
However, two other "hacks" had to be added to maintain bit-exactness with legacy. Note that this change requires a new version of the universal.rtp test input, although the output reference stays the same. Moving reference files, and using a new input vector for NetEq4. The new input vector neteq_universal_new.rtp is identical to the old neteq_universal.rtp, except that the payload type for CNG packets that follows a wideband codec is changed to 98. Update to resources revision 15 where the new reference files are. Also changing a faulty log error. Review URL: https://webrtc-codereview.appspot.com/1078009 git-svn-id: http://webrtc.googlecode.com/svn/trunk@3442 4adac7df-926f-26a2-2b94-8c16560cd09d
655 lines
24 KiB
C++
655 lines
24 KiB
C++
/*
|
|
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
/*
|
|
* This file includes unit tests for NetEQ.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h> // memset
|
|
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include "modules/audio_coding/neteq/interface/webrtc_neteq.h"
|
|
#include "modules/audio_coding/neteq/interface/webrtc_neteq_help_macros.h"
|
|
#include "modules/audio_coding/neteq/interface/webrtc_neteq_internal.h"
|
|
#include "modules/audio_coding/neteq/test/NETEQTEST_CodecClass.h"
|
|
#include "modules/audio_coding/neteq/test/NETEQTEST_NetEQClass.h"
|
|
#include "modules/audio_coding/neteq/test/NETEQTEST_RTPpacket.h"
|
|
#include "testsupport/fileutils.h"
|
|
#include "typedefs.h" // NOLINT(build/include)
|
|
|
|
namespace webrtc {
|
|
|
|
class RefFiles {
|
|
public:
|
|
RefFiles(const std::string& input_file, const std::string& output_file);
|
|
~RefFiles();
|
|
template<class T> void ProcessReference(const T& test_results);
|
|
template<typename T, size_t n> void ProcessReference(
|
|
const T (&test_results)[n],
|
|
size_t length);
|
|
template<typename T, size_t n> void WriteToFile(
|
|
const T (&test_results)[n],
|
|
size_t length);
|
|
template<typename T, size_t n> void ReadFromFileAndCompare(
|
|
const T (&test_results)[n],
|
|
size_t length);
|
|
void WriteToFile(const WebRtcNetEQ_NetworkStatistics& stats);
|
|
void ReadFromFileAndCompare(const WebRtcNetEQ_NetworkStatistics& stats);
|
|
void WriteToFile(const WebRtcNetEQ_RTCPStat& stats);
|
|
void ReadFromFileAndCompare(const WebRtcNetEQ_RTCPStat& stats);
|
|
|
|
FILE* input_fp_;
|
|
FILE* output_fp_;
|
|
};
|
|
|
|
RefFiles::RefFiles(const std::string &input_file,
|
|
const std::string &output_file)
|
|
: input_fp_(NULL),
|
|
output_fp_(NULL) {
|
|
if (!input_file.empty()) {
|
|
input_fp_ = fopen(input_file.c_str(), "rb");
|
|
EXPECT_TRUE(input_fp_ != NULL);
|
|
}
|
|
if (!output_file.empty()) {
|
|
output_fp_ = fopen(output_file.c_str(), "wb");
|
|
EXPECT_TRUE(output_fp_ != NULL);
|
|
}
|
|
}
|
|
|
|
RefFiles::~RefFiles() {
|
|
if (input_fp_) {
|
|
EXPECT_EQ(EOF, fgetc(input_fp_)); // Make sure that we reached the end.
|
|
fclose(input_fp_);
|
|
}
|
|
if (output_fp_) fclose(output_fp_);
|
|
}
|
|
|
|
template<class T>
|
|
void RefFiles::ProcessReference(const T& test_results) {
|
|
WriteToFile(test_results);
|
|
ReadFromFileAndCompare(test_results);
|
|
}
|
|
|
|
template<typename T, size_t n>
|
|
void RefFiles::ProcessReference(const T (&test_results)[n], size_t length) {
|
|
WriteToFile(test_results, length);
|
|
ReadFromFileAndCompare(test_results, length);
|
|
}
|
|
|
|
template<typename T, size_t n>
|
|
void RefFiles::WriteToFile(const T (&test_results)[n], size_t length) {
|
|
if (output_fp_) {
|
|
ASSERT_EQ(length, fwrite(&test_results, sizeof(T), length, output_fp_));
|
|
}
|
|
}
|
|
|
|
template<typename T, size_t n>
|
|
void RefFiles::ReadFromFileAndCompare(const T (&test_results)[n],
|
|
size_t length) {
|
|
if (input_fp_) {
|
|
// Read from ref file.
|
|
T* ref = new T[length];
|
|
ASSERT_EQ(length, fread(ref, sizeof(T), length, input_fp_));
|
|
// Compare
|
|
ASSERT_EQ(0, memcmp(&test_results, ref, sizeof(T) * length));
|
|
delete [] ref;
|
|
}
|
|
}
|
|
|
|
void RefFiles::WriteToFile(const WebRtcNetEQ_NetworkStatistics& stats) {
|
|
if (output_fp_) {
|
|
ASSERT_EQ(1u, fwrite(&stats, sizeof(WebRtcNetEQ_NetworkStatistics), 1,
|
|
output_fp_));
|
|
}
|
|
}
|
|
|
|
void RefFiles::ReadFromFileAndCompare(
|
|
const WebRtcNetEQ_NetworkStatistics& stats) {
|
|
if (input_fp_) {
|
|
// Read from ref file.
|
|
size_t stat_size = sizeof(WebRtcNetEQ_NetworkStatistics);
|
|
WebRtcNetEQ_NetworkStatistics ref_stats;
|
|
ASSERT_EQ(1u, fread(&ref_stats, stat_size, 1, input_fp_));
|
|
// Compare
|
|
EXPECT_EQ(0, memcmp(&stats, &ref_stats, stat_size));
|
|
}
|
|
}
|
|
|
|
void RefFiles::WriteToFile(const WebRtcNetEQ_RTCPStat& stats) {
|
|
if (output_fp_) {
|
|
ASSERT_EQ(1u, fwrite(&(stats.fraction_lost), sizeof(stats.fraction_lost), 1,
|
|
output_fp_));
|
|
ASSERT_EQ(1u, fwrite(&(stats.cum_lost), sizeof(stats.cum_lost), 1,
|
|
output_fp_));
|
|
ASSERT_EQ(1u, fwrite(&(stats.ext_max), sizeof(stats.ext_max), 1,
|
|
output_fp_));
|
|
ASSERT_EQ(1u, fwrite(&(stats.jitter), sizeof(stats.jitter), 1,
|
|
output_fp_));
|
|
}
|
|
}
|
|
|
|
void RefFiles::ReadFromFileAndCompare(
|
|
const WebRtcNetEQ_RTCPStat& stats) {
|
|
if (input_fp_) {
|
|
// Read from ref file.
|
|
WebRtcNetEQ_RTCPStat ref_stats;
|
|
ASSERT_EQ(1u, fread(&(ref_stats.fraction_lost),
|
|
sizeof(ref_stats.fraction_lost), 1, input_fp_));
|
|
ASSERT_EQ(1u, fread(&(ref_stats.cum_lost), sizeof(ref_stats.cum_lost), 1,
|
|
input_fp_));
|
|
ASSERT_EQ(1u, fread(&(ref_stats.ext_max), sizeof(ref_stats.ext_max), 1,
|
|
input_fp_));
|
|
ASSERT_EQ(1u, fread(&(ref_stats.jitter), sizeof(ref_stats.jitter), 1,
|
|
input_fp_));
|
|
// Compare
|
|
EXPECT_EQ(ref_stats.fraction_lost, stats.fraction_lost);
|
|
EXPECT_EQ(ref_stats.cum_lost, stats.cum_lost);
|
|
EXPECT_EQ(ref_stats.ext_max, stats.ext_max);
|
|
EXPECT_EQ(ref_stats.jitter, stats.jitter);
|
|
}
|
|
}
|
|
|
|
class NetEqDecodingTest : public ::testing::Test {
|
|
protected:
|
|
// NetEQ must be polled for data once every 10 ms. Thus, neither of the
|
|
// constants below can be changed.
|
|
static const int kTimeStepMs = 10;
|
|
static const int kBlockSize8kHz = kTimeStepMs * 8;
|
|
static const int kBlockSize16kHz = kTimeStepMs * 16;
|
|
static const int kBlockSize32kHz = kTimeStepMs * 32;
|
|
static const int kMaxBlockSize = kBlockSize32kHz;
|
|
|
|
NetEqDecodingTest();
|
|
virtual void SetUp();
|
|
virtual void TearDown();
|
|
void SelectDecoders(WebRtcNetEQDecoder* used_codec);
|
|
void LoadDecoders();
|
|
void OpenInputFile(const std::string &rtp_file);
|
|
void Process(NETEQTEST_RTPpacket* rtp_ptr, int16_t* out_len);
|
|
void DecodeAndCompare(const std::string &rtp_file,
|
|
const std::string &ref_file);
|
|
void DecodeAndCheckStats(const std::string &rtp_file,
|
|
const std::string &stat_ref_file,
|
|
const std::string &rtcp_ref_file);
|
|
static void PopulateRtpInfo(int frame_index,
|
|
int timestamp,
|
|
WebRtcNetEQ_RTPInfo* rtp_info);
|
|
static void PopulateCng(int frame_index,
|
|
int timestamp,
|
|
WebRtcNetEQ_RTPInfo* rtp_info,
|
|
uint8_t* payload,
|
|
int* payload_len);
|
|
|
|
NETEQTEST_NetEQClass* neteq_inst_;
|
|
std::vector<NETEQTEST_Decoder*> dec_;
|
|
FILE* rtp_fp_;
|
|
unsigned int sim_clock_;
|
|
int16_t out_data_[kMaxBlockSize];
|
|
};
|
|
|
|
NetEqDecodingTest::NetEqDecodingTest()
|
|
: neteq_inst_(NULL),
|
|
rtp_fp_(NULL),
|
|
sim_clock_(0) {
|
|
memset(out_data_, 0, sizeof(out_data_));
|
|
}
|
|
|
|
void NetEqDecodingTest::SetUp() {
|
|
WebRtcNetEQDecoder usedCodec[kDecoderReservedEnd - 1];
|
|
|
|
SelectDecoders(usedCodec);
|
|
neteq_inst_ = new NETEQTEST_NetEQClass(usedCodec, dec_.size(), 8000,
|
|
kTCPLargeJitter);
|
|
ASSERT_TRUE(neteq_inst_);
|
|
LoadDecoders();
|
|
}
|
|
|
|
void NetEqDecodingTest::TearDown() {
|
|
if (neteq_inst_)
|
|
delete neteq_inst_;
|
|
for (size_t i = 0; i < dec_.size(); ++i) {
|
|
if (dec_[i])
|
|
delete dec_[i];
|
|
}
|
|
if (rtp_fp_)
|
|
fclose(rtp_fp_);
|
|
}
|
|
|
|
void NetEqDecodingTest::SelectDecoders(WebRtcNetEQDecoder* used_codec) {
|
|
*used_codec++ = kDecoderPCMu;
|
|
dec_.push_back(new decoder_PCMU(0));
|
|
*used_codec++ = kDecoderPCMa;
|
|
dec_.push_back(new decoder_PCMA(8));
|
|
*used_codec++ = kDecoderILBC;
|
|
dec_.push_back(new decoder_ILBC(102));
|
|
*used_codec++ = kDecoderISAC;
|
|
dec_.push_back(new decoder_iSAC(103));
|
|
*used_codec++ = kDecoderISACswb;
|
|
dec_.push_back(new decoder_iSACSWB(104));
|
|
*used_codec++ = kDecoderISACfb;
|
|
dec_.push_back(new decoder_iSACFB(105));
|
|
*used_codec++ = kDecoderPCM16B;
|
|
dec_.push_back(new decoder_PCM16B_NB(93));
|
|
*used_codec++ = kDecoderPCM16Bwb;
|
|
dec_.push_back(new decoder_PCM16B_WB(94));
|
|
*used_codec++ = kDecoderPCM16Bswb32kHz;
|
|
dec_.push_back(new decoder_PCM16B_SWB32(95));
|
|
*used_codec++ = kDecoderCNG;
|
|
dec_.push_back(new decoder_CNG(13, 8000));
|
|
*used_codec++ = kDecoderCNG;
|
|
dec_.push_back(new decoder_CNG(98, 16000));
|
|
}
|
|
|
|
void NetEqDecodingTest::LoadDecoders() {
|
|
for (size_t i = 0; i < dec_.size(); ++i) {
|
|
ASSERT_EQ(0, dec_[i]->loadToNetEQ(*neteq_inst_));
|
|
}
|
|
}
|
|
|
|
void NetEqDecodingTest::OpenInputFile(const std::string &rtp_file) {
|
|
rtp_fp_ = fopen(rtp_file.c_str(), "rb");
|
|
ASSERT_TRUE(rtp_fp_ != NULL);
|
|
ASSERT_EQ(0, NETEQTEST_RTPpacket::skipFileHeader(rtp_fp_));
|
|
}
|
|
|
|
void NetEqDecodingTest::Process(NETEQTEST_RTPpacket* rtp, int16_t* out_len) {
|
|
// Check if time to receive.
|
|
while ((sim_clock_ >= rtp->time()) &&
|
|
(rtp->dataLen() >= 0)) {
|
|
if (rtp->dataLen() > 0) {
|
|
ASSERT_EQ(0, neteq_inst_->recIn(*rtp));
|
|
}
|
|
// Get next packet.
|
|
ASSERT_NE(-1, rtp->readFromFile(rtp_fp_));
|
|
}
|
|
|
|
// RecOut
|
|
*out_len = neteq_inst_->recOut(out_data_);
|
|
ASSERT_TRUE((*out_len == kBlockSize8kHz) ||
|
|
(*out_len == kBlockSize16kHz) ||
|
|
(*out_len == kBlockSize32kHz));
|
|
|
|
// Increase time.
|
|
sim_clock_ += kTimeStepMs;
|
|
}
|
|
|
|
void NetEqDecodingTest::DecodeAndCompare(const std::string &rtp_file,
|
|
const std::string &ref_file) {
|
|
OpenInputFile(rtp_file);
|
|
|
|
std::string ref_out_file = "";
|
|
if (ref_file.empty()) {
|
|
ref_out_file = webrtc::test::OutputPath() + "neteq_out.pcm";
|
|
}
|
|
RefFiles ref_files(ref_file, ref_out_file);
|
|
|
|
NETEQTEST_RTPpacket rtp;
|
|
ASSERT_GT(rtp.readFromFile(rtp_fp_), 0);
|
|
int i = 0;
|
|
while (rtp.dataLen() >= 0) {
|
|
std::ostringstream ss;
|
|
ss << "Lap number " << i++ << " in DecodeAndCompare while loop";
|
|
SCOPED_TRACE(ss.str()); // Print out the parameter values on failure.
|
|
int16_t out_len;
|
|
ASSERT_NO_FATAL_FAILURE(Process(&rtp, &out_len));
|
|
ASSERT_NO_FATAL_FAILURE(ref_files.ProcessReference(out_data_, out_len));
|
|
}
|
|
}
|
|
|
|
void NetEqDecodingTest::DecodeAndCheckStats(const std::string &rtp_file,
|
|
const std::string &stat_ref_file,
|
|
const std::string &rtcp_ref_file) {
|
|
OpenInputFile(rtp_file);
|
|
std::string stat_out_file = "";
|
|
if (stat_ref_file.empty()) {
|
|
stat_out_file = webrtc::test::OutputPath() +
|
|
"neteq_network_stats.dat";
|
|
}
|
|
RefFiles network_stat_files(stat_ref_file, stat_out_file);
|
|
|
|
std::string rtcp_out_file = "";
|
|
if (rtcp_ref_file.empty()) {
|
|
rtcp_out_file = webrtc::test::OutputPath() +
|
|
"neteq_rtcp_stats.dat";
|
|
}
|
|
RefFiles rtcp_stat_files(rtcp_ref_file, rtcp_out_file);
|
|
|
|
NETEQTEST_RTPpacket rtp;
|
|
ASSERT_GT(rtp.readFromFile(rtp_fp_), 0);
|
|
while (rtp.dataLen() >= 0) {
|
|
int16_t out_len;
|
|
Process(&rtp, &out_len);
|
|
|
|
// Query the network statistics API once per second
|
|
if (sim_clock_ % 1000 == 0) {
|
|
// Process NetworkStatistics.
|
|
WebRtcNetEQ_NetworkStatistics network_stats;
|
|
ASSERT_EQ(0, WebRtcNetEQ_GetNetworkStatistics(neteq_inst_->instance(),
|
|
&network_stats));
|
|
network_stat_files.ProcessReference(network_stats);
|
|
|
|
// Process RTCPstat.
|
|
WebRtcNetEQ_RTCPStat rtcp_stats;
|
|
ASSERT_EQ(0, WebRtcNetEQ_GetRTCPStats(neteq_inst_->instance(),
|
|
&rtcp_stats));
|
|
rtcp_stat_files.ProcessReference(rtcp_stats);
|
|
}
|
|
}
|
|
}
|
|
|
|
void NetEqDecodingTest::PopulateRtpInfo(int frame_index,
|
|
int timestamp,
|
|
WebRtcNetEQ_RTPInfo* rtp_info) {
|
|
rtp_info->sequenceNumber = frame_index;
|
|
rtp_info->timeStamp = timestamp;
|
|
rtp_info->SSRC = 0x1234; // Just an arbitrary SSRC.
|
|
rtp_info->payloadType = 94; // PCM16b WB codec.
|
|
rtp_info->markerBit = 0;
|
|
}
|
|
|
|
void NetEqDecodingTest::PopulateCng(int frame_index,
|
|
int timestamp,
|
|
WebRtcNetEQ_RTPInfo* rtp_info,
|
|
uint8_t* payload,
|
|
int* payload_len) {
|
|
rtp_info->sequenceNumber = frame_index;
|
|
rtp_info->timeStamp = timestamp;
|
|
rtp_info->SSRC = 0x1234; // Just an arbitrary SSRC.
|
|
rtp_info->payloadType = 98; // WB CNG.
|
|
rtp_info->markerBit = 0;
|
|
payload[0] = 64; // Noise level -64 dBov, quite arbitrarily chosen.
|
|
*payload_len = 1; // Only noise level, no spectral parameters.
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestBitExactness) {
|
|
const std::string kInputRtpFile = webrtc::test::ProjectRootPath() +
|
|
"resources/audio_coding/neteq_universal.rtp";
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
|
|
// For Visual Studio 2012 and later, we will have to use the generic reference
|
|
// file, rather than the windows-specific one.
|
|
const std::string kInputRefFile = webrtc::test::ProjectRootPath() +
|
|
"resources/audio_coding/neteq_universal_ref.pcm";
|
|
#else
|
|
const std::string kInputRefFile =
|
|
webrtc::test::ResourcePath("audio_coding/neteq_universal_ref", "pcm");
|
|
#endif
|
|
DecodeAndCompare(kInputRtpFile, kInputRefFile);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestNetworkStatistics) {
|
|
const std::string kInputRtpFile = webrtc::test::ProjectRootPath() +
|
|
"resources/audio_coding/neteq_universal.rtp";
|
|
#if defined(_MSC_VER) && (_MSC_VER >= 1700)
|
|
// For Visual Studio 2012 and later, we will have to use the generic reference
|
|
// file, rather than the windows-specific one.
|
|
const std::string kNetworkStatRefFile = webrtc::test::ProjectRootPath() +
|
|
"resources/audio_coding/neteq_network_stats.dat";
|
|
#else
|
|
const std::string kNetworkStatRefFile =
|
|
webrtc::test::ResourcePath("audio_coding/neteq_network_stats", "dat");
|
|
#endif
|
|
const std::string kRtcpStatRefFile =
|
|
webrtc::test::ResourcePath("audio_coding/neteq_rtcp_stats", "dat");
|
|
DecodeAndCheckStats(kInputRtpFile, kNetworkStatRefFile, kRtcpStatRefFile);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestFrameWaitingTimeStatistics) {
|
|
// Use fax mode to avoid time-scaling. This is to simplify the testing of
|
|
// packet waiting times in the packet buffer.
|
|
ASSERT_EQ(0,
|
|
WebRtcNetEQ_SetPlayoutMode(neteq_inst_->instance(), kPlayoutFax));
|
|
// Insert 30 dummy packets at once. Each packet contains 10 ms 16 kHz audio.
|
|
int num_frames = 30;
|
|
const int kSamples = 10 * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
for (int i = 0; i < num_frames; ++i) {
|
|
uint16_t payload[kSamples] = {0};
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
rtp_info.sequenceNumber = i;
|
|
rtp_info.timeStamp = i * kSamples;
|
|
rtp_info.SSRC = 0x1234; // Just an arbitrary SSRC.
|
|
rtp_info.payloadType = 94; // PCM16b WB codec.
|
|
rtp_info.markerBit = 0;
|
|
ASSERT_EQ(0, WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(), &rtp_info,
|
|
reinterpret_cast<uint8_t*>(payload),
|
|
kPayloadBytes, 0));
|
|
}
|
|
// Pull out all data.
|
|
for (int i = 0; i < num_frames; ++i) {
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
}
|
|
const int kVecLen = 110; // More than kLenWaitingTimes in mcu.h.
|
|
int waiting_times[kVecLen];
|
|
int len = WebRtcNetEQ_GetRawFrameWaitingTimes(neteq_inst_->instance(),
|
|
kVecLen, waiting_times);
|
|
EXPECT_EQ(num_frames, len);
|
|
// Since all frames are dumped into NetEQ at once, but pulled out with 10 ms
|
|
// spacing (per definition), we expect the delay to increase with 10 ms for
|
|
// each packet.
|
|
for (int i = 0; i < len; ++i) {
|
|
EXPECT_EQ((i + 1) * 10, waiting_times[i]);
|
|
}
|
|
|
|
// Check statistics again and make sure it's been reset.
|
|
EXPECT_EQ(0, WebRtcNetEQ_GetRawFrameWaitingTimes(neteq_inst_->instance(),
|
|
kVecLen, waiting_times));
|
|
|
|
// Process > 100 frames, and make sure that that we get statistics
|
|
// only for 100 frames. Note the new SSRC, causing NetEQ to reset.
|
|
num_frames = 110;
|
|
for (int i = 0; i < num_frames; ++i) {
|
|
uint16_t payload[kSamples] = {0};
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
rtp_info.sequenceNumber = i;
|
|
rtp_info.timeStamp = i * kSamples;
|
|
rtp_info.SSRC = 0x1235; // Just an arbitrary SSRC.
|
|
rtp_info.payloadType = 94; // PCM16b WB codec.
|
|
rtp_info.markerBit = 0;
|
|
ASSERT_EQ(0, WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(), &rtp_info,
|
|
reinterpret_cast<uint8_t*>(payload),
|
|
kPayloadBytes, 0));
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
}
|
|
|
|
len = WebRtcNetEQ_GetRawFrameWaitingTimes(neteq_inst_->instance(),
|
|
kVecLen, waiting_times);
|
|
EXPECT_EQ(100, len);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimeNegative) {
|
|
const int kNumFrames = 3000; // Needed for convergence.
|
|
int frame_index = 0;
|
|
const int kSamples = 10 * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
while (frame_index < kNumFrames) {
|
|
// Insert one packet each time, except every 10th time where we insert two
|
|
// packets at once. This will create a negative clock-drift of approx. 10%.
|
|
int num_packets = (frame_index % 10 == 0 ? 2 : 1);
|
|
for (int n = 0; n < num_packets; ++n) {
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info);
|
|
ASSERT_EQ(0,
|
|
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
|
|
&rtp_info,
|
|
payload,
|
|
kPayloadBytes, 0));
|
|
++frame_index;
|
|
}
|
|
|
|
// Pull out data once.
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
}
|
|
|
|
WebRtcNetEQ_NetworkStatistics network_stats;
|
|
ASSERT_EQ(0, WebRtcNetEQ_GetNetworkStatistics(neteq_inst_->instance(),
|
|
&network_stats));
|
|
EXPECT_EQ(-106911, network_stats.clockDriftPPM);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, TestAverageInterArrivalTimePositive) {
|
|
const int kNumFrames = 5000; // Needed for convergence.
|
|
int frame_index = 0;
|
|
const int kSamples = 10 * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
// Insert one packet each time, except every 10th time where we don't insert
|
|
// any packet. This will create a positive clock-drift of approx. 11%.
|
|
int num_packets = (i % 10 == 9 ? 0 : 1);
|
|
for (int n = 0; n < num_packets; ++n) {
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
PopulateRtpInfo(frame_index, frame_index * kSamples, &rtp_info);
|
|
ASSERT_EQ(0,
|
|
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
|
|
&rtp_info,
|
|
payload,
|
|
kPayloadBytes, 0));
|
|
++frame_index;
|
|
}
|
|
|
|
// Pull out data once.
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
}
|
|
|
|
WebRtcNetEQ_NetworkStatistics network_stats;
|
|
ASSERT_EQ(0, WebRtcNetEQ_GetNetworkStatistics(neteq_inst_->instance(),
|
|
&network_stats));
|
|
EXPECT_EQ(108352, network_stats.clockDriftPPM);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, LongCngWithClockDrift) {
|
|
uint16_t seq_no = 0;
|
|
uint32_t timestamp = 0;
|
|
const int kFrameSizeMs = 30;
|
|
const int kSamples = kFrameSizeMs * 16;
|
|
const int kPayloadBytes = kSamples * 2;
|
|
// Apply a clock drift of -25 ms / s (sender faster than receiver).
|
|
const double kDriftFactor = 1000.0 / (1000.0 + 25.0);
|
|
double next_input_time_ms = 0.0;
|
|
double t_ms;
|
|
|
|
// Insert speech for 5 seconds.
|
|
const int kSpeechDurationMs = 5000;
|
|
for (t_ms = 0; t_ms < kSpeechDurationMs; t_ms += 10) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one 30 ms speech frame.
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
ASSERT_EQ(0,
|
|
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
|
|
&rtp_info,
|
|
payload,
|
|
kPayloadBytes, 0));
|
|
++seq_no;
|
|
timestamp += kSamples;
|
|
next_input_time_ms += static_cast<double>(kFrameSizeMs) * kDriftFactor;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
}
|
|
|
|
EXPECT_EQ(kOutputNormal, neteq_inst_->getOutputType());
|
|
int32_t delay_before = timestamp - neteq_inst_->getSpeechTimeStamp();
|
|
|
|
// Insert CNG for 1 minute (= 60000 ms).
|
|
const int kCngPeriodMs = 100;
|
|
const int kCngPeriodSamples = kCngPeriodMs * 16; // Period in 16 kHz samples.
|
|
const int kCngDurationMs = 60000;
|
|
for (; t_ms < kSpeechDurationMs + kCngDurationMs; t_ms += 10) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one CNG frame each 100 ms.
|
|
uint8_t payload[kPayloadBytes];
|
|
int payload_len;
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
PopulateCng(seq_no, timestamp, &rtp_info, payload, &payload_len);
|
|
ASSERT_EQ(0,
|
|
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
|
|
&rtp_info,
|
|
payload,
|
|
payload_len, 0));
|
|
++seq_no;
|
|
timestamp += kCngPeriodSamples;
|
|
next_input_time_ms += static_cast<double>(kCngPeriodMs) * kDriftFactor;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
}
|
|
|
|
EXPECT_EQ(kOutputCNG, neteq_inst_->getOutputType());
|
|
|
|
// Insert speech again until output type is speech.
|
|
while (neteq_inst_->getOutputType() != kOutputNormal) {
|
|
// Each turn in this for loop is 10 ms.
|
|
while (next_input_time_ms <= t_ms) {
|
|
// Insert one 30 ms speech frame.
|
|
uint8_t payload[kPayloadBytes] = {0};
|
|
WebRtcNetEQ_RTPInfo rtp_info;
|
|
PopulateRtpInfo(seq_no, timestamp, &rtp_info);
|
|
ASSERT_EQ(0,
|
|
WebRtcNetEQ_RecInRTPStruct(neteq_inst_->instance(),
|
|
&rtp_info,
|
|
payload,
|
|
kPayloadBytes, 0));
|
|
++seq_no;
|
|
timestamp += kSamples;
|
|
next_input_time_ms += static_cast<double>(kFrameSizeMs) * kDriftFactor;
|
|
}
|
|
// Pull out data once.
|
|
ASSERT_TRUE(kBlockSize16kHz == neteq_inst_->recOut(out_data_));
|
|
// Increase clock.
|
|
t_ms += 10;
|
|
}
|
|
|
|
int32_t delay_after = timestamp - neteq_inst_->getSpeechTimeStamp();
|
|
// Compare delay before and after, and make sure it differs less than 20 ms.
|
|
EXPECT_LE(delay_after, delay_before + 20 * 16);
|
|
EXPECT_GE(delay_after, delay_before - 20 * 16);
|
|
}
|
|
|
|
TEST_F(NetEqDecodingTest, NoInputDataStereo) {
|
|
void *ms_info;
|
|
ms_info = malloc(WebRtcNetEQ_GetMasterSlaveInfoSize());
|
|
neteq_inst_->setMaster();
|
|
|
|
// Slave instance without decoders (because it is easier).
|
|
WebRtcNetEQDecoder usedCodec[kDecoderReservedEnd - 1];
|
|
usedCodec[0] = kDecoderPCMu;
|
|
NETEQTEST_NetEQClass* slave_inst =
|
|
new NETEQTEST_NetEQClass(usedCodec, 1, 8000, kTCPLargeJitter);
|
|
ASSERT_TRUE(slave_inst);
|
|
NETEQTEST_Decoder* dec = new decoder_PCMU(0);
|
|
ASSERT_TRUE(dec != NULL);
|
|
dec->loadToNetEQ(*slave_inst);
|
|
slave_inst->setSlave();
|
|
|
|
// Pull out data.
|
|
const int kNumFrames = 100;
|
|
for (int i = 0; i < kNumFrames; ++i) {
|
|
ASSERT_TRUE(kBlockSize8kHz == neteq_inst_->recOut(out_data_, ms_info));
|
|
ASSERT_TRUE(kBlockSize8kHz == slave_inst->recOut(out_data_, ms_info));
|
|
}
|
|
|
|
delete dec;
|
|
delete slave_inst;
|
|
free(ms_info);
|
|
}
|
|
|
|
} // namespace
|