::Config neteq_config;
Clock* clock;
};
///////////////////////////////////////////////////////////////////////////
// Creation and destruction of a ACM.
//
// The second method is used for testing where a simulated clock can be
// injected into ACM. ACM will take the ownership of the object clock and
// delete it when destroyed.
//
static AudioCodingModule* Create(int id);
static AudioCodingModule* Create(int id, Clock* clock);
virtual ~AudioCodingModule() {};
///////////////////////////////////////////////////////////////////////////
// Utility functions
//
///////////////////////////////////////////////////////////////////////////
// uint8_t NumberOfCodecs()
// Returns number of supported codecs.
//
// Return value:
// number of supported codecs.
///
static int NumberOfCodecs();
///////////////////////////////////////////////////////////////////////////
// int32_t Codec()
// Get supported codec with list number.
//
// Input:
// -list_id : list number.
//
// Output:
// -codec : a structure where the parameters of the codec,
// given by list number is written to.
//
// Return value:
// -1 if the list number (list_id) is invalid.
// 0 if succeeded.
//
static int Codec(int list_id, CodecInst* codec);
///////////////////////////////////////////////////////////////////////////
// int32_t Codec()
// Get supported codec with the given codec name, sampling frequency, and
// a given number of channels.
//
// Input:
// -payload_name : name of the codec.
// -sampling_freq_hz : sampling frequency of the codec. Note! for RED
// a sampling frequency of -1 is a valid input.
// -channels : number of channels ( 1 - mono, 2 - stereo).
//
// Output:
// -codec : a structure where the function returns the
// default parameters of the codec.
//
// Return value:
// -1 if no codec matches the given parameters.
// 0 if succeeded.
//
static int Codec(const char* payload_name, CodecInst* codec,
int sampling_freq_hz, int channels);
///////////////////////////////////////////////////////////////////////////
// int32_t Codec()
//
// Returns the list number of the given codec name, sampling frequency, and
// a given number of channels.
//
// Input:
// -payload_name : name of the codec.
// -sampling_freq_hz : sampling frequency of the codec. Note! for RED
// a sampling frequency of -1 is a valid input.
// -channels : number of channels ( 1 - mono, 2 - stereo).
//
// Return value:
// if the codec is found, the index of the codec in the list,
// -1 if the codec is not found.
//
static int Codec(const char* payload_name, int sampling_freq_hz,
int channels);
///////////////////////////////////////////////////////////////////////////
// bool IsCodecValid()
// Checks the validity of the parameters of the given codec.
//
// Input:
// -codec : the structure which keeps the parameters of the
// codec.
//
// Return value:
// true if the parameters are valid,
// false if any parameter is not valid.
//
static bool IsCodecValid(const CodecInst& codec);
///////////////////////////////////////////////////////////////////////////
// Sender
//
///////////////////////////////////////////////////////////////////////////
// int32_t InitializeSender()
// Any encoder-related state of ACM will be initialized to the
// same state when ACM is created. This will not interrupt or
// effect decoding functionality of ACM. ACM will lose all the
// encoding-related settings by calling this function.
// For instance, a send codec has to be registered again.
//
// Return value:
// -1 if failed to initialize,
// 0 if succeeded.
//
virtual int32_t InitializeSender() = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t ResetEncoder()
// This API resets the states of encoder. All the encoder settings, such as
// send-codec or VAD/DTX, will be preserved.
//
// Return value:
// -1 if failed to initialize,
// 0 if succeeded.
//
virtual int32_t ResetEncoder() = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t RegisterSendCodec()
// Registers a codec, specified by |send_codec|, as sending codec.
// This API can be called multiple of times to register Codec. The last codec
// registered overwrites the previous ones.
// The API can also be used to change payload type for CNG and RED, which are
// registered by default to default payload types.
// Note that registering CNG and RED won't overwrite speech codecs.
// This API can be called to set/change the send payload-type, frame-size
// or encoding rate (if applicable for the codec).
//
// Note: If a stereo codec is registered as send codec, VAD/DTX will
// automatically be turned off, since it is not supported for stereo sending.
//
// Note: If a secondary encoder is already registered, and the new send-codec
// has a sampling rate that does not match the secondary encoder, the
// secondary encoder will be unregistered.
//
// Input:
// -send_codec : Parameters of the codec to be registered, c.f.
// common_types.h for the definition of
// CodecInst.
//
// Return value:
// -1 if failed to initialize,
// 0 if succeeded.
//
virtual int32_t RegisterSendCodec(const CodecInst& send_codec) = 0;
///////////////////////////////////////////////////////////////////////////
// int RegisterSecondarySendCodec()
// Register a secondary encoder to enable dual-streaming. If a secondary
// codec is already registered, it will be removed before the new one is
// registered.
//
// Note: The secondary encoder will be unregistered if a primary codec
// is set with a sampling rate which does not match that of the existing
// secondary codec.
//
// Input:
// -send_codec : Parameters of the codec to be registered, c.f.
// common_types.h for the definition of
// CodecInst.
//
// Return value:
// -1 if failed to register,
// 0 if succeeded.
//
virtual int RegisterSecondarySendCodec(const CodecInst& send_codec) = 0;
///////////////////////////////////////////////////////////////////////////
// void UnregisterSecondarySendCodec()
// Unregister the secondary encoder to disable dual-streaming.
//
virtual void UnregisterSecondarySendCodec() = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t SendCodec()
// Get parameters for the codec currently registered as send codec.
//
// Output:
// -current_send_codec : parameters of the send codec.
//
// Return value:
// -1 if failed to get send codec,
// 0 if succeeded.
//
virtual int32_t SendCodec(CodecInst* current_send_codec) const = 0;
///////////////////////////////////////////////////////////////////////////
// int SecondarySendCodec()
// Get the codec parameters for the current secondary send codec.
//
// Output:
// -secondary_codec : parameters of the secondary send codec.
//
// Return value:
// -1 if failed to get send codec,
// 0 if succeeded.
//
virtual int SecondarySendCodec(CodecInst* secondary_codec) const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t SendFrequency()
// Get the sampling frequency of the current encoder in Hertz.
//
// Return value:
// positive; sampling frequency [Hz] of the current encoder.
// -1 if an error has happened.
//
virtual int32_t SendFrequency() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t Bitrate()
// Get encoding bit-rate in bits per second.
//
// Return value:
// positive; encoding rate in bits/sec,
// -1 if an error is happened.
//
virtual int32_t SendBitrate() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t SetReceivedEstimatedBandwidth()
// Set available bandwidth [bits/sec] of the up-link channel.
// This information is used for traffic shaping, and is currently only
// supported if iSAC is the send codec.
//
// Input:
// -bw : bandwidth in bits/sec estimated for
// up-link.
// Return value
// -1 if error occurred in setting the bandwidth,
// 0 bandwidth is set successfully.
//
// TODO(henrik.lundin) Unused. Remove?
virtual int32_t SetReceivedEstimatedBandwidth(
const int32_t bw) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t RegisterTransportCallback()
// Register a transport callback which will be called to deliver
// the encoded buffers whenever Process() is called and a
// bit-stream is ready.
//
// Input:
// -transport : pointer to the callback class
// transport->SendData() is called whenever
// Process() is called and bit-stream is ready
// to deliver.
//
// Return value:
// -1 if the transport callback could not be registered
// 0 if registration is successful.
//
virtual int32_t RegisterTransportCallback(
AudioPacketizationCallback* transport) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t Add10MsData()
// Add 10MS of raw (PCM) audio data to the encoder. If the sampling
// frequency of the audio does not match the sampling frequency of the
// current encoder ACM will resample the audio.
//
// Input:
// -audio_frame : the input audio frame, containing raw audio
// sampling frequency etc.,
// c.f. module_common_types.h for definition of
// AudioFrame.
//
// Return value:
// 0 successfully added the frame.
// -1 some error occurred and data is not added.
// < -1 to add the frame to the buffer n samples had to be
// overwritten, -n is the return value in this case.
//
virtual int32_t Add10MsData(const AudioFrame& audio_frame) = 0;
///////////////////////////////////////////////////////////////////////////
// (RED) Redundant Coding
//
///////////////////////////////////////////////////////////////////////////
// int32_t SetREDStatus()
// configure RED status i.e. on/off.
//
// RFC 2198 describes a solution which has a single payload type which
// signifies a packet with redundancy. That packet then becomes a container,
// encapsulating multiple payloads into a single RTP packet.
// Such a scheme is flexible, since any amount of redundancy may be
// encapsulated within a single packet. There is, however, a small overhead
// since each encapsulated payload must be preceded by a header indicating
// the type of data enclosed.
//
// Input:
// -enable_red : if true RED is enabled, otherwise RED is
// disabled.
//
// Return value:
// -1 if failed to set RED status,
// 0 if succeeded.
//
virtual int32_t SetREDStatus(bool enable_red) = 0;
///////////////////////////////////////////////////////////////////////////
// bool REDStatus()
// Get RED status
//
// Return value:
// true if RED is enabled,
// false if RED is disabled.
//
virtual bool REDStatus() const = 0;
///////////////////////////////////////////////////////////////////////////
// (FEC) Forward Error Correction (codec internal)
//
///////////////////////////////////////////////////////////////////////////
// int32_t SetCodecFEC()
// Configures codec internal FEC status i.e. on/off. No effects on codecs that
// do not provide internal FEC.
//
// Input:
// -enable_fec : if true FEC will be enabled otherwise the FEC is
// disabled.
//
// Return value:
// -1 if failed, or the codec does not support FEC
// 0 if succeeded.
//
virtual int SetCodecFEC(bool enable_codec_fec) = 0;
///////////////////////////////////////////////////////////////////////////
// bool CodecFEC()
// Gets status of codec internal FEC.
//
// Return value:
// true if FEC is enabled,
// false if FEC is disabled.
//
virtual bool CodecFEC() const = 0;
///////////////////////////////////////////////////////////////////////////
// int SetPacketLossRate()
// Sets expected packet loss rate for encoding. Some encoders provide packet
// loss gnostic encoding to make stream less sensitive to packet losses,
// through e.g., FEC. No effects on codecs that do not provide such encoding.
//
// Input:
// -packet_loss_rate : expected packet loss rate (0 -- 100 inclusive).
//
// Return value
// -1 if failed to set packet loss rate,
// 0 if succeeded.
//
virtual int SetPacketLossRate(int packet_loss_rate) = 0;
///////////////////////////////////////////////////////////////////////////
// (VAD) Voice Activity Detection
//
///////////////////////////////////////////////////////////////////////////
// int32_t SetVAD()
// If DTX is enabled & the codec does not have internal DTX/VAD
// WebRtc VAD will be automatically enabled and |enable_vad| is ignored.
//
// If DTX is disabled but VAD is enabled no DTX packets are send,
// regardless of whether the codec has internal DTX/VAD or not. In this
// case, WebRtc VAD is running to label frames as active/in-active.
//
// NOTE! VAD/DTX is not supported when sending stereo.
//
// Inputs:
// -enable_dtx : if true DTX is enabled,
// otherwise DTX is disabled.
// -enable_vad : if true VAD is enabled,
// otherwise VAD is disabled.
// -vad_mode : determines the aggressiveness of VAD. A more
// aggressive mode results in more frames labeled
// as in-active, c.f. definition of
// ACMVADMode in audio_coding_module_typedefs.h
// for valid values.
//
// Return value:
// -1 if failed to set up VAD/DTX,
// 0 if succeeded.
//
virtual int32_t SetVAD(const bool enable_dtx = true,
const bool enable_vad = false,
const ACMVADMode vad_mode = VADNormal) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t VAD()
// Get VAD status.
//
// Outputs:
// -dtx_enabled : is set to true if DTX is enabled, otherwise
// is set to false.
// -vad_enabled : is set to true if VAD is enabled, otherwise
// is set to false.
// -vad_mode : is set to the current aggressiveness of VAD.
//
// Return value:
// -1 if fails to retrieve the setting of DTX/VAD,
// 0 if succeeded.
//
virtual int32_t VAD(bool* dtx_enabled, bool* vad_enabled,
ACMVADMode* vad_mode) const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t ReplaceInternalDTXWithWebRtc()
// Used to replace codec internal DTX scheme with WebRtc.
//
// Input:
// -use_webrtc_dtx : if false (default) the codec built-in DTX/VAD
// scheme is used, otherwise the internal DTX is
// replaced with WebRtc DTX/VAD.
//
// Return value:
// -1 if failed to replace codec internal DTX with WebRtc,
// 0 if succeeded.
//
virtual int32_t ReplaceInternalDTXWithWebRtc(
const bool use_webrtc_dtx = false) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t IsInternalDTXReplacedWithWebRtc()
// Get status if the codec internal DTX is replaced with WebRtc DTX.
// This should always be true if codec does not have an internal DTX.
//
// Output:
// -uses_webrtc_dtx : is set to true if the codec internal DTX is
// replaced with WebRtc DTX/VAD, otherwise it is set
// to false.
//
// Return value:
// -1 if failed to determine if codec internal DTX is replaced with WebRtc,
// 0 if succeeded.
//
virtual int32_t IsInternalDTXReplacedWithWebRtc(
bool* uses_webrtc_dtx) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t RegisterVADCallback()
// Call this method to register a callback function which is called
// any time that ACM encounters an empty frame. That is a frame which is
// recognized inactive. Depending on the codec WebRtc VAD or internal codec
// VAD is employed to identify a frame as active/inactive.
//
// Input:
// -vad_callback : pointer to a callback function.
//
// Return value:
// -1 if failed to register the callback function.
// 0 if the callback function is registered successfully.
//
virtual int32_t RegisterVADCallback(ACMVADCallback* vad_callback) = 0;
///////////////////////////////////////////////////////////////////////////
// Receiver
//
///////////////////////////////////////////////////////////////////////////
// int32_t InitializeReceiver()
// Any decoder-related state of ACM will be initialized to the
// same state when ACM is created. This will not interrupt or
// effect encoding functionality of ACM. ACM would lose all the
// decoding-related settings by calling this function.
// For instance, all registered codecs are deleted and have to be
// registered again.
//
// Return value:
// -1 if failed to initialize,
// 0 if succeeded.
//
virtual int32_t InitializeReceiver() = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t ResetDecoder()
// This API resets the states of decoders. ACM will not lose any
// decoder-related settings, such as registered codecs.
//
// Return value:
// -1 if failed to initialize,
// 0 if succeeded.
//
virtual int32_t ResetDecoder() = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t ReceiveFrequency()
// Get sampling frequency of the last received payload.
//
// Return value:
// non-negative the sampling frequency in Hertz.
// -1 if an error has occurred.
//
virtual int32_t ReceiveFrequency() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t PlayoutFrequency()
// Get sampling frequency of audio played out.
//
// Return value:
// the sampling frequency in Hertz.
//
virtual int32_t PlayoutFrequency() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t RegisterReceiveCodec()
// Register possible decoders, can be called multiple times for
// codecs, CNG-NB, CNG-WB, CNG-SWB, AVT and RED.
//
// Input:
// -receive_codec : parameters of the codec to be registered, c.f.
// common_types.h for the definition of
// CodecInst.
//
// Return value:
// -1 if failed to register the codec
// 0 if the codec registered successfully.
//
virtual int32_t RegisterReceiveCodec(
const CodecInst& receive_codec) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t UnregisterReceiveCodec()
// Unregister the codec currently registered with a specific payload type
// from the list of possible receive codecs.
//
// Input:
// -payload_type : The number representing the payload type to
// unregister.
//
// Output:
// -1 if fails to unregister.
// 0 if the given codec is successfully unregistered.
//
virtual int UnregisterReceiveCodec(
uint8_t payload_type) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t ReceiveCodec()
// Get the codec associated with last received payload.
//
// Output:
// -curr_receive_codec : parameters of the codec associated with the last
// received payload, c.f. common_types.h for
// the definition of CodecInst.
//
// Return value:
// -1 if failed to retrieve the codec,
// 0 if the codec is successfully retrieved.
//
virtual int32_t ReceiveCodec(CodecInst* curr_receive_codec) const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t IncomingPacket()
// Call this function to insert a parsed RTP packet into ACM.
//
// Inputs:
// -incoming_payload : received payload.
// -payload_len_bytes : the length of payload in bytes.
// -rtp_info : the relevant information retrieved from RTP
// header.
//
// Return value:
// -1 if failed to push in the payload
// 0 if payload is successfully pushed in.
//
virtual int32_t IncomingPacket(const uint8_t* incoming_payload,
const size_t payload_len_bytes,
const WebRtcRTPHeader& rtp_info) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t IncomingPayload()
// Call this API to push incoming payloads when there is no rtp-info.
// The rtp-info will be created in ACM. One usage for this API is when
// pre-encoded files are pushed in ACM
//
// Inputs:
// -incoming_payload : received payload.
// -payload_len_byte : the length, in bytes, of the received payload.
// -payload_type : the payload-type. This specifies which codec has
// to be used to decode the payload.
// -timestamp : send timestamp of the payload. ACM starts with
// a random value and increment it by the
// packet-size, which is given when the codec in
// question is registered by RegisterReceiveCodec().
// Therefore, it is essential to have the timestamp
// if the frame-size differ from the registered
// value or if the incoming payload contains DTX
// packets.
//
// Return value:
// -1 if failed to push in the payload
// 0 if payload is successfully pushed in.
//
virtual int32_t IncomingPayload(const uint8_t* incoming_payload,
const size_t payload_len_byte,
const uint8_t payload_type,
const uint32_t timestamp = 0) = 0;
///////////////////////////////////////////////////////////////////////////
// int SetMinimumPlayoutDelay()
// Set a minimum for the playout delay, used for lip-sync. NetEq maintains
// such a delay unless channel condition yields to a higher delay.
//
// Input:
// -time_ms : minimum delay in milliseconds.
//
// Return value:
// -1 if failed to set the delay,
// 0 if the minimum delay is set.
//
virtual int SetMinimumPlayoutDelay(int time_ms) = 0;
///////////////////////////////////////////////////////////////////////////
// int SetMaximumPlayoutDelay()
// Set a maximum for the playout delay
//
// Input:
// -time_ms : maximum delay in milliseconds.
//
// Return value:
// -1 if failed to set the delay,
// 0 if the maximum delay is set.
//
virtual int SetMaximumPlayoutDelay(int time_ms) = 0;
//
// The shortest latency, in milliseconds, required by jitter buffer. This
// is computed based on inter-arrival times and playout mode of NetEq. The
// actual delay is the maximum of least-required-delay and the minimum-delay
// specified by SetMinumumPlayoutDelay() API.
//
virtual int LeastRequiredDelayMs() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t SetDtmfPlayoutStatus()
// Configure DTMF playout, i.e. whether out-of-band
// DTMF tones are played or not.
//
// Input:
// -enable : if true to enable playout out-of-band DTMF tones,
// false to disable.
//
// Return value:
// -1 if the method fails, e.g. DTMF playout is not supported.
// 0 if the status is set successfully.
//
virtual int32_t SetDtmfPlayoutStatus(const bool enable) = 0;
///////////////////////////////////////////////////////////////////////////
// bool DtmfPlayoutStatus()
// Get Dtmf playout status.
//
// Return value:
// true if out-of-band Dtmf tones are played,
// false if playout of Dtmf tones is disabled.
//
virtual bool DtmfPlayoutStatus() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t PlayoutTimestamp()
// The send timestamp of an RTP packet is associated with the decoded
// audio of the packet in question. This function returns the timestamp of
// the latest audio obtained by calling PlayoutData10ms().
//
// Input:
// -timestamp : a reference to a uint32_t to receive the
// timestamp.
// Return value:
// 0 if the output is a correct timestamp.
// -1 if failed to output the correct timestamp.
//
// TODO(tlegrand): Change function to return the timestamp.
virtual int32_t PlayoutTimestamp(uint32_t* timestamp) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t DecoderEstimatedBandwidth()
// Get the estimate of the Bandwidth, in bits/second, based on the incoming
// stream. This API is useful in one-way communication scenarios, where
// the bandwidth information is sent in an out-of-band fashion.
// Currently only supported if iSAC is registered as a receiver.
//
// Return value:
// >0 bandwidth in bits/second.
// -1 if failed to get a bandwidth estimate.
//
virtual int32_t DecoderEstimatedBandwidth() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t SetPlayoutMode()
// Call this API to set the playout mode. Playout mode could be optimized
// for i) voice, ii) FAX or iii) streaming. In Voice mode, NetEQ is
// optimized to deliver highest audio quality while maintaining a minimum
// delay. In FAX mode, NetEQ is optimized to have few delay changes as
// possible and maintain a constant delay, perhaps large relative to voice
// mode, to avoid PLC. In streaming mode, we tolerate a little more delay
// to achieve better jitter robustness.
//
// Input:
// -mode : playout mode. Possible inputs are:
// "voice",
// "fax" and
// "streaming".
//
// Return value:
// -1 if failed to set the mode,
// 0 if succeeding.
//
virtual int32_t SetPlayoutMode(const AudioPlayoutMode mode) = 0;
///////////////////////////////////////////////////////////////////////////
// AudioPlayoutMode PlayoutMode()
// Get playout mode, i.e. whether it is speech, FAX or streaming. See
// audio_coding_module_typedefs.h for definition of AudioPlayoutMode.
//
// Return value:
// voice: is for voice output,
// fax: a mode that is optimized for receiving FAX signals.
// In this mode NetEq tries to maintain a constant high
// delay to avoid PLC if possible.
// streaming: a mode that is suitable for streaming. In this mode we
// accept longer delay to improve jitter robustness.
//
virtual AudioPlayoutMode PlayoutMode() const = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t PlayoutData10Ms(
// Get 10 milliseconds of raw audio data for playout, at the given sampling
// frequency. ACM will perform a resampling if required.
//
// Input:
// -desired_freq_hz : the desired sampling frequency, in Hertz, of the
// output audio. If set to -1, the function returns
// the audio at the current sampling frequency.
//
// Output:
// -audio_frame : output audio frame which contains raw audio data
// and other relevant parameters, c.f.
// module_common_types.h for the definition of
// AudioFrame.
//
// Return value:
// -1 if the function fails,
// 0 if the function succeeds.
//
virtual int32_t PlayoutData10Ms(int32_t desired_freq_hz,
AudioFrame* audio_frame) = 0;
///////////////////////////////////////////////////////////////////////////
// Codec specific
//
///////////////////////////////////////////////////////////////////////////
// int32_t SetISACMaxRate()
// Set the maximum instantaneous rate of iSAC. For a payload of B bits
// with a frame-size of T sec the instantaneous rate is B/T bits per
// second. Therefore, (B/T < |max_rate_bps|) and
// (B < |max_payload_len_bytes| * 8) are always satisfied for iSAC payloads,
// c.f SetISACMaxPayloadSize().
//
// Input:
// -max_rate_bps : maximum instantaneous bit-rate given in bits/sec.
//
// Return value:
// -1 if failed to set the maximum rate.
// 0 if the maximum rate is set successfully.
//
virtual int SetISACMaxRate(int max_rate_bps) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t SetISACMaxPayloadSize()
// Set the maximum payload size of iSAC packets. No iSAC payload,
// regardless of its frame-size, may exceed the given limit. For
// an iSAC payload of size B bits and frame-size T seconds we have;
// (B < |max_payload_len_bytes| * 8) and (B/T < |max_rate_bps|), c.f.
// SetISACMaxRate().
//
// Input:
// -max_payload_len_bytes : maximum payload size in bytes.
//
// Return value:
// -1 if failed to set the maximum payload-size.
// 0 if the given length is set successfully.
//
virtual int SetISACMaxPayloadSize(int max_payload_len_bytes) = 0;
///////////////////////////////////////////////////////////////////////////
// int32_t ConfigISACBandwidthEstimator()
// Call this function to configure the bandwidth estimator of ISAC.
// During the adaptation of bit-rate, iSAC automatically adjusts the
// frame-size (either 30 or 60 ms) to save on RTP header. The initial
// frame-size can be specified by the first argument. The configuration also
// regards the initial estimate of bandwidths. The estimator starts from
// this point and converges to the actual bottleneck. This is given by the
// second parameter. Furthermore, it is also possible to control the
// adaptation of frame-size. This is specified by the last parameter.
//
// Input:
// -init_frame_size_ms : initial frame-size in milliseconds. For iSAC-wb
// 30 ms and 60 ms (default) are acceptable values,
// and for iSAC-swb 30 ms is the only acceptable
// value. Zero indicates default value.
// -init_rate_bps : initial estimate of the bandwidth. Values
// between 10000 and 58000 are acceptable.
// -enforce_srame_size : if true, the frame-size will not be adapted.
//
// Return value:
// -1 if failed to configure the bandwidth estimator,
// 0 if the configuration was successfully applied.
//
virtual int32_t ConfigISACBandwidthEstimator(
int init_frame_size_ms,
int init_rate_bps,
bool enforce_frame_size = false) = 0;
///////////////////////////////////////////////////////////////////////////
// int SetOpusMaxPlaybackRate()
// If current send codec is Opus, informs it about maximum playback rate the
// receiver will render. Opus can use this information to optimize the bit
// rate and increase the computation efficiency.
//
// Input:
// -frequency_hz : maximum playback rate in Hz.
//
// Return value:
// -1 if current send codec is not Opus or
// error occurred in setting the maximum playback rate,
// 0 maximum bandwidth is set successfully.
//
virtual int SetOpusMaxPlaybackRate(int frequency_hz) = 0;
///////////////////////////////////////////////////////////////////////////
// statistics
//
///////////////////////////////////////////////////////////////////////////
// int32_t NetworkStatistics()
// Get network statistics. Note that the internal statistics of NetEq are
// reset by this call.
//
// Input:
// -network_statistics : a structure that contains network statistics.
//
// Return value:
// -1 if failed to set the network statistics,
// 0 if statistics are set successfully.
//
virtual int32_t NetworkStatistics(
ACMNetworkStatistics* network_statistics) = 0;
//
// Set an initial delay for playout.
// An initial delay yields ACM playout silence until equivalent of |delay_ms|
// audio payload is accumulated in NetEq jitter. Thereafter, ACM pulls audio
// from NetEq in its regular fashion, and the given delay is maintained
// through out the call, unless channel conditions yield to a higher jitter
// buffer delay.
//
// Input:
// -delay_ms : delay in milliseconds.
//
// Return values:
// -1 if failed to set the delay.
// 0 if delay is set successfully.
//
virtual int SetInitialPlayoutDelay(int delay_ms) = 0;
//
// Enable NACK and set the maximum size of the NACK list. If NACK is already
// enable then the maximum NACK list size is modified accordingly.
//
// If the sequence number of last received packet is N, the sequence numbers
// of NACK list are in the range of [N - |max_nack_list_size|, N).
//
// |max_nack_list_size| should be positive (none zero) and less than or
// equal to |Nack::kNackListSizeLimit|. Otherwise, No change is applied and -1
// is returned. 0 is returned at success.
//
virtual int EnableNack(size_t max_nack_list_size) = 0;
// Disable NACK.
virtual void DisableNack() = 0;
//
// Get a list of packets to be retransmitted. |round_trip_time_ms| is an
// estimate of the round-trip-time (in milliseconds). Missing packets which
// will be playout in a shorter time than the round-trip-time (with respect
// to the time this API is called) will not be included in the list.
//
// Negative |round_trip_time_ms| results is an error message and empty list
// is returned.
//
virtual std::vector<uint16_t> GetNackList(int round_trip_time_ms) const = 0;
virtual void GetDecodingCallStatistics(
AudioDecodingCallStats* call_stats) const = 0;
};
class AudioEncoder;
class ReceiverInfo;
class AudioCoding {
public:
struct Config {
Config()
: neteq_config(),
clock(Clock::GetRealTimeClock()),
transport(NULL),
vad_callback(NULL),
play_dtmf(true),
initial_playout_delay_ms(0),
playout_channels(1),
playout_frequency_hz(32000) {}
AudioCodingModule::Config ToOldConfig() const {
AudioCodingModule::Config old_config;
old_config.id = 0;
old_config.neteq_config = neteq_config;
old_config.clock = clock;
return old_config;
}
NetEq::Config neteq_config;
Clock* clock;
AudioPacketizationCallback* transport;
ACMVADCallback* vad_callback;
bool play_dtmf;
int initial_playout_delay_ms;
int playout_channels;
int playout_frequency_hz;
};
static AudioCoding* Create(const Config& config);
virtual ~AudioCoding() {};
// Registers a codec, specified by |send_codec|, as sending codec.
// This API can be called multiple times. The last codec registered overwrites
// the previous ones. Returns true if successful, false if not.
//
// Note: If a stereo codec is registered as send codec, VAD/DTX will
// automatically be turned off, since it is not supported for stereo sending.
virtual bool RegisterSendCodec(AudioEncoder* send_codec) = 0;
// Temporary solution to be used during refactoring:
// |encoder_type| should be from the anonymous enum in acm2::ACMCodecDB.
virtual bool RegisterSendCodec(int encoder_type,
uint8_t payload_type,
int frame_size_samples = 0) = 0;
// Returns the encoder object currently in use. This is the same as the
// codec that was registered in the latest call to RegisterSendCodec().
virtual const AudioEncoder* GetSenderInfo() const = 0;
// Temporary solution to be used during refactoring.
virtual const CodecInst* GetSenderCodecInst() = 0;
// Adds 10 ms of raw (PCM) audio data to the encoder. If the sampling
// frequency of the audio does not match the sampling frequency of the
// current encoder, ACM will resample the audio.
//
// Return value:
// 0 successfully added the frame.
// -1 some error occurred and data is not added.
// < -1 to add the frame to the buffer n samples had to be
// overwritten, -n is the return value in this case.
// TODO(henrik.lundin): Make a better design for the return values. This one
// is just a copy of the old API.
virtual int Add10MsAudio(const AudioFrame& audio_frame) = 0;
// Returns a combined info about the currently used decoder(s).
virtual const ReceiverInfo* GetReceiverInfo() const = 0;
// Registers a codec, specified by |receive_codec|, as receiving codec.
// This API can be called multiple times. If registering with a payload type
// that was already registered in a previous call, the latest call will
// override previous calls. Returns true if successful, false if not.
virtual bool RegisterReceiveCodec(AudioDecoder* receive_codec) = 0;
// Temporary solution:
// |decoder_type| should be from the anonymous enum in acm2::ACMCodecDB.
virtual bool RegisterReceiveCodec(int decoder_type, uint8_t payload_type) = 0;
// The following two methods both inserts a new packet to the receiver.
// InsertPacket takes an RTP header input in |rtp_info|, while InsertPayload
// only requires a payload type and a timestamp. The latter assumes that the
// payloads come in the right order, and without any losses. In both cases,
// |incoming_payload| contains the RTP payload after the RTP header. Return
// true if successful, false if not.
virtual bool InsertPacket(const uint8_t* incoming_payload,
size_t payload_len_bytes,
const WebRtcRTPHeader& rtp_info) = 0;
// TODO(henrik.lundin): Remove this method?
virtual bool InsertPayload(const uint8_t* incoming_payload,
size_t payload_len_byte,
uint8_t payload_type,
uint32_t timestamp) = 0;
// These two methods set a minimum and maximum jitter buffer delay in
// milliseconds. The pupose is mainly to adjust the delay to synchronize
// audio and video. The preferred jitter buffer size, computed by NetEq based
// on the current channel conditions, is clamped from below and above by these
// two methods. The given delay limits must be non-negative, less than
// 10000 ms, and the minimum must be strictly smaller than the maximum.
// Further, the maximum must be at lest one frame duration. If these
// conditions are not met, false is returned. Giving the value 0 effectively
// unsets the minimum or maximum delay limits.
// Note that calling these methods is optional. If not called, NetEq will
// determine the optimal buffer size based on the network conditions.
virtual bool SetMinimumPlayoutDelay(int time_ms) = 0;
virtual bool SetMaximumPlayoutDelay(int time_ms) = 0;
// Returns the current value of the jitter buffer's preferred latency. This
// is computed based on inter-arrival times and playout mode of NetEq. The
// actual target delay is this value clamped from below and above by the
// values specified through SetMinimumPlayoutDelay() and
// SetMaximumPlayoutDelay(), respectively, if provided.
// TODO(henrik.lundin) Rename to PreferredDelayMs?
virtual int LeastRequiredDelayMs() const = 0;
// The send timestamp of an RTP packet is associated with the decoded
// audio of the packet in question. This function returns the timestamp of
// the latest audio delivered by Get10MsAudio(). Returns false if no timestamp
// can be provided, true otherwise.
virtual bool PlayoutTimestamp(uint32_t* timestamp) = 0;
// Delivers 10 ms of audio in |audio_frame|. Returns true if successful,
// false otherwise.
virtual bool Get10MsAudio(AudioFrame* audio_frame) = 0;
// Returns the network statistics. Note that the internal statistics of NetEq
// are reset by this call. Returns true if successful, false otherwise.
virtual bool NetworkStatistics(ACMNetworkStatistics* network_statistics) = 0;
// Enables NACK and sets the maximum size of the NACK list. If NACK is already
// enabled then the maximum NACK list size is modified accordingly. Returns
// true if successful, false otherwise.
//
// If the sequence number of last received packet is N, the sequence numbers
// of NACK list are in the range of [N - |max_nack_list_size|, N).
//
// |max_nack_list_size| should be positive and less than or equal to
// |Nack::kNackListSizeLimit|.
virtual bool EnableNack(size_t max_nack_list_size) = 0;
// Disables NACK.
virtual void DisableNack() = 0;
// Temporary solution to be used during refactoring.
// If DTX is enabled and the codec does not have internal DTX/VAD
// WebRtc VAD will be automatically enabled and |enable_vad| is ignored.
//
// If DTX is disabled but VAD is enabled no DTX packets are sent,
// regardless of whether the codec has internal DTX/VAD or not. In this
// case, WebRtc VAD is running to label frames as active/in-active.
//
// NOTE! VAD/DTX is not supported when sending stereo.
//
// Return true if successful, false otherwise.
virtual bool SetVad(bool enable_dtx,
bool enable_vad,
ACMVADMode vad_mode) = 0;
// Returns a list of packets to request retransmission of.
// |round_trip_time_ms| is an estimate of the round-trip-time (in
// milliseconds). Missing packets which will be decoded sooner than the
// round-trip-time (with respect to the time this API is called) will not be
// included in the list.
// |round_trip_time_ms| must be non-negative.
virtual std::vector<uint16_t> GetNackList(int round_trip_time_ms) const = 0;
// Returns the timing statistics for calls to Get10MsAudio.
virtual void GetDecodingCallStatistics(
AudioDecodingCallStats* call_stats) const = 0;
};
} // namespace webrtc
#endif // WEBRTC_MODULES_AUDIO_CODING_MAIN_INTERFACE_AUDIO_CODING_MODULE_H_