f6d6ed0c66
R=mallinath@webrtc.org Review URL: https://webrtc-codereview.appspot.com/6569004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@5339 4adac7df-926f-26a2-2b94-8c16560cd09d
1698 lines
48 KiB
C++
1698 lines
48 KiB
C++
/*
|
|
* libjingle
|
|
* Copyright 2004--2005, Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#if defined(_MSC_VER) && _MSC_VER < 1300
|
|
#pragma warning(disable:4786)
|
|
#endif
|
|
|
|
#include <cassert>
|
|
|
|
#ifdef POSIX
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <sys/time.h>
|
|
#include <sys/select.h>
|
|
#include <unistd.h>
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
#ifdef WIN32
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#include <winsock2.h>
|
|
#include <ws2tcpip.h>
|
|
#undef SetPort
|
|
#endif
|
|
|
|
#include <algorithm>
|
|
#include <map>
|
|
|
|
#include "talk/base/basictypes.h"
|
|
#include "talk/base/byteorder.h"
|
|
#include "talk/base/common.h"
|
|
#include "talk/base/logging.h"
|
|
#include "talk/base/nethelpers.h"
|
|
#include "talk/base/physicalsocketserver.h"
|
|
#include "talk/base/timeutils.h"
|
|
#include "talk/base/winping.h"
|
|
#include "talk/base/win32socketinit.h"
|
|
|
|
// stm: this will tell us if we are on OSX
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#ifdef POSIX
|
|
#include <netinet/tcp.h> // for TCP_NODELAY
|
|
#define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h
|
|
typedef void* SockOptArg;
|
|
#endif // POSIX
|
|
|
|
#ifdef WIN32
|
|
typedef char* SockOptArg;
|
|
#endif
|
|
|
|
namespace talk_base {
|
|
|
|
// Standard MTUs, from RFC 1191
|
|
const uint16 PACKET_MAXIMUMS[] = {
|
|
65535, // Theoretical maximum, Hyperchannel
|
|
32000, // Nothing
|
|
17914, // 16Mb IBM Token Ring
|
|
8166, // IEEE 802.4
|
|
//4464, // IEEE 802.5 (4Mb max)
|
|
4352, // FDDI
|
|
//2048, // Wideband Network
|
|
2002, // IEEE 802.5 (4Mb recommended)
|
|
//1536, // Expermental Ethernet Networks
|
|
//1500, // Ethernet, Point-to-Point (default)
|
|
1492, // IEEE 802.3
|
|
1006, // SLIP, ARPANET
|
|
//576, // X.25 Networks
|
|
//544, // DEC IP Portal
|
|
//512, // NETBIOS
|
|
508, // IEEE 802/Source-Rt Bridge, ARCNET
|
|
296, // Point-to-Point (low delay)
|
|
68, // Official minimum
|
|
0, // End of list marker
|
|
};
|
|
|
|
static const int IP_HEADER_SIZE = 20u;
|
|
static const int IPV6_HEADER_SIZE = 40u;
|
|
static const int ICMP_HEADER_SIZE = 8u;
|
|
static const int ICMP_PING_TIMEOUT_MILLIS = 10000u;
|
|
|
|
class PhysicalSocket : public AsyncSocket, public sigslot::has_slots<> {
|
|
public:
|
|
PhysicalSocket(PhysicalSocketServer* ss, SOCKET s = INVALID_SOCKET)
|
|
: ss_(ss), s_(s), enabled_events_(0), error_(0),
|
|
state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED),
|
|
resolver_(NULL) {
|
|
#ifdef WIN32
|
|
// EnsureWinsockInit() ensures that winsock is initialized. The default
|
|
// version of this function doesn't do anything because winsock is
|
|
// initialized by constructor of a static object. If neccessary libjingle
|
|
// users can link it with a different version of this function by replacing
|
|
// win32socketinit.cc. See win32socketinit.cc for more details.
|
|
EnsureWinsockInit();
|
|
#endif
|
|
if (s_ != INVALID_SOCKET) {
|
|
enabled_events_ = DE_READ | DE_WRITE;
|
|
|
|
int type = SOCK_STREAM;
|
|
socklen_t len = sizeof(type);
|
|
VERIFY(0 == getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len));
|
|
udp_ = (SOCK_DGRAM == type);
|
|
}
|
|
}
|
|
|
|
virtual ~PhysicalSocket() {
|
|
Close();
|
|
}
|
|
|
|
// Creates the underlying OS socket (same as the "socket" function).
|
|
virtual bool Create(int family, int type) {
|
|
Close();
|
|
s_ = ::socket(family, type, 0);
|
|
udp_ = (SOCK_DGRAM == type);
|
|
UpdateLastError();
|
|
if (udp_)
|
|
enabled_events_ = DE_READ | DE_WRITE;
|
|
return s_ != INVALID_SOCKET;
|
|
}
|
|
|
|
SocketAddress GetLocalAddress() const {
|
|
sockaddr_storage addr_storage = {0};
|
|
socklen_t addrlen = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int result = ::getsockname(s_, addr, &addrlen);
|
|
SocketAddress address;
|
|
if (result >= 0) {
|
|
SocketAddressFromSockAddrStorage(addr_storage, &address);
|
|
} else {
|
|
LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket="
|
|
<< s_;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
SocketAddress GetRemoteAddress() const {
|
|
sockaddr_storage addr_storage = {0};
|
|
socklen_t addrlen = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int result = ::getpeername(s_, addr, &addrlen);
|
|
SocketAddress address;
|
|
if (result >= 0) {
|
|
SocketAddressFromSockAddrStorage(addr_storage, &address);
|
|
} else {
|
|
LOG(LS_WARNING) << "GetRemoteAddress: unable to get remote addr, socket="
|
|
<< s_;
|
|
}
|
|
return address;
|
|
}
|
|
|
|
int Bind(const SocketAddress& bind_addr) {
|
|
sockaddr_storage addr_storage;
|
|
size_t len = bind_addr.ToSockAddrStorage(&addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int err = ::bind(s_, addr, static_cast<int>(len));
|
|
UpdateLastError();
|
|
#ifdef _DEBUG
|
|
if (0 == err) {
|
|
dbg_addr_ = "Bound @ ";
|
|
dbg_addr_.append(GetLocalAddress().ToString());
|
|
}
|
|
#endif // _DEBUG
|
|
return err;
|
|
}
|
|
|
|
int Connect(const SocketAddress& addr) {
|
|
// TODO: Implicit creation is required to reconnect...
|
|
// ...but should we make it more explicit?
|
|
if (state_ != CS_CLOSED) {
|
|
SetError(EALREADY);
|
|
return SOCKET_ERROR;
|
|
}
|
|
if (addr.IsUnresolved()) {
|
|
LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect";
|
|
resolver_ = new AsyncResolver();
|
|
resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult);
|
|
resolver_->Start(addr);
|
|
state_ = CS_CONNECTING;
|
|
return 0;
|
|
}
|
|
|
|
return DoConnect(addr);
|
|
}
|
|
|
|
int DoConnect(const SocketAddress& connect_addr) {
|
|
if ((s_ == INVALID_SOCKET) &&
|
|
!Create(connect_addr.family(), SOCK_STREAM)) {
|
|
return SOCKET_ERROR;
|
|
}
|
|
sockaddr_storage addr_storage;
|
|
size_t len = connect_addr.ToSockAddrStorage(&addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int err = ::connect(s_, addr, static_cast<int>(len));
|
|
UpdateLastError();
|
|
if (err == 0) {
|
|
state_ = CS_CONNECTED;
|
|
} else if (IsBlockingError(GetError())) {
|
|
state_ = CS_CONNECTING;
|
|
enabled_events_ |= DE_CONNECT;
|
|
} else {
|
|
return SOCKET_ERROR;
|
|
}
|
|
|
|
enabled_events_ |= DE_READ | DE_WRITE;
|
|
return 0;
|
|
}
|
|
|
|
int GetError() const {
|
|
CritScope cs(&crit_);
|
|
return error_;
|
|
}
|
|
|
|
void SetError(int error) {
|
|
CritScope cs(&crit_);
|
|
error_ = error;
|
|
}
|
|
|
|
ConnState GetState() const {
|
|
return state_;
|
|
}
|
|
|
|
int GetOption(Option opt, int* value) {
|
|
int slevel;
|
|
int sopt;
|
|
if (TranslateOption(opt, &slevel, &sopt) == -1)
|
|
return -1;
|
|
socklen_t optlen = sizeof(*value);
|
|
int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen);
|
|
if (ret != -1 && opt == OPT_DONTFRAGMENT) {
|
|
#ifdef LINUX
|
|
*value = (*value != IP_PMTUDISC_DONT) ? 1 : 0;
|
|
#endif
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int SetOption(Option opt, int value) {
|
|
int slevel;
|
|
int sopt;
|
|
if (TranslateOption(opt, &slevel, &sopt) == -1)
|
|
return -1;
|
|
if (opt == OPT_DONTFRAGMENT) {
|
|
#ifdef LINUX
|
|
value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT;
|
|
#endif
|
|
}
|
|
return ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value));
|
|
}
|
|
|
|
int Send(const void *pv, size_t cb) {
|
|
int sent = ::send(s_, reinterpret_cast<const char *>(pv), (int)cb,
|
|
#ifdef LINUX
|
|
// Suppress SIGPIPE. Without this, attempting to send on a socket whose
|
|
// other end is closed will result in a SIGPIPE signal being raised to
|
|
// our process, which by default will terminate the process, which we
|
|
// don't want. By specifying this flag, we'll just get the error EPIPE
|
|
// instead and can handle the error gracefully.
|
|
MSG_NOSIGNAL
|
|
#else
|
|
0
|
|
#endif
|
|
);
|
|
UpdateLastError();
|
|
MaybeRemapSendError();
|
|
// We have seen minidumps where this may be false.
|
|
ASSERT(sent <= static_cast<int>(cb));
|
|
if ((sent < 0) && IsBlockingError(GetError())) {
|
|
enabled_events_ |= DE_WRITE;
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
int SendTo(const void* buffer, size_t length, const SocketAddress& addr) {
|
|
sockaddr_storage saddr;
|
|
size_t len = addr.ToSockAddrStorage(&saddr);
|
|
int sent = ::sendto(
|
|
s_, static_cast<const char *>(buffer), static_cast<int>(length),
|
|
#ifdef LINUX
|
|
// Suppress SIGPIPE. See above for explanation.
|
|
MSG_NOSIGNAL,
|
|
#else
|
|
0,
|
|
#endif
|
|
reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len));
|
|
UpdateLastError();
|
|
MaybeRemapSendError();
|
|
// We have seen minidumps where this may be false.
|
|
ASSERT(sent <= static_cast<int>(length));
|
|
if ((sent < 0) && IsBlockingError(GetError())) {
|
|
enabled_events_ |= DE_WRITE;
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
int Recv(void* buffer, size_t length) {
|
|
int received = ::recv(s_, static_cast<char*>(buffer),
|
|
static_cast<int>(length), 0);
|
|
if ((received == 0) && (length != 0)) {
|
|
// Note: on graceful shutdown, recv can return 0. In this case, we
|
|
// pretend it is blocking, and then signal close, so that simplifying
|
|
// assumptions can be made about Recv.
|
|
LOG(LS_WARNING) << "EOF from socket; deferring close event";
|
|
// Must turn this back on so that the select() loop will notice the close
|
|
// event.
|
|
enabled_events_ |= DE_READ;
|
|
SetError(EWOULDBLOCK);
|
|
return SOCKET_ERROR;
|
|
}
|
|
UpdateLastError();
|
|
int error = GetError();
|
|
bool success = (received >= 0) || IsBlockingError(error);
|
|
if (udp_ || success) {
|
|
enabled_events_ |= DE_READ;
|
|
}
|
|
if (!success) {
|
|
LOG_F(LS_VERBOSE) << "Error = " << error;
|
|
}
|
|
return received;
|
|
}
|
|
|
|
int RecvFrom(void* buffer, size_t length, SocketAddress *out_addr) {
|
|
sockaddr_storage addr_storage;
|
|
socklen_t addr_len = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
int received = ::recvfrom(s_, static_cast<char*>(buffer),
|
|
static_cast<int>(length), 0, addr, &addr_len);
|
|
UpdateLastError();
|
|
if ((received >= 0) && (out_addr != NULL))
|
|
SocketAddressFromSockAddrStorage(addr_storage, out_addr);
|
|
int error = GetError();
|
|
bool success = (received >= 0) || IsBlockingError(error);
|
|
if (udp_ || success) {
|
|
enabled_events_ |= DE_READ;
|
|
}
|
|
if (!success) {
|
|
LOG_F(LS_VERBOSE) << "Error = " << error;
|
|
}
|
|
return received;
|
|
}
|
|
|
|
int Listen(int backlog) {
|
|
int err = ::listen(s_, backlog);
|
|
UpdateLastError();
|
|
if (err == 0) {
|
|
state_ = CS_CONNECTING;
|
|
enabled_events_ |= DE_ACCEPT;
|
|
#ifdef _DEBUG
|
|
dbg_addr_ = "Listening @ ";
|
|
dbg_addr_.append(GetLocalAddress().ToString());
|
|
#endif // _DEBUG
|
|
}
|
|
return err;
|
|
}
|
|
|
|
AsyncSocket* Accept(SocketAddress *out_addr) {
|
|
sockaddr_storage addr_storage;
|
|
socklen_t addr_len = sizeof(addr_storage);
|
|
sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage);
|
|
SOCKET s = ::accept(s_, addr, &addr_len);
|
|
UpdateLastError();
|
|
if (s == INVALID_SOCKET)
|
|
return NULL;
|
|
enabled_events_ |= DE_ACCEPT;
|
|
if (out_addr != NULL)
|
|
SocketAddressFromSockAddrStorage(addr_storage, out_addr);
|
|
return ss_->WrapSocket(s);
|
|
}
|
|
|
|
int Close() {
|
|
if (s_ == INVALID_SOCKET)
|
|
return 0;
|
|
int err = ::closesocket(s_);
|
|
UpdateLastError();
|
|
s_ = INVALID_SOCKET;
|
|
state_ = CS_CLOSED;
|
|
enabled_events_ = 0;
|
|
if (resolver_) {
|
|
resolver_->Destroy(false);
|
|
resolver_ = NULL;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
int EstimateMTU(uint16* mtu) {
|
|
SocketAddress addr = GetRemoteAddress();
|
|
if (addr.IsAny()) {
|
|
SetError(ENOTCONN);
|
|
return -1;
|
|
}
|
|
|
|
#if defined(WIN32)
|
|
// Gets the interface MTU (TTL=1) for the interface used to reach |addr|.
|
|
WinPing ping;
|
|
if (!ping.IsValid()) {
|
|
SetError(EINVAL); // can't think of a better error ID
|
|
return -1;
|
|
}
|
|
int header_size = ICMP_HEADER_SIZE;
|
|
if (addr.family() == AF_INET6) {
|
|
header_size += IPV6_HEADER_SIZE;
|
|
} else if (addr.family() == AF_INET) {
|
|
header_size += IP_HEADER_SIZE;
|
|
}
|
|
|
|
for (int level = 0; PACKET_MAXIMUMS[level + 1] > 0; ++level) {
|
|
int32 size = PACKET_MAXIMUMS[level] - header_size;
|
|
WinPing::PingResult result = ping.Ping(addr.ipaddr(), size,
|
|
ICMP_PING_TIMEOUT_MILLIS,
|
|
1, false);
|
|
if (result == WinPing::PING_FAIL) {
|
|
SetError(EINVAL); // can't think of a better error ID
|
|
return -1;
|
|
} else if (result != WinPing::PING_TOO_LARGE) {
|
|
*mtu = PACKET_MAXIMUMS[level];
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
ASSERT(false);
|
|
return -1;
|
|
#elif defined(IOS) || defined(OSX)
|
|
// No simple way to do this on Mac OS X.
|
|
// SIOCGIFMTU would work if we knew which interface would be used, but
|
|
// figuring that out is pretty complicated. For now we'll return an error
|
|
// and let the caller pick a default MTU.
|
|
SetError(EINVAL);
|
|
return -1;
|
|
#elif defined(LINUX) || defined(ANDROID)
|
|
// Gets the path MTU.
|
|
int value;
|
|
socklen_t vlen = sizeof(value);
|
|
int err = getsockopt(s_, IPPROTO_IP, IP_MTU, &value, &vlen);
|
|
if (err < 0) {
|
|
UpdateLastError();
|
|
return err;
|
|
}
|
|
|
|
ASSERT((0 <= value) && (value <= 65536));
|
|
*mtu = value;
|
|
return 0;
|
|
#elif defined(__native_client__)
|
|
// Most socket operations, including this, will fail in NaCl's sandbox.
|
|
error_ = EACCES;
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
SocketServer* socketserver() { return ss_; }
|
|
|
|
protected:
|
|
void OnResolveResult(AsyncResolverInterface* resolver) {
|
|
if (resolver != resolver_) {
|
|
return;
|
|
}
|
|
|
|
int error = resolver_->GetError();
|
|
if (error == 0) {
|
|
error = DoConnect(resolver_->address());
|
|
} else {
|
|
Close();
|
|
}
|
|
|
|
if (error) {
|
|
SetError(error);
|
|
SignalCloseEvent(this, error);
|
|
}
|
|
}
|
|
|
|
void UpdateLastError() {
|
|
SetError(LAST_SYSTEM_ERROR);
|
|
}
|
|
|
|
void MaybeRemapSendError() {
|
|
#if defined(OSX)
|
|
// https://developer.apple.com/library/mac/documentation/Darwin/
|
|
// Reference/ManPages/man2/sendto.2.html
|
|
// ENOBUFS - The output queue for a network interface is full.
|
|
// This generally indicates that the interface has stopped sending,
|
|
// but may be caused by transient congestion.
|
|
if (GetError() == ENOBUFS) {
|
|
SetError(EWOULDBLOCK);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int TranslateOption(Option opt, int* slevel, int* sopt) {
|
|
switch (opt) {
|
|
case OPT_DONTFRAGMENT:
|
|
#ifdef WIN32
|
|
*slevel = IPPROTO_IP;
|
|
*sopt = IP_DONTFRAGMENT;
|
|
break;
|
|
#elif defined(IOS) || defined(OSX) || defined(BSD) || defined(__native_client__)
|
|
LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported.";
|
|
return -1;
|
|
#elif defined(POSIX)
|
|
*slevel = IPPROTO_IP;
|
|
*sopt = IP_MTU_DISCOVER;
|
|
break;
|
|
#endif
|
|
case OPT_RCVBUF:
|
|
*slevel = SOL_SOCKET;
|
|
*sopt = SO_RCVBUF;
|
|
break;
|
|
case OPT_SNDBUF:
|
|
*slevel = SOL_SOCKET;
|
|
*sopt = SO_SNDBUF;
|
|
break;
|
|
case OPT_NODELAY:
|
|
*slevel = IPPROTO_TCP;
|
|
*sopt = TCP_NODELAY;
|
|
break;
|
|
case OPT_DSCP:
|
|
LOG(LS_WARNING) << "Socket::OPT_DSCP not supported.";
|
|
return -1;
|
|
default:
|
|
ASSERT(false);
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
PhysicalSocketServer* ss_;
|
|
SOCKET s_;
|
|
uint8 enabled_events_;
|
|
bool udp_;
|
|
int error_;
|
|
// Protects |error_| that is accessed from different threads.
|
|
mutable CriticalSection crit_;
|
|
ConnState state_;
|
|
AsyncResolver* resolver_;
|
|
|
|
#ifdef _DEBUG
|
|
std::string dbg_addr_;
|
|
#endif // _DEBUG;
|
|
};
|
|
|
|
#ifdef POSIX
|
|
class EventDispatcher : public Dispatcher {
|
|
public:
|
|
EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) {
|
|
if (pipe(afd_) < 0)
|
|
LOG(LERROR) << "pipe failed";
|
|
ss_->Add(this);
|
|
}
|
|
|
|
virtual ~EventDispatcher() {
|
|
ss_->Remove(this);
|
|
close(afd_[0]);
|
|
close(afd_[1]);
|
|
}
|
|
|
|
virtual void Signal() {
|
|
CritScope cs(&crit_);
|
|
if (!fSignaled_) {
|
|
const uint8 b[1] = { 0 };
|
|
if (VERIFY(1 == write(afd_[1], b, sizeof(b)))) {
|
|
fSignaled_ = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual uint32 GetRequestedEvents() {
|
|
return DE_READ;
|
|
}
|
|
|
|
virtual void OnPreEvent(uint32 ff) {
|
|
// It is not possible to perfectly emulate an auto-resetting event with
|
|
// pipes. This simulates it by resetting before the event is handled.
|
|
|
|
CritScope cs(&crit_);
|
|
if (fSignaled_) {
|
|
uint8 b[4]; // Allow for reading more than 1 byte, but expect 1.
|
|
VERIFY(1 == read(afd_[0], b, sizeof(b)));
|
|
fSignaled_ = false;
|
|
}
|
|
}
|
|
|
|
virtual void OnEvent(uint32 ff, int err) {
|
|
ASSERT(false);
|
|
}
|
|
|
|
virtual int GetDescriptor() {
|
|
return afd_[0];
|
|
}
|
|
|
|
virtual bool IsDescriptorClosed() {
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
PhysicalSocketServer *ss_;
|
|
int afd_[2];
|
|
bool fSignaled_;
|
|
CriticalSection crit_;
|
|
};
|
|
|
|
// These two classes use the self-pipe trick to deliver POSIX signals to our
|
|
// select loop. This is the only safe, reliable, cross-platform way to do
|
|
// non-trivial things with a POSIX signal in an event-driven program (until
|
|
// proper pselect() implementations become ubiquitous).
|
|
|
|
class PosixSignalHandler {
|
|
public:
|
|
// POSIX only specifies 32 signals, but in principle the system might have
|
|
// more and the programmer might choose to use them, so we size our array
|
|
// for 128.
|
|
static const int kNumPosixSignals = 128;
|
|
|
|
// There is just a single global instance. (Signal handlers do not get any
|
|
// sort of user-defined void * parameter, so they can't access anything that
|
|
// isn't global.)
|
|
static PosixSignalHandler* Instance() {
|
|
LIBJINGLE_DEFINE_STATIC_LOCAL(PosixSignalHandler, instance, ());
|
|
return &instance;
|
|
}
|
|
|
|
// Returns true if the given signal number is set.
|
|
bool IsSignalSet(int signum) const {
|
|
ASSERT(signum < ARRAY_SIZE(received_signal_));
|
|
if (signum < ARRAY_SIZE(received_signal_)) {
|
|
return received_signal_[signum];
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Clears the given signal number.
|
|
void ClearSignal(int signum) {
|
|
ASSERT(signum < ARRAY_SIZE(received_signal_));
|
|
if (signum < ARRAY_SIZE(received_signal_)) {
|
|
received_signal_[signum] = false;
|
|
}
|
|
}
|
|
|
|
// Returns the file descriptor to monitor for signal events.
|
|
int GetDescriptor() const {
|
|
return afd_[0];
|
|
}
|
|
|
|
// This is called directly from our real signal handler, so it must be
|
|
// signal-handler-safe. That means it cannot assume anything about the
|
|
// user-level state of the process, since the handler could be executed at any
|
|
// time on any thread.
|
|
void OnPosixSignalReceived(int signum) {
|
|
if (signum >= ARRAY_SIZE(received_signal_)) {
|
|
// We don't have space in our array for this.
|
|
return;
|
|
}
|
|
// Set a flag saying we've seen this signal.
|
|
received_signal_[signum] = true;
|
|
// Notify application code that we got a signal.
|
|
const uint8 b[1] = { 0 };
|
|
if (-1 == write(afd_[1], b, sizeof(b))) {
|
|
// Nothing we can do here. If there's an error somehow then there's
|
|
// nothing we can safely do from a signal handler.
|
|
// No, we can't even safely log it.
|
|
// But, we still have to check the return value here. Otherwise,
|
|
// GCC 4.4.1 complains ignoring return value. Even (void) doesn't help.
|
|
return;
|
|
}
|
|
}
|
|
|
|
private:
|
|
PosixSignalHandler() {
|
|
if (pipe(afd_) < 0) {
|
|
LOG_ERR(LS_ERROR) << "pipe failed";
|
|
return;
|
|
}
|
|
if (fcntl(afd_[0], F_SETFL, O_NONBLOCK) < 0) {
|
|
LOG_ERR(LS_WARNING) << "fcntl #1 failed";
|
|
}
|
|
if (fcntl(afd_[1], F_SETFL, O_NONBLOCK) < 0) {
|
|
LOG_ERR(LS_WARNING) << "fcntl #2 failed";
|
|
}
|
|
memset(const_cast<void *>(static_cast<volatile void *>(received_signal_)),
|
|
0,
|
|
sizeof(received_signal_));
|
|
}
|
|
|
|
~PosixSignalHandler() {
|
|
int fd1 = afd_[0];
|
|
int fd2 = afd_[1];
|
|
// We clobber the stored file descriptor numbers here or else in principle
|
|
// a signal that happens to be delivered during application termination
|
|
// could erroneously write a zero byte to an unrelated file handle in
|
|
// OnPosixSignalReceived() if some other file happens to be opened later
|
|
// during shutdown and happens to be given the same file descriptor number
|
|
// as our pipe had. Unfortunately even with this precaution there is still a
|
|
// race where that could occur if said signal happens to be handled
|
|
// concurrently with this code and happens to have already read the value of
|
|
// afd_[1] from memory before we clobber it, but that's unlikely.
|
|
afd_[0] = -1;
|
|
afd_[1] = -1;
|
|
close(fd1);
|
|
close(fd2);
|
|
}
|
|
|
|
int afd_[2];
|
|
// These are boolean flags that will be set in our signal handler and read
|
|
// and cleared from Wait(). There is a race involved in this, but it is
|
|
// benign. The signal handler sets the flag before signaling the pipe, so
|
|
// we'll never end up blocking in select() while a flag is still true.
|
|
// However, if two of the same signal arrive close to each other then it's
|
|
// possible that the second time the handler may set the flag while it's still
|
|
// true, meaning that signal will be missed. But the first occurrence of it
|
|
// will still be handled, so this isn't a problem.
|
|
// Volatile is not necessary here for correctness, but this data _is_ volatile
|
|
// so I've marked it as such.
|
|
volatile uint8 received_signal_[kNumPosixSignals];
|
|
};
|
|
|
|
class PosixSignalDispatcher : public Dispatcher {
|
|
public:
|
|
PosixSignalDispatcher(PhysicalSocketServer *owner) : owner_(owner) {
|
|
owner_->Add(this);
|
|
}
|
|
|
|
virtual ~PosixSignalDispatcher() {
|
|
owner_->Remove(this);
|
|
}
|
|
|
|
virtual uint32 GetRequestedEvents() {
|
|
return DE_READ;
|
|
}
|
|
|
|
virtual void OnPreEvent(uint32 ff) {
|
|
// Events might get grouped if signals come very fast, so we read out up to
|
|
// 16 bytes to make sure we keep the pipe empty.
|
|
uint8 b[16];
|
|
ssize_t ret = read(GetDescriptor(), b, sizeof(b));
|
|
if (ret < 0) {
|
|
LOG_ERR(LS_WARNING) << "Error in read()";
|
|
} else if (ret == 0) {
|
|
LOG(LS_WARNING) << "Should have read at least one byte";
|
|
}
|
|
}
|
|
|
|
virtual void OnEvent(uint32 ff, int err) {
|
|
for (int signum = 0; signum < PosixSignalHandler::kNumPosixSignals;
|
|
++signum) {
|
|
if (PosixSignalHandler::Instance()->IsSignalSet(signum)) {
|
|
PosixSignalHandler::Instance()->ClearSignal(signum);
|
|
HandlerMap::iterator i = handlers_.find(signum);
|
|
if (i == handlers_.end()) {
|
|
// This can happen if a signal is delivered to our process at around
|
|
// the same time as we unset our handler for it. It is not an error
|
|
// condition, but it's unusual enough to be worth logging.
|
|
LOG(LS_INFO) << "Received signal with no handler: " << signum;
|
|
} else {
|
|
// Otherwise, execute our handler.
|
|
(*i->second)(signum);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual int GetDescriptor() {
|
|
return PosixSignalHandler::Instance()->GetDescriptor();
|
|
}
|
|
|
|
virtual bool IsDescriptorClosed() {
|
|
return false;
|
|
}
|
|
|
|
void SetHandler(int signum, void (*handler)(int)) {
|
|
handlers_[signum] = handler;
|
|
}
|
|
|
|
void ClearHandler(int signum) {
|
|
handlers_.erase(signum);
|
|
}
|
|
|
|
bool HasHandlers() {
|
|
return !handlers_.empty();
|
|
}
|
|
|
|
private:
|
|
typedef std::map<int, void (*)(int)> HandlerMap;
|
|
|
|
HandlerMap handlers_;
|
|
// Our owner.
|
|
PhysicalSocketServer *owner_;
|
|
};
|
|
|
|
class SocketDispatcher : public Dispatcher, public PhysicalSocket {
|
|
public:
|
|
explicit SocketDispatcher(PhysicalSocketServer *ss) : PhysicalSocket(ss) {
|
|
}
|
|
SocketDispatcher(SOCKET s, PhysicalSocketServer *ss) : PhysicalSocket(ss, s) {
|
|
}
|
|
|
|
virtual ~SocketDispatcher() {
|
|
Close();
|
|
}
|
|
|
|
bool Initialize() {
|
|
ss_->Add(this);
|
|
fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK);
|
|
return true;
|
|
}
|
|
|
|
virtual bool Create(int type) {
|
|
return Create(AF_INET, type);
|
|
}
|
|
|
|
virtual bool Create(int family, int type) {
|
|
// Change the socket to be non-blocking.
|
|
if (!PhysicalSocket::Create(family, type))
|
|
return false;
|
|
|
|
return Initialize();
|
|
}
|
|
|
|
virtual int GetDescriptor() {
|
|
return s_;
|
|
}
|
|
|
|
virtual bool IsDescriptorClosed() {
|
|
// We don't have a reliable way of distinguishing end-of-stream
|
|
// from readability. So test on each readable call. Is this
|
|
// inefficient? Probably.
|
|
char ch;
|
|
ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK);
|
|
if (res > 0) {
|
|
// Data available, so not closed.
|
|
return false;
|
|
} else if (res == 0) {
|
|
// EOF, so closed.
|
|
return true;
|
|
} else { // error
|
|
switch (errno) {
|
|
// Returned if we've already closed s_.
|
|
case EBADF:
|
|
// Returned during ungraceful peer shutdown.
|
|
case ECONNRESET:
|
|
return true;
|
|
default:
|
|
// Assume that all other errors are just blocking errors, meaning the
|
|
// connection is still good but we just can't read from it right now.
|
|
// This should only happen when connecting (and at most once), because
|
|
// in all other cases this function is only called if the file
|
|
// descriptor is already known to be in the readable state. However,
|
|
// it's not necessary a problem if we spuriously interpret a
|
|
// "connection lost"-type error as a blocking error, because typically
|
|
// the next recv() will get EOF, so we'll still eventually notice that
|
|
// the socket is closed.
|
|
LOG_ERR(LS_WARNING) << "Assuming benign blocking error";
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual uint32 GetRequestedEvents() {
|
|
return enabled_events_;
|
|
}
|
|
|
|
virtual void OnPreEvent(uint32 ff) {
|
|
if ((ff & DE_CONNECT) != 0)
|
|
state_ = CS_CONNECTED;
|
|
if ((ff & DE_CLOSE) != 0)
|
|
state_ = CS_CLOSED;
|
|
}
|
|
|
|
virtual void OnEvent(uint32 ff, int err) {
|
|
// Make sure we deliver connect/accept first. Otherwise, consumers may see
|
|
// something like a READ followed by a CONNECT, which would be odd.
|
|
if ((ff & DE_CONNECT) != 0) {
|
|
enabled_events_ &= ~DE_CONNECT;
|
|
SignalConnectEvent(this);
|
|
}
|
|
if ((ff & DE_ACCEPT) != 0) {
|
|
enabled_events_ &= ~DE_ACCEPT;
|
|
SignalReadEvent(this);
|
|
}
|
|
if ((ff & DE_READ) != 0) {
|
|
enabled_events_ &= ~DE_READ;
|
|
SignalReadEvent(this);
|
|
}
|
|
if ((ff & DE_WRITE) != 0) {
|
|
enabled_events_ &= ~DE_WRITE;
|
|
SignalWriteEvent(this);
|
|
}
|
|
if ((ff & DE_CLOSE) != 0) {
|
|
// The socket is now dead to us, so stop checking it.
|
|
enabled_events_ = 0;
|
|
SignalCloseEvent(this, err);
|
|
}
|
|
}
|
|
|
|
virtual int Close() {
|
|
if (s_ == INVALID_SOCKET)
|
|
return 0;
|
|
|
|
ss_->Remove(this);
|
|
return PhysicalSocket::Close();
|
|
}
|
|
};
|
|
|
|
class FileDispatcher: public Dispatcher, public AsyncFile {
|
|
public:
|
|
FileDispatcher(int fd, PhysicalSocketServer *ss) : ss_(ss), fd_(fd) {
|
|
set_readable(true);
|
|
|
|
ss_->Add(this);
|
|
|
|
fcntl(fd_, F_SETFL, fcntl(fd_, F_GETFL, 0) | O_NONBLOCK);
|
|
}
|
|
|
|
virtual ~FileDispatcher() {
|
|
ss_->Remove(this);
|
|
}
|
|
|
|
SocketServer* socketserver() { return ss_; }
|
|
|
|
virtual int GetDescriptor() {
|
|
return fd_;
|
|
}
|
|
|
|
virtual bool IsDescriptorClosed() {
|
|
return false;
|
|
}
|
|
|
|
virtual uint32 GetRequestedEvents() {
|
|
return flags_;
|
|
}
|
|
|
|
virtual void OnPreEvent(uint32 ff) {
|
|
}
|
|
|
|
virtual void OnEvent(uint32 ff, int err) {
|
|
if ((ff & DE_READ) != 0)
|
|
SignalReadEvent(this);
|
|
if ((ff & DE_WRITE) != 0)
|
|
SignalWriteEvent(this);
|
|
if ((ff & DE_CLOSE) != 0)
|
|
SignalCloseEvent(this, err);
|
|
}
|
|
|
|
virtual bool readable() {
|
|
return (flags_ & DE_READ) != 0;
|
|
}
|
|
|
|
virtual void set_readable(bool value) {
|
|
flags_ = value ? (flags_ | DE_READ) : (flags_ & ~DE_READ);
|
|
}
|
|
|
|
virtual bool writable() {
|
|
return (flags_ & DE_WRITE) != 0;
|
|
}
|
|
|
|
virtual void set_writable(bool value) {
|
|
flags_ = value ? (flags_ | DE_WRITE) : (flags_ & ~DE_WRITE);
|
|
}
|
|
|
|
private:
|
|
PhysicalSocketServer* ss_;
|
|
int fd_;
|
|
int flags_;
|
|
};
|
|
|
|
AsyncFile* PhysicalSocketServer::CreateFile(int fd) {
|
|
return new FileDispatcher(fd, this);
|
|
}
|
|
|
|
#endif // POSIX
|
|
|
|
#ifdef WIN32
|
|
static uint32 FlagsToEvents(uint32 events) {
|
|
uint32 ffFD = FD_CLOSE;
|
|
if (events & DE_READ)
|
|
ffFD |= FD_READ;
|
|
if (events & DE_WRITE)
|
|
ffFD |= FD_WRITE;
|
|
if (events & DE_CONNECT)
|
|
ffFD |= FD_CONNECT;
|
|
if (events & DE_ACCEPT)
|
|
ffFD |= FD_ACCEPT;
|
|
return ffFD;
|
|
}
|
|
|
|
class EventDispatcher : public Dispatcher {
|
|
public:
|
|
EventDispatcher(PhysicalSocketServer *ss) : ss_(ss) {
|
|
hev_ = WSACreateEvent();
|
|
if (hev_) {
|
|
ss_->Add(this);
|
|
}
|
|
}
|
|
|
|
~EventDispatcher() {
|
|
if (hev_ != NULL) {
|
|
ss_->Remove(this);
|
|
WSACloseEvent(hev_);
|
|
hev_ = NULL;
|
|
}
|
|
}
|
|
|
|
virtual void Signal() {
|
|
if (hev_ != NULL)
|
|
WSASetEvent(hev_);
|
|
}
|
|
|
|
virtual uint32 GetRequestedEvents() {
|
|
return 0;
|
|
}
|
|
|
|
virtual void OnPreEvent(uint32 ff) {
|
|
WSAResetEvent(hev_);
|
|
}
|
|
|
|
virtual void OnEvent(uint32 ff, int err) {
|
|
}
|
|
|
|
virtual WSAEVENT GetWSAEvent() {
|
|
return hev_;
|
|
}
|
|
|
|
virtual SOCKET GetSocket() {
|
|
return INVALID_SOCKET;
|
|
}
|
|
|
|
virtual bool CheckSignalClose() { return false; }
|
|
|
|
private:
|
|
PhysicalSocketServer* ss_;
|
|
WSAEVENT hev_;
|
|
};
|
|
|
|
class SocketDispatcher : public Dispatcher, public PhysicalSocket {
|
|
public:
|
|
static int next_id_;
|
|
int id_;
|
|
bool signal_close_;
|
|
int signal_err_;
|
|
|
|
SocketDispatcher(PhysicalSocketServer* ss)
|
|
: PhysicalSocket(ss),
|
|
id_(0),
|
|
signal_close_(false) {
|
|
}
|
|
|
|
SocketDispatcher(SOCKET s, PhysicalSocketServer* ss)
|
|
: PhysicalSocket(ss, s),
|
|
id_(0),
|
|
signal_close_(false) {
|
|
}
|
|
|
|
virtual ~SocketDispatcher() {
|
|
Close();
|
|
}
|
|
|
|
bool Initialize() {
|
|
ASSERT(s_ != INVALID_SOCKET);
|
|
// Must be a non-blocking
|
|
u_long argp = 1;
|
|
ioctlsocket(s_, FIONBIO, &argp);
|
|
ss_->Add(this);
|
|
return true;
|
|
}
|
|
|
|
virtual bool Create(int type) {
|
|
return Create(AF_INET, type);
|
|
}
|
|
|
|
virtual bool Create(int family, int type) {
|
|
// Create socket
|
|
if (!PhysicalSocket::Create(family, type))
|
|
return false;
|
|
|
|
if (!Initialize())
|
|
return false;
|
|
|
|
do { id_ = ++next_id_; } while (id_ == 0);
|
|
return true;
|
|
}
|
|
|
|
virtual int Close() {
|
|
if (s_ == INVALID_SOCKET)
|
|
return 0;
|
|
|
|
id_ = 0;
|
|
signal_close_ = false;
|
|
ss_->Remove(this);
|
|
return PhysicalSocket::Close();
|
|
}
|
|
|
|
virtual uint32 GetRequestedEvents() {
|
|
return enabled_events_;
|
|
}
|
|
|
|
virtual void OnPreEvent(uint32 ff) {
|
|
if ((ff & DE_CONNECT) != 0)
|
|
state_ = CS_CONNECTED;
|
|
// We set CS_CLOSED from CheckSignalClose.
|
|
}
|
|
|
|
virtual void OnEvent(uint32 ff, int err) {
|
|
int cache_id = id_;
|
|
// Make sure we deliver connect/accept first. Otherwise, consumers may see
|
|
// something like a READ followed by a CONNECT, which would be odd.
|
|
if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) {
|
|
if (ff != DE_CONNECT)
|
|
LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff;
|
|
enabled_events_ &= ~DE_CONNECT;
|
|
#ifdef _DEBUG
|
|
dbg_addr_ = "Connected @ ";
|
|
dbg_addr_.append(GetRemoteAddress().ToString());
|
|
#endif // _DEBUG
|
|
SignalConnectEvent(this);
|
|
}
|
|
if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) {
|
|
enabled_events_ &= ~DE_ACCEPT;
|
|
SignalReadEvent(this);
|
|
}
|
|
if ((ff & DE_READ) != 0) {
|
|
enabled_events_ &= ~DE_READ;
|
|
SignalReadEvent(this);
|
|
}
|
|
if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) {
|
|
enabled_events_ &= ~DE_WRITE;
|
|
SignalWriteEvent(this);
|
|
}
|
|
if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) {
|
|
signal_close_ = true;
|
|
signal_err_ = err;
|
|
}
|
|
}
|
|
|
|
virtual WSAEVENT GetWSAEvent() {
|
|
return WSA_INVALID_EVENT;
|
|
}
|
|
|
|
virtual SOCKET GetSocket() {
|
|
return s_;
|
|
}
|
|
|
|
virtual bool CheckSignalClose() {
|
|
if (!signal_close_)
|
|
return false;
|
|
|
|
char ch;
|
|
if (recv(s_, &ch, 1, MSG_PEEK) > 0)
|
|
return false;
|
|
|
|
state_ = CS_CLOSED;
|
|
signal_close_ = false;
|
|
SignalCloseEvent(this, signal_err_);
|
|
return true;
|
|
}
|
|
};
|
|
|
|
int SocketDispatcher::next_id_ = 0;
|
|
|
|
#endif // WIN32
|
|
|
|
// Sets the value of a boolean value to false when signaled.
|
|
class Signaler : public EventDispatcher {
|
|
public:
|
|
Signaler(PhysicalSocketServer* ss, bool* pf)
|
|
: EventDispatcher(ss), pf_(pf) {
|
|
}
|
|
virtual ~Signaler() { }
|
|
|
|
void OnEvent(uint32 ff, int err) {
|
|
if (pf_)
|
|
*pf_ = false;
|
|
}
|
|
|
|
private:
|
|
bool *pf_;
|
|
};
|
|
|
|
PhysicalSocketServer::PhysicalSocketServer()
|
|
: fWait_(false),
|
|
last_tick_tracked_(0),
|
|
last_tick_dispatch_count_(0) {
|
|
signal_wakeup_ = new Signaler(this, &fWait_);
|
|
#ifdef WIN32
|
|
socket_ev_ = WSACreateEvent();
|
|
#endif
|
|
}
|
|
|
|
PhysicalSocketServer::~PhysicalSocketServer() {
|
|
#ifdef WIN32
|
|
WSACloseEvent(socket_ev_);
|
|
#endif
|
|
#ifdef POSIX
|
|
signal_dispatcher_.reset();
|
|
#endif
|
|
delete signal_wakeup_;
|
|
ASSERT(dispatchers_.empty());
|
|
}
|
|
|
|
void PhysicalSocketServer::WakeUp() {
|
|
signal_wakeup_->Signal();
|
|
}
|
|
|
|
Socket* PhysicalSocketServer::CreateSocket(int type) {
|
|
return CreateSocket(AF_INET, type);
|
|
}
|
|
|
|
Socket* PhysicalSocketServer::CreateSocket(int family, int type) {
|
|
PhysicalSocket* socket = new PhysicalSocket(this);
|
|
if (socket->Create(family, type)) {
|
|
return socket;
|
|
} else {
|
|
delete socket;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int type) {
|
|
return CreateAsyncSocket(AF_INET, type);
|
|
}
|
|
|
|
AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) {
|
|
SocketDispatcher* dispatcher = new SocketDispatcher(this);
|
|
if (dispatcher->Create(family, type)) {
|
|
return dispatcher;
|
|
} else {
|
|
delete dispatcher;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) {
|
|
SocketDispatcher* dispatcher = new SocketDispatcher(s, this);
|
|
if (dispatcher->Initialize()) {
|
|
return dispatcher;
|
|
} else {
|
|
delete dispatcher;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void PhysicalSocketServer::Add(Dispatcher *pdispatcher) {
|
|
CritScope cs(&crit_);
|
|
// Prevent duplicates. This can cause dead dispatchers to stick around.
|
|
DispatcherList::iterator pos = std::find(dispatchers_.begin(),
|
|
dispatchers_.end(),
|
|
pdispatcher);
|
|
if (pos != dispatchers_.end())
|
|
return;
|
|
dispatchers_.push_back(pdispatcher);
|
|
}
|
|
|
|
void PhysicalSocketServer::Remove(Dispatcher *pdispatcher) {
|
|
CritScope cs(&crit_);
|
|
DispatcherList::iterator pos = std::find(dispatchers_.begin(),
|
|
dispatchers_.end(),
|
|
pdispatcher);
|
|
// We silently ignore duplicate calls to Add, so we should silently ignore
|
|
// the (expected) symmetric calls to Remove. Note that this may still hide
|
|
// a real issue, so we at least log a warning about it.
|
|
if (pos == dispatchers_.end()) {
|
|
LOG(LS_WARNING) << "PhysicalSocketServer asked to remove a unknown "
|
|
<< "dispatcher, potentially from a duplicate call to Add.";
|
|
return;
|
|
}
|
|
size_t index = pos - dispatchers_.begin();
|
|
dispatchers_.erase(pos);
|
|
for (IteratorList::iterator it = iterators_.begin(); it != iterators_.end();
|
|
++it) {
|
|
if (index < **it) {
|
|
--**it;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef POSIX
|
|
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
|
|
// Calculate timing information
|
|
|
|
struct timeval *ptvWait = NULL;
|
|
struct timeval tvWait;
|
|
struct timeval tvStop;
|
|
if (cmsWait != kForever) {
|
|
// Calculate wait timeval
|
|
tvWait.tv_sec = cmsWait / 1000;
|
|
tvWait.tv_usec = (cmsWait % 1000) * 1000;
|
|
ptvWait = &tvWait;
|
|
|
|
// Calculate when to return in a timeval
|
|
gettimeofday(&tvStop, NULL);
|
|
tvStop.tv_sec += tvWait.tv_sec;
|
|
tvStop.tv_usec += tvWait.tv_usec;
|
|
if (tvStop.tv_usec >= 1000000) {
|
|
tvStop.tv_usec -= 1000000;
|
|
tvStop.tv_sec += 1;
|
|
}
|
|
}
|
|
|
|
// Zero all fd_sets. Don't need to do this inside the loop since
|
|
// select() zeros the descriptors not signaled
|
|
|
|
fd_set fdsRead;
|
|
FD_ZERO(&fdsRead);
|
|
fd_set fdsWrite;
|
|
FD_ZERO(&fdsWrite);
|
|
|
|
fWait_ = true;
|
|
|
|
while (fWait_) {
|
|
int fdmax = -1;
|
|
{
|
|
CritScope cr(&crit_);
|
|
for (size_t i = 0; i < dispatchers_.size(); ++i) {
|
|
// Query dispatchers for read and write wait state
|
|
Dispatcher *pdispatcher = dispatchers_[i];
|
|
ASSERT(pdispatcher);
|
|
if (!process_io && (pdispatcher != signal_wakeup_))
|
|
continue;
|
|
int fd = pdispatcher->GetDescriptor();
|
|
if (fd > fdmax)
|
|
fdmax = fd;
|
|
|
|
uint32 ff = pdispatcher->GetRequestedEvents();
|
|
if (ff & (DE_READ | DE_ACCEPT))
|
|
FD_SET(fd, &fdsRead);
|
|
if (ff & (DE_WRITE | DE_CONNECT))
|
|
FD_SET(fd, &fdsWrite);
|
|
}
|
|
}
|
|
|
|
// Wait then call handlers as appropriate
|
|
// < 0 means error
|
|
// 0 means timeout
|
|
// > 0 means count of descriptors ready
|
|
int n = select(fdmax + 1, &fdsRead, &fdsWrite, NULL, ptvWait);
|
|
|
|
// If error, return error.
|
|
if (n < 0) {
|
|
if (errno != EINTR) {
|
|
LOG_E(LS_ERROR, EN, errno) << "select";
|
|
return false;
|
|
}
|
|
// Else ignore the error and keep going. If this EINTR was for one of the
|
|
// signals managed by this PhysicalSocketServer, the
|
|
// PosixSignalDeliveryDispatcher will be in the signaled state in the next
|
|
// iteration.
|
|
} else if (n == 0) {
|
|
// If timeout, return success
|
|
return true;
|
|
} else {
|
|
// We have signaled descriptors
|
|
CritScope cr(&crit_);
|
|
for (size_t i = 0; i < dispatchers_.size(); ++i) {
|
|
Dispatcher *pdispatcher = dispatchers_[i];
|
|
int fd = pdispatcher->GetDescriptor();
|
|
uint32 ff = 0;
|
|
int errcode = 0;
|
|
|
|
// Reap any error code, which can be signaled through reads or writes.
|
|
// TODO: Should we set errcode if getsockopt fails?
|
|
if (FD_ISSET(fd, &fdsRead) || FD_ISSET(fd, &fdsWrite)) {
|
|
socklen_t len = sizeof(errcode);
|
|
::getsockopt(fd, SOL_SOCKET, SO_ERROR, &errcode, &len);
|
|
}
|
|
|
|
// Check readable descriptors. If we're waiting on an accept, signal
|
|
// that. Otherwise we're waiting for data, check to see if we're
|
|
// readable or really closed.
|
|
// TODO: Only peek at TCP descriptors.
|
|
if (FD_ISSET(fd, &fdsRead)) {
|
|
FD_CLR(fd, &fdsRead);
|
|
if (pdispatcher->GetRequestedEvents() & DE_ACCEPT) {
|
|
ff |= DE_ACCEPT;
|
|
} else if (errcode || pdispatcher->IsDescriptorClosed()) {
|
|
ff |= DE_CLOSE;
|
|
} else {
|
|
ff |= DE_READ;
|
|
}
|
|
}
|
|
|
|
// Check writable descriptors. If we're waiting on a connect, detect
|
|
// success versus failure by the reaped error code.
|
|
if (FD_ISSET(fd, &fdsWrite)) {
|
|
FD_CLR(fd, &fdsWrite);
|
|
if (pdispatcher->GetRequestedEvents() & DE_CONNECT) {
|
|
if (!errcode) {
|
|
ff |= DE_CONNECT;
|
|
} else {
|
|
ff |= DE_CLOSE;
|
|
}
|
|
} else {
|
|
ff |= DE_WRITE;
|
|
}
|
|
}
|
|
|
|
// Tell the descriptor about the event.
|
|
if (ff != 0) {
|
|
pdispatcher->OnPreEvent(ff);
|
|
pdispatcher->OnEvent(ff, errcode);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Recalc the time remaining to wait. Doing it here means it doesn't get
|
|
// calced twice the first time through the loop
|
|
if (ptvWait) {
|
|
ptvWait->tv_sec = 0;
|
|
ptvWait->tv_usec = 0;
|
|
struct timeval tvT;
|
|
gettimeofday(&tvT, NULL);
|
|
if ((tvStop.tv_sec > tvT.tv_sec)
|
|
|| ((tvStop.tv_sec == tvT.tv_sec)
|
|
&& (tvStop.tv_usec > tvT.tv_usec))) {
|
|
ptvWait->tv_sec = tvStop.tv_sec - tvT.tv_sec;
|
|
ptvWait->tv_usec = tvStop.tv_usec - tvT.tv_usec;
|
|
if (ptvWait->tv_usec < 0) {
|
|
ASSERT(ptvWait->tv_sec > 0);
|
|
ptvWait->tv_usec += 1000000;
|
|
ptvWait->tv_sec -= 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void GlobalSignalHandler(int signum) {
|
|
PosixSignalHandler::Instance()->OnPosixSignalReceived(signum);
|
|
}
|
|
|
|
bool PhysicalSocketServer::SetPosixSignalHandler(int signum,
|
|
void (*handler)(int)) {
|
|
// If handler is SIG_IGN or SIG_DFL then clear our user-level handler,
|
|
// otherwise set one.
|
|
if (handler == SIG_IGN || handler == SIG_DFL) {
|
|
if (!InstallSignal(signum, handler)) {
|
|
return false;
|
|
}
|
|
if (signal_dispatcher_) {
|
|
signal_dispatcher_->ClearHandler(signum);
|
|
if (!signal_dispatcher_->HasHandlers()) {
|
|
signal_dispatcher_.reset();
|
|
}
|
|
}
|
|
} else {
|
|
if (!signal_dispatcher_) {
|
|
signal_dispatcher_.reset(new PosixSignalDispatcher(this));
|
|
}
|
|
signal_dispatcher_->SetHandler(signum, handler);
|
|
if (!InstallSignal(signum, &GlobalSignalHandler)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Dispatcher* PhysicalSocketServer::signal_dispatcher() {
|
|
return signal_dispatcher_.get();
|
|
}
|
|
|
|
bool PhysicalSocketServer::InstallSignal(int signum, void (*handler)(int)) {
|
|
struct sigaction act;
|
|
// It doesn't really matter what we set this mask to.
|
|
if (sigemptyset(&act.sa_mask) != 0) {
|
|
LOG_ERR(LS_ERROR) << "Couldn't set mask";
|
|
return false;
|
|
}
|
|
act.sa_handler = handler;
|
|
#if !defined(__native_client__)
|
|
// Use SA_RESTART so that our syscalls don't get EINTR, since we don't need it
|
|
// and it's a nuisance. Though some syscalls still return EINTR and there's no
|
|
// real standard for which ones. :(
|
|
act.sa_flags = SA_RESTART;
|
|
#else
|
|
act.sa_flags = 0;
|
|
#endif
|
|
if (sigaction(signum, &act, NULL) != 0) {
|
|
LOG_ERR(LS_ERROR) << "Couldn't set sigaction";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
#endif // POSIX
|
|
|
|
#ifdef WIN32
|
|
bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) {
|
|
int cmsTotal = cmsWait;
|
|
int cmsElapsed = 0;
|
|
uint32 msStart = Time();
|
|
|
|
#if LOGGING
|
|
if (last_tick_dispatch_count_ == 0) {
|
|
last_tick_tracked_ = msStart;
|
|
}
|
|
#endif
|
|
|
|
fWait_ = true;
|
|
while (fWait_) {
|
|
std::vector<WSAEVENT> events;
|
|
std::vector<Dispatcher *> event_owners;
|
|
|
|
events.push_back(socket_ev_);
|
|
|
|
{
|
|
CritScope cr(&crit_);
|
|
size_t i = 0;
|
|
iterators_.push_back(&i);
|
|
// Don't track dispatchers_.size(), because we want to pick up any new
|
|
// dispatchers that were added while processing the loop.
|
|
while (i < dispatchers_.size()) {
|
|
Dispatcher* disp = dispatchers_[i++];
|
|
if (!process_io && (disp != signal_wakeup_))
|
|
continue;
|
|
SOCKET s = disp->GetSocket();
|
|
if (disp->CheckSignalClose()) {
|
|
// We just signalled close, don't poll this socket
|
|
} else if (s != INVALID_SOCKET) {
|
|
WSAEventSelect(s,
|
|
events[0],
|
|
FlagsToEvents(disp->GetRequestedEvents()));
|
|
} else {
|
|
events.push_back(disp->GetWSAEvent());
|
|
event_owners.push_back(disp);
|
|
}
|
|
}
|
|
ASSERT(iterators_.back() == &i);
|
|
iterators_.pop_back();
|
|
}
|
|
|
|
// Which is shorter, the delay wait or the asked wait?
|
|
|
|
int cmsNext;
|
|
if (cmsWait == kForever) {
|
|
cmsNext = cmsWait;
|
|
} else {
|
|
cmsNext = _max(0, cmsTotal - cmsElapsed);
|
|
}
|
|
|
|
// Wait for one of the events to signal
|
|
DWORD dw = WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()),
|
|
&events[0],
|
|
false,
|
|
cmsNext,
|
|
false);
|
|
|
|
#if 0 // LOGGING
|
|
// we track this information purely for logging purposes.
|
|
last_tick_dispatch_count_++;
|
|
if (last_tick_dispatch_count_ >= 1000) {
|
|
int32 elapsed = TimeSince(last_tick_tracked_);
|
|
LOG(INFO) << "PhysicalSocketServer took " << elapsed
|
|
<< "ms for 1000 events";
|
|
|
|
// If we get more than 1000 events in a second, we are spinning badly
|
|
// (normally it should take about 8-20 seconds).
|
|
ASSERT(elapsed > 1000);
|
|
|
|
last_tick_tracked_ = Time();
|
|
last_tick_dispatch_count_ = 0;
|
|
}
|
|
#endif
|
|
|
|
if (dw == WSA_WAIT_FAILED) {
|
|
// Failed?
|
|
// TODO: need a better strategy than this!
|
|
int error = WSAGetLastError();
|
|
ASSERT(false);
|
|
return false;
|
|
} else if (dw == WSA_WAIT_TIMEOUT) {
|
|
// Timeout?
|
|
return true;
|
|
} else {
|
|
// Figure out which one it is and call it
|
|
CritScope cr(&crit_);
|
|
int index = dw - WSA_WAIT_EVENT_0;
|
|
if (index > 0) {
|
|
--index; // The first event is the socket event
|
|
event_owners[index]->OnPreEvent(0);
|
|
event_owners[index]->OnEvent(0, 0);
|
|
} else if (process_io) {
|
|
size_t i = 0, end = dispatchers_.size();
|
|
iterators_.push_back(&i);
|
|
iterators_.push_back(&end); // Don't iterate over new dispatchers.
|
|
while (i < end) {
|
|
Dispatcher* disp = dispatchers_[i++];
|
|
SOCKET s = disp->GetSocket();
|
|
if (s == INVALID_SOCKET)
|
|
continue;
|
|
|
|
WSANETWORKEVENTS wsaEvents;
|
|
int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents);
|
|
if (err == 0) {
|
|
|
|
#if LOGGING
|
|
{
|
|
if ((wsaEvents.lNetworkEvents & FD_READ) &&
|
|
wsaEvents.iErrorCode[FD_READ_BIT] != 0) {
|
|
LOG(WARNING) << "PhysicalSocketServer got FD_READ_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_READ_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_WRITE) &&
|
|
wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) {
|
|
LOG(WARNING) << "PhysicalSocketServer got FD_WRITE_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_WRITE_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_CONNECT) &&
|
|
wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) {
|
|
LOG(WARNING) << "PhysicalSocketServer got FD_CONNECT_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_CONNECT_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_ACCEPT) &&
|
|
wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) {
|
|
LOG(WARNING) << "PhysicalSocketServer got FD_ACCEPT_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_ACCEPT_BIT];
|
|
}
|
|
if ((wsaEvents.lNetworkEvents & FD_CLOSE) &&
|
|
wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) {
|
|
LOG(WARNING) << "PhysicalSocketServer got FD_CLOSE_BIT error "
|
|
<< wsaEvents.iErrorCode[FD_CLOSE_BIT];
|
|
}
|
|
}
|
|
#endif
|
|
uint32 ff = 0;
|
|
int errcode = 0;
|
|
if (wsaEvents.lNetworkEvents & FD_READ)
|
|
ff |= DE_READ;
|
|
if (wsaEvents.lNetworkEvents & FD_WRITE)
|
|
ff |= DE_WRITE;
|
|
if (wsaEvents.lNetworkEvents & FD_CONNECT) {
|
|
if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) {
|
|
ff |= DE_CONNECT;
|
|
} else {
|
|
ff |= DE_CLOSE;
|
|
errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT];
|
|
}
|
|
}
|
|
if (wsaEvents.lNetworkEvents & FD_ACCEPT)
|
|
ff |= DE_ACCEPT;
|
|
if (wsaEvents.lNetworkEvents & FD_CLOSE) {
|
|
ff |= DE_CLOSE;
|
|
errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT];
|
|
}
|
|
if (ff != 0) {
|
|
disp->OnPreEvent(ff);
|
|
disp->OnEvent(ff, errcode);
|
|
}
|
|
}
|
|
}
|
|
ASSERT(iterators_.back() == &end);
|
|
iterators_.pop_back();
|
|
ASSERT(iterators_.back() == &i);
|
|
iterators_.pop_back();
|
|
}
|
|
|
|
// Reset the network event until new activity occurs
|
|
WSAResetEvent(socket_ev_);
|
|
}
|
|
|
|
// Break?
|
|
if (!fWait_)
|
|
break;
|
|
cmsElapsed = TimeSince(msStart);
|
|
if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Done
|
|
return true;
|
|
}
|
|
#endif // WIN32
|
|
|
|
} // namespace talk_base
|