fischman@webrtc.org 4e65e07e41 VideoCaptureAndroid: rewrote the (standalone) implementation of video capture on Android.
Besides being ~40% the size of the previous implementation, this makes it so
that VideoCaptureAndroid can stop and restart capture, which is necessary to
support onPause/onResume reasonably on Android.

BUG=1407
R=henrike@webrtc.org, wu@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/2334004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@4915 4adac7df-926f-26a2-2b94-8c16560cd09d
2013-10-03 18:23:13 +00:00

325 lines
12 KiB
Java

/*
* libjingle
* Copyright 2013, Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
package org.appspot.apprtc;
import android.content.Context;
import android.graphics.Point;
import android.graphics.Rect;
import android.opengl.GLES20;
import android.opengl.GLSurfaceView;
import android.util.Log;
import org.webrtc.VideoRenderer.I420Frame;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.util.EnumMap;
import javax.microedition.khronos.egl.EGLConfig;
import javax.microedition.khronos.opengles.GL10;
/**
* A GLSurfaceView{,.Renderer} that efficiently renders YUV frames from local &
* remote VideoTracks using the GPU for CSC. Clients will want to call the
* constructor, setSize() and updateFrame() as appropriate, but none of the
* other public methods of this class are of interest to clients (only to system
* classes).
*/
public class VideoStreamsView
extends GLSurfaceView
implements GLSurfaceView.Renderer {
/** Identify which of the two video streams is being addressed. */
public static enum Endpoint { LOCAL, REMOTE };
private final static String TAG = "VideoStreamsView";
private EnumMap<Endpoint, Rect> rects =
new EnumMap<Endpoint, Rect>(Endpoint.class);
private Point screenDimensions;
// [0] are local Y,U,V, [1] are remote Y,U,V.
private int[][] yuvTextures = { { -1, -1, -1}, {-1, -1, -1 }};
private int posLocation = -1;
private long lastFPSLogTime = System.nanoTime();
private long numFramesSinceLastLog = 0;
private FramePool framePool = new FramePool();
// Accessed on multiple threads! Must be synchronized.
private EnumMap<Endpoint, I420Frame> framesToRender =
new EnumMap<Endpoint, I420Frame>(Endpoint.class);
public VideoStreamsView(Context c, Point screenDimensions) {
super(c);
this.screenDimensions = screenDimensions;
setPreserveEGLContextOnPause(true);
setEGLContextClientVersion(2);
setRenderer(this);
setRenderMode(RENDERMODE_WHEN_DIRTY);
}
/** Queue |frame| to be uploaded. */
public void queueFrame(final Endpoint stream, I420Frame frame) {
// Paying for the copy of the YUV data here allows CSC and painting time
// to get spent on the render thread instead of the UI thread.
abortUnless(framePool.validateDimensions(frame), "Frame too large!");
final I420Frame frameCopy = framePool.takeFrame(frame).copyFrom(frame);
boolean needToScheduleRender;
synchronized (framesToRender) {
// A new render needs to be scheduled (via updateFrames()) iff there isn't
// already a render scheduled, which is true iff framesToRender is empty.
needToScheduleRender = framesToRender.isEmpty();
I420Frame frameToDrop = framesToRender.put(stream, frameCopy);
if (frameToDrop != null) {
framePool.returnFrame(frameToDrop);
}
}
if (needToScheduleRender) {
queueEvent(new Runnable() {
public void run() {
updateFrames();
}
});
}
}
// Upload the planes from |framesToRender| to the textures owned by this View.
private void updateFrames() {
I420Frame localFrame = null;
I420Frame remoteFrame = null;
synchronized (framesToRender) {
localFrame = framesToRender.remove(Endpoint.LOCAL);
remoteFrame = framesToRender.remove(Endpoint.REMOTE);
}
if (localFrame != null) {
texImage2D(localFrame, yuvTextures[0]);
framePool.returnFrame(localFrame);
}
if (remoteFrame != null) {
texImage2D(remoteFrame, yuvTextures[1]);
framePool.returnFrame(remoteFrame);
}
abortUnless(localFrame != null || remoteFrame != null,
"Nothing to render!");
requestRender();
}
/** Inform this View of the dimensions of frames coming from |stream|. */
public void setSize(Endpoint stream, int width, int height) {
// Generate 3 texture ids for Y/U/V and place them into |textures|,
// allocating enough storage for |width|x|height| pixels.
int[] textures = yuvTextures[stream == Endpoint.LOCAL ? 0 : 1];
GLES20.glGenTextures(3, textures, 0);
for (int i = 0; i < 3; ++i) {
int w = i == 0 ? width : width / 2;
int h = i == 0 ? height : height / 2;
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textures[i]);
GLES20.glTexImage2D(GLES20.GL_TEXTURE_2D, 0, GLES20.GL_LUMINANCE, w, h, 0,
GLES20.GL_LUMINANCE, GLES20.GL_UNSIGNED_BYTE, null);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_MIN_FILTER, GLES20.GL_LINEAR);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_MAG_FILTER, GLES20.GL_LINEAR);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_WRAP_S, GLES20.GL_CLAMP_TO_EDGE);
GLES20.glTexParameterf(GLES20.GL_TEXTURE_2D,
GLES20.GL_TEXTURE_WRAP_T, GLES20.GL_CLAMP_TO_EDGE);
}
checkNoGLES2Error();
}
@Override
protected void onMeasure(int unusedX, int unusedY) {
// Go big or go home!
setMeasuredDimension(screenDimensions.x, screenDimensions.y);
}
@Override
public void onSurfaceChanged(GL10 unused, int width, int height) {
GLES20.glViewport(0, 0, width, height);
checkNoGLES2Error();
}
@Override
public void onDrawFrame(GL10 unused) {
GLES20.glClear(GLES20.GL_COLOR_BUFFER_BIT);
drawRectangle(yuvTextures[1], remoteVertices);
drawRectangle(yuvTextures[0], localVertices);
++numFramesSinceLastLog;
long now = System.nanoTime();
if (lastFPSLogTime == -1 || now - lastFPSLogTime > 1e9) {
double fps = numFramesSinceLastLog / ((now - lastFPSLogTime) / 1e9);
Log.d(TAG, "Rendered FPS: " + fps);
lastFPSLogTime = now;
numFramesSinceLastLog = 1;
}
checkNoGLES2Error();
}
@Override
public void onSurfaceCreated(GL10 unused, EGLConfig config) {
int program = GLES20.glCreateProgram();
addShaderTo(GLES20.GL_VERTEX_SHADER, VERTEX_SHADER_STRING, program);
addShaderTo(GLES20.GL_FRAGMENT_SHADER, FRAGMENT_SHADER_STRING, program);
GLES20.glLinkProgram(program);
int[] result = new int[] { GLES20.GL_FALSE };
result[0] = GLES20.GL_FALSE;
GLES20.glGetProgramiv(program, GLES20.GL_LINK_STATUS, result, 0);
abortUnless(result[0] == GLES20.GL_TRUE,
GLES20.glGetProgramInfoLog(program));
GLES20.glUseProgram(program);
GLES20.glUniform1i(GLES20.glGetUniformLocation(program, "y_tex"), 0);
GLES20.glUniform1i(GLES20.glGetUniformLocation(program, "u_tex"), 1);
GLES20.glUniform1i(GLES20.glGetUniformLocation(program, "v_tex"), 2);
// Actually set in drawRectangle(), but queried only once here.
posLocation = GLES20.glGetAttribLocation(program, "in_pos");
int tcLocation = GLES20.glGetAttribLocation(program, "in_tc");
GLES20.glEnableVertexAttribArray(tcLocation);
GLES20.glVertexAttribPointer(
tcLocation, 2, GLES20.GL_FLOAT, false, 0, textureCoords);
GLES20.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
checkNoGLES2Error();
}
// Wrap a float[] in a direct FloatBuffer using native byte order.
private static FloatBuffer directNativeFloatBuffer(float[] array) {
FloatBuffer buffer = ByteBuffer.allocateDirect(array.length * 4).order(
ByteOrder.nativeOrder()).asFloatBuffer();
buffer.put(array);
buffer.flip();
return buffer;
}
// Upload the YUV planes from |frame| to |textures|.
private void texImage2D(I420Frame frame, int[] textures) {
for (int i = 0; i < 3; ++i) {
ByteBuffer plane = frame.yuvPlanes[i];
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textures[i]);
int w = i == 0 ? frame.width : frame.width / 2;
int h = i == 0 ? frame.height : frame.height / 2;
abortUnless(w == frame.yuvStrides[i], frame.yuvStrides[i] + "!=" + w);
GLES20.glTexImage2D(
GLES20.GL_TEXTURE_2D, 0, GLES20.GL_LUMINANCE, w, h, 0,
GLES20.GL_LUMINANCE, GLES20.GL_UNSIGNED_BYTE, plane);
}
checkNoGLES2Error();
}
// Draw |textures| using |vertices| (X,Y coordinates).
private void drawRectangle(int[] textures, FloatBuffer vertices) {
for (int i = 0; i < 3; ++i) {
GLES20.glActiveTexture(GLES20.GL_TEXTURE0 + i);
GLES20.glBindTexture(GLES20.GL_TEXTURE_2D, textures[i]);
}
GLES20.glVertexAttribPointer(
posLocation, 2, GLES20.GL_FLOAT, false, 0, vertices);
GLES20.glEnableVertexAttribArray(posLocation);
GLES20.glDrawArrays(GLES20.GL_TRIANGLE_STRIP, 0, 4);
checkNoGLES2Error();
}
// Compile & attach a |type| shader specified by |source| to |program|.
private static void addShaderTo(
int type, String source, int program) {
int[] result = new int[] { GLES20.GL_FALSE };
int shader = GLES20.glCreateShader(type);
GLES20.glShaderSource(shader, source);
GLES20.glCompileShader(shader);
GLES20.glGetShaderiv(shader, GLES20.GL_COMPILE_STATUS, result, 0);
abortUnless(result[0] == GLES20.GL_TRUE,
GLES20.glGetShaderInfoLog(shader) + ", source: " + source);
GLES20.glAttachShader(program, shader);
GLES20.glDeleteShader(shader);
checkNoGLES2Error();
}
// Poor-man's assert(): die with |msg| unless |condition| is true.
private static void abortUnless(boolean condition, String msg) {
if (!condition) {
throw new RuntimeException(msg);
}
}
// Assert that no OpenGL ES 2.0 error has been raised.
private static void checkNoGLES2Error() {
int error = GLES20.glGetError();
abortUnless(error == GLES20.GL_NO_ERROR, "GLES20 error: " + error);
}
// Remote image should span the full screen.
private static final FloatBuffer remoteVertices = directNativeFloatBuffer(
new float[] { -1, 1, -1, -1, 1, 1, 1, -1 });
// Local image should be thumbnailish.
private static final FloatBuffer localVertices = directNativeFloatBuffer(
new float[] { 0.6f, 0.9f, 0.6f, 0.6f, 0.9f, 0.9f, 0.9f, 0.6f });
// Texture Coordinates mapping the entire texture.
private static final FloatBuffer textureCoords = directNativeFloatBuffer(
new float[] { 0, 0, 0, 1, 1, 0, 1, 1 });
// Pass-through vertex shader.
private static final String VERTEX_SHADER_STRING =
"varying vec2 interp_tc;\n" +
"\n" +
"attribute vec4 in_pos;\n" +
"attribute vec2 in_tc;\n" +
"\n" +
"void main() {\n" +
" gl_Position = in_pos;\n" +
" interp_tc = in_tc;\n" +
"}\n";
// YUV to RGB pixel shader. Loads a pixel from each plane and pass through the
// matrix.
private static final String FRAGMENT_SHADER_STRING =
"precision mediump float;\n" +
"varying vec2 interp_tc;\n" +
"\n" +
"uniform sampler2D y_tex;\n" +
"uniform sampler2D u_tex;\n" +
"uniform sampler2D v_tex;\n" +
"\n" +
"void main() {\n" +
" float y = texture2D(y_tex, interp_tc).r;\n" +
" float u = texture2D(u_tex, interp_tc).r - .5;\n" +
" float v = texture2D(v_tex, interp_tc).r - .5;\n" +
// CSC according to http://www.fourcc.org/fccyvrgb.php
" gl_FragColor = vec4(y + 1.403 * v, " +
" y - 0.344 * u - 0.714 * v, " +
" y + 1.77 * u, 1);\n" +
"}\n";
}