 371243dfa3
			
		
	
	371243dfa3
	
	
	
		
			
			std::memcpy -> memcpy for instance. This change was motivated by a compile report complaining that std::rand() was used instead of rand(), probably with a stdlib.h include instead of cstdlib. Use of C functions without the std:: prefix is a lot more common, so removing std:: to address this. BUG= R=tommi@webrtc.org Review URL: https://webrtc-codereview.appspot.com/9559004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@5657 4adac7df-926f-26a2-2b94-8c16560cd09d
		
			
				
	
	
		
			591 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			591 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Borrowed from chromium.
 | |
| // Copyright (c) 2012 The Chromium Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style license that can be
 | |
| // found in the LICENSE file.
 | |
| 
 | |
| // Scopers help you manage ownership of a pointer, helping you easily manage the
 | |
| // a pointer within a scope, and automatically destroying the pointer at the
 | |
| // end of a scope.  There are two main classes you will use, which correspond
 | |
| // to the operators new/delete and new[]/delete[].
 | |
| //
 | |
| // Example usage (scoped_ptr<T>):
 | |
| //   {
 | |
| //     scoped_ptr<Foo> foo(new Foo("wee"));
 | |
| //   }  // foo goes out of scope, releasing the pointer with it.
 | |
| //
 | |
| //   {
 | |
| //     scoped_ptr<Foo> foo;          // No pointer managed.
 | |
| //     foo.reset(new Foo("wee"));    // Now a pointer is managed.
 | |
| //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
 | |
| //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
 | |
| //     foo->Method();                // Foo::Method() called.
 | |
| //     foo.get()->Method();          // Foo::Method() called.
 | |
| //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
 | |
| //                                   // manages a pointer.
 | |
| //     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
 | |
| //     foo.reset();                  // Foo("wee4") destroyed, foo no longer
 | |
| //                                   // manages a pointer.
 | |
| //   }  // foo wasn't managing a pointer, so nothing was destroyed.
 | |
| //
 | |
| // Example usage (scoped_ptr<T[]>):
 | |
| //   {
 | |
| //     scoped_ptr<Foo[]> foo(new Foo[100]);
 | |
| //     foo.get()->Method();  // Foo::Method on the 0th element.
 | |
| //     foo[10].Method();     // Foo::Method on the 10th element.
 | |
| //   }
 | |
| //
 | |
| // These scopers also implement part of the functionality of C++11 unique_ptr
 | |
| // in that they are "movable but not copyable."  You can use the scopers in
 | |
| // the parameter and return types of functions to signify ownership transfer
 | |
| // in to and out of a function.  When calling a function that has a scoper
 | |
| // as the argument type, it must be called with the result of an analogous
 | |
| // scoper's Pass() function or another function that generates a temporary;
 | |
| // passing by copy will NOT work.  Here is an example using scoped_ptr:
 | |
| //
 | |
| //   void TakesOwnership(scoped_ptr<Foo> arg) {
 | |
| //     // Do something with arg
 | |
| //   }
 | |
| //   scoped_ptr<Foo> CreateFoo() {
 | |
| //     // No need for calling Pass() because we are constructing a temporary
 | |
| //     // for the return value.
 | |
| //     return scoped_ptr<Foo>(new Foo("new"));
 | |
| //   }
 | |
| //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) {
 | |
| //     return arg.Pass();
 | |
| //   }
 | |
| //
 | |
| //   {
 | |
| //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay").
 | |
| //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay").
 | |
| //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo.
 | |
| //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2.
 | |
| //         PassThru(ptr2.Pass());            // ptr2 is correspondingly NULL.
 | |
| //   }
 | |
| //
 | |
| // Notice that if you do not call Pass() when returning from PassThru(), or
 | |
| // when invoking TakesOwnership(), the code will not compile because scopers
 | |
| // are not copyable; they only implement move semantics which require calling
 | |
| // the Pass() function to signify a destructive transfer of state. CreateFoo()
 | |
| // is different though because we are constructing a temporary on the return
 | |
| // line and thus can avoid needing to call Pass().
 | |
| //
 | |
| // Pass() properly handles upcast in initialization, i.e. you can use a
 | |
| // scoped_ptr<Child> to initialize a scoped_ptr<Parent>:
 | |
| //
 | |
| //   scoped_ptr<Foo> foo(new Foo());
 | |
| //   scoped_ptr<FooParent> parent(foo.Pass());
 | |
| //
 | |
| // PassAs<>() should be used to upcast return value in return statement:
 | |
| //
 | |
| //   scoped_ptr<Foo> CreateFoo() {
 | |
| //     scoped_ptr<FooChild> result(new FooChild());
 | |
| //     return result.PassAs<Foo>();
 | |
| //   }
 | |
| //
 | |
| // Note that PassAs<>() is implemented only for scoped_ptr<T>, but not for
 | |
| // scoped_ptr<T[]>. This is because casting array pointers may not be safe.
 | |
| 
 | |
| #ifndef TALK_BASE_SCOPED_PTR_H__
 | |
| #define TALK_BASE_SCOPED_PTR_H__
 | |
| 
 | |
| #include <stddef.h>  // for ptrdiff_t
 | |
| #include <stdlib.h>  // for free() decl
 | |
| 
 | |
| #include <algorithm>  // For std::swap().
 | |
| 
 | |
| #include "talk/base/common.h"  // for ASSERT
 | |
| #include "talk/base/compile_assert.h"  // for COMPILE_ASSERT
 | |
| #include "talk/base/move.h"    // for TALK_MOVE_ONLY_TYPE_FOR_CPP_03
 | |
| #include "talk/base/template_util.h"    // for is_convertible, is_array
 | |
| 
 | |
| #ifdef _WIN32
 | |
| namespace std { using ::ptrdiff_t; };
 | |
| #endif // _WIN32
 | |
| 
 | |
| namespace talk_base {
 | |
| 
 | |
| // Function object which deletes its parameter, which must be a pointer.
 | |
| // If C is an array type, invokes 'delete[]' on the parameter; otherwise,
 | |
| // invokes 'delete'. The default deleter for scoped_ptr<T>.
 | |
| template <class T>
 | |
| struct DefaultDeleter {
 | |
|   DefaultDeleter() {}
 | |
|   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) {
 | |
|     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor
 | |
|     // if U* is implicitly convertible to T* and U is not an array type.
 | |
|     //
 | |
|     // Correct implementation should use SFINAE to disable this
 | |
|     // constructor. However, since there are no other 1-argument constructors,
 | |
|     // using a COMPILE_ASSERT() based on is_convertible<> and requiring
 | |
|     // complete types is simpler and will cause compile failures for equivalent
 | |
|     // misuses.
 | |
|     //
 | |
|     // Note, the is_convertible<U*, T*> check also ensures that U is not an
 | |
|     // array. T is guaranteed to be a non-array, so any U* where U is an array
 | |
|     // cannot convert to T*.
 | |
|     enum { T_must_be_complete = sizeof(T) };
 | |
|     enum { U_must_be_complete = sizeof(U) };
 | |
|     COMPILE_ASSERT((talk_base::is_convertible<U*, T*>::value),
 | |
|                    U_ptr_must_implicitly_convert_to_T_ptr);
 | |
|   }
 | |
|   inline void operator()(T* ptr) const {
 | |
|     enum { type_must_be_complete = sizeof(T) };
 | |
|     delete ptr;
 | |
|   }
 | |
| };
 | |
| 
 | |
| // Specialization of DefaultDeleter for array types.
 | |
| template <class T>
 | |
| struct DefaultDeleter<T[]> {
 | |
|   inline void operator()(T* ptr) const {
 | |
|     enum { type_must_be_complete = sizeof(T) };
 | |
|     delete[] ptr;
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Disable this operator for any U != T because it is undefined to execute
 | |
|   // an array delete when the static type of the array mismatches the dynamic
 | |
|   // type.
 | |
|   //
 | |
|   // References:
 | |
|   //   C++98 [expr.delete]p3
 | |
|   //   http://cplusplus.github.com/LWG/lwg-defects.html#938
 | |
|   template <typename U> void operator()(U* array) const;
 | |
| };
 | |
| 
 | |
| template <class T, int n>
 | |
| struct DefaultDeleter<T[n]> {
 | |
|   // Never allow someone to declare something like scoped_ptr<int[10]>.
 | |
|   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type);
 | |
| };
 | |
| 
 | |
| // Function object which invokes 'free' on its parameter, which must be
 | |
| // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr:
 | |
| //
 | |
| // scoped_ptr<int, talk_base::FreeDeleter> foo_ptr(
 | |
| //     static_cast<int*>(malloc(sizeof(int))));
 | |
| struct FreeDeleter {
 | |
|   inline void operator()(void* ptr) const {
 | |
|     free(ptr);
 | |
|   }
 | |
| };
 | |
| 
 | |
| namespace internal {
 | |
| 
 | |
| // Minimal implementation of the core logic of scoped_ptr, suitable for
 | |
| // reuse in both scoped_ptr and its specializations.
 | |
| template <class T, class D>
 | |
| class scoped_ptr_impl {
 | |
|  public:
 | |
|   explicit scoped_ptr_impl(T* p) : data_(p) { }
 | |
| 
 | |
|   // Initializer for deleters that have data parameters.
 | |
|   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {}
 | |
| 
 | |
|   // Templated constructor that destructively takes the value from another
 | |
|   // scoped_ptr_impl.
 | |
|   template <typename U, typename V>
 | |
|   scoped_ptr_impl(scoped_ptr_impl<U, V>* other)
 | |
|       : data_(other->release(), other->get_deleter()) {
 | |
|     // We do not support move-only deleters.  We could modify our move
 | |
|     // emulation to have talk_base::subtle::move() and
 | |
|     // talk_base::subtle::forward()
 | |
|     // functions that are imperfect emulations of their C++11 equivalents,
 | |
|     // but until there's a requirement, just assume deleters are copyable.
 | |
|   }
 | |
| 
 | |
|   template <typename U, typename V>
 | |
|   void TakeState(scoped_ptr_impl<U, V>* other) {
 | |
|     // See comment in templated constructor above regarding lack of support
 | |
|     // for move-only deleters.
 | |
|     reset(other->release());
 | |
|     get_deleter() = other->get_deleter();
 | |
|   }
 | |
| 
 | |
|   ~scoped_ptr_impl() {
 | |
|     if (data_.ptr != NULL) {
 | |
|       // Not using get_deleter() saves one function call in non-optimized
 | |
|       // builds.
 | |
|       static_cast<D&>(data_)(data_.ptr);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   void reset(T* p) {
 | |
|     // This is a self-reset, which is no longer allowed: http://crbug.com/162971
 | |
|     if (p != NULL && p == data_.ptr)
 | |
|       abort();
 | |
| 
 | |
|     // Note that running data_.ptr = p can lead to undefined behavior if
 | |
|     // get_deleter()(get()) deletes this. In order to pevent this, reset()
 | |
|     // should update the stored pointer before deleting its old value.
 | |
|     //
 | |
|     // However, changing reset() to use that behavior may cause current code to
 | |
|     // break in unexpected ways. If the destruction of the owned object
 | |
|     // dereferences the scoped_ptr when it is destroyed by a call to reset(),
 | |
|     // then it will incorrectly dispatch calls to |p| rather than the original
 | |
|     // value of |data_.ptr|.
 | |
|     //
 | |
|     // During the transition period, set the stored pointer to NULL while
 | |
|     // deleting the object. Eventually, this safety check will be removed to
 | |
|     // prevent the scenario initially described from occuring and
 | |
|     // http://crbug.com/176091 can be closed.
 | |
|     T* old = data_.ptr;
 | |
|     data_.ptr = NULL;
 | |
|     if (old != NULL)
 | |
|       static_cast<D&>(data_)(old);
 | |
|     data_.ptr = p;
 | |
|   }
 | |
| 
 | |
|   T* get() const { return data_.ptr; }
 | |
| 
 | |
|   D& get_deleter() { return data_; }
 | |
|   const D& get_deleter() const { return data_; }
 | |
| 
 | |
|   void swap(scoped_ptr_impl& p2) {
 | |
|     // Standard swap idiom: 'using std::swap' ensures that std::swap is
 | |
|     // present in the overload set, but we call swap unqualified so that
 | |
|     // any more-specific overloads can be used, if available.
 | |
|     using std::swap;
 | |
|     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_));
 | |
|     swap(data_.ptr, p2.data_.ptr);
 | |
|   }
 | |
| 
 | |
|   T* release() {
 | |
|     T* old_ptr = data_.ptr;
 | |
|     data_.ptr = NULL;
 | |
|     return old_ptr;
 | |
|   }
 | |
| 
 | |
|   T** accept() {
 | |
|     reset(NULL);
 | |
|     return &(data_.ptr);
 | |
|   }
 | |
| 
 | |
|   T** use() {
 | |
|     return &(data_.ptr);
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Needed to allow type-converting constructor.
 | |
|   template <typename U, typename V> friend class scoped_ptr_impl;
 | |
| 
 | |
|   // Use the empty base class optimization to allow us to have a D
 | |
|   // member, while avoiding any space overhead for it when D is an
 | |
|   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good
 | |
|   // discussion of this technique.
 | |
|   struct Data : public D {
 | |
|     explicit Data(T* ptr_in) : ptr(ptr_in) {}
 | |
|     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {}
 | |
|     T* ptr;
 | |
|   };
 | |
| 
 | |
|   Data data_;
 | |
| 
 | |
|   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl);
 | |
| };
 | |
| 
 | |
| }  // namespace internal
 | |
| 
 | |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
 | |
| // automatically deletes the pointer it holds (if any).
 | |
| // That is, scoped_ptr<T> owns the T object that it points to.
 | |
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
 | |
| // Also like T*, scoped_ptr<T> is thread-compatible, and once you
 | |
| // dereference it, you get the thread safety guarantees of T.
 | |
| //
 | |
| // The size of scoped_ptr is small. On most compilers, when using the
 | |
| // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will
 | |
| // increase the size proportional to whatever state they need to have. See
 | |
| // comments inside scoped_ptr_impl<> for details.
 | |
| //
 | |
| // Current implementation targets having a strict subset of  C++11's
 | |
| // unique_ptr<> features. Known deficiencies include not supporting move-only
 | |
| // deleteres, function pointers as deleters, and deleters with reference
 | |
| // types.
 | |
| template <class T, class D = talk_base::DefaultDeleter<T> >
 | |
| class scoped_ptr {
 | |
|   TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
 | |
| 
 | |
|  public:
 | |
|   // The element and deleter types.
 | |
|   typedef T element_type;
 | |
|   typedef D deleter_type;
 | |
| 
 | |
|   // Constructor.  Defaults to initializing with NULL.
 | |
|   scoped_ptr() : impl_(NULL) { }
 | |
| 
 | |
|   // Constructor.  Takes ownership of p.
 | |
|   explicit scoped_ptr(element_type* p) : impl_(p) { }
 | |
| 
 | |
|   // Constructor.  Allows initialization of a stateful deleter.
 | |
|   scoped_ptr(element_type* p, const D& d) : impl_(p, d) { }
 | |
| 
 | |
|   // Constructor.  Allows construction from a scoped_ptr rvalue for a
 | |
|   // convertible type and deleter.
 | |
|   //
 | |
|   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct
 | |
|   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor
 | |
|   // has different post-conditions if D is a reference type. Since this
 | |
|   // implementation does not support deleters with reference type,
 | |
|   // we do not need a separate move constructor allowing us to avoid one
 | |
|   // use of SFINAE. You only need to care about this if you modify the
 | |
|   // implementation of scoped_ptr.
 | |
|   template <typename U, typename V>
 | |
|   scoped_ptr(scoped_ptr<U, V> other) : impl_(&other.impl_) {
 | |
|     COMPILE_ASSERT(!talk_base::is_array<U>::value, U_cannot_be_an_array);
 | |
|   }
 | |
| 
 | |
|   // Constructor.  Move constructor for C++03 move emulation of this type.
 | |
|   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
 | |
| 
 | |
|   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible
 | |
|   // type and deleter.
 | |
|   //
 | |
|   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from
 | |
|   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated
 | |
|   // form has different requirements on for move-only Deleters. Since this
 | |
|   // implementation does not support move-only Deleters, we do not need a
 | |
|   // separate move assignment operator allowing us to avoid one use of SFINAE.
 | |
|   // You only need to care about this if you modify the implementation of
 | |
|   // scoped_ptr.
 | |
|   template <typename U, typename V>
 | |
|   scoped_ptr& operator=(scoped_ptr<U, V> rhs) {
 | |
|     COMPILE_ASSERT(!talk_base::is_array<U>::value, U_cannot_be_an_array);
 | |
|     impl_.TakeState(&rhs.impl_);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Reset.  Deletes the currently owned object, if any.
 | |
|   // Then takes ownership of a new object, if given.
 | |
|   void reset(element_type* p = NULL) { impl_.reset(p); }
 | |
| 
 | |
|   // Accessors to get the owned object.
 | |
|   // operator* and operator-> will assert() if there is no current object.
 | |
|   element_type& operator*() const {
 | |
|     ASSERT(impl_.get() != NULL);
 | |
|     return *impl_.get();
 | |
|   }
 | |
|   element_type* operator->() const  {
 | |
|     ASSERT(impl_.get() != NULL);
 | |
|     return impl_.get();
 | |
|   }
 | |
|   element_type* get() const { return impl_.get(); }
 | |
| 
 | |
|   // Access to the deleter.
 | |
|   deleter_type& get_deleter() { return impl_.get_deleter(); }
 | |
|   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
 | |
| 
 | |
|   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
 | |
|   // implicitly convertible to a real bool (which is dangerous).
 | |
|   //
 | |
|   // Note that this trick is only safe when the == and != operators
 | |
|   // are declared explicitly, as otherwise "scoped_ptr1 ==
 | |
|   // scoped_ptr2" will compile but do the wrong thing (i.e., convert
 | |
|   // to Testable and then do the comparison).
 | |
|  private:
 | |
|   typedef talk_base::internal::scoped_ptr_impl<element_type, deleter_type>
 | |
|       scoped_ptr::*Testable;
 | |
| 
 | |
|  public:
 | |
|   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
 | |
| 
 | |
|   // Comparison operators.
 | |
|   // These return whether two scoped_ptr refer to the same object, not just to
 | |
|   // two different but equal objects.
 | |
|   bool operator==(const element_type* p) const { return impl_.get() == p; }
 | |
|   bool operator!=(const element_type* p) const { return impl_.get() != p; }
 | |
| 
 | |
|   // Swap two scoped pointers.
 | |
|   void swap(scoped_ptr& p2) {
 | |
|     impl_.swap(p2.impl_);
 | |
|   }
 | |
| 
 | |
|   // Release a pointer.
 | |
|   // The return value is the current pointer held by this object.
 | |
|   // If this object holds a NULL pointer, the return value is NULL.
 | |
|   // After this operation, this object will hold a NULL pointer,
 | |
|   // and will not own the object any more.
 | |
|   element_type* release() WARN_UNUSED_RESULT {
 | |
|     return impl_.release();
 | |
|   }
 | |
| 
 | |
|   // Delete the currently held pointer and return a pointer
 | |
|   // to allow overwriting of the current pointer address.
 | |
|   element_type** accept() WARN_UNUSED_RESULT {
 | |
|     return impl_.accept();
 | |
|   }
 | |
| 
 | |
|   // Return a pointer to the current pointer address.
 | |
|   element_type** use() WARN_UNUSED_RESULT {
 | |
|     return impl_.use();
 | |
|   }
 | |
| 
 | |
|   // C++98 doesn't support functions templates with default parameters which
 | |
|   // makes it hard to write a PassAs() that understands converting the deleter
 | |
|   // while preserving simple calling semantics.
 | |
|   //
 | |
|   // Until there is a use case for PassAs() with custom deleters, just ignore
 | |
|   // the custom deleter.
 | |
|   template <typename PassAsType>
 | |
|   scoped_ptr<PassAsType> PassAs() {
 | |
|     return scoped_ptr<PassAsType>(Pass());
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Needed to reach into |impl_| in the constructor.
 | |
|   template <typename U, typename V> friend class scoped_ptr;
 | |
|   talk_base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
 | |
| 
 | |
|   // Forbidden for API compatibility with std::unique_ptr.
 | |
|   explicit scoped_ptr(int disallow_construction_from_null);
 | |
| 
 | |
|   // Forbid comparison of scoped_ptr types.  If U != T, it totally
 | |
|   // doesn't make sense, and if U == T, it still doesn't make sense
 | |
|   // because you should never have the same object owned by two different
 | |
|   // scoped_ptrs.
 | |
|   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
 | |
|   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
 | |
| };
 | |
| 
 | |
| template <class T, class D>
 | |
| class scoped_ptr<T[], D> {
 | |
|   TALK_MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue)
 | |
| 
 | |
|  public:
 | |
|   // The element and deleter types.
 | |
|   typedef T element_type;
 | |
|   typedef D deleter_type;
 | |
| 
 | |
|   // Constructor.  Defaults to initializing with NULL.
 | |
|   scoped_ptr() : impl_(NULL) { }
 | |
| 
 | |
|   // Constructor. Stores the given array. Note that the argument's type
 | |
|   // must exactly match T*. In particular:
 | |
|   // - it cannot be a pointer to a type derived from T, because it is
 | |
|   //   inherently unsafe in the general case to access an array through a
 | |
|   //   pointer whose dynamic type does not match its static type (eg., if
 | |
|   //   T and the derived types had different sizes access would be
 | |
|   //   incorrectly calculated). Deletion is also always undefined
 | |
|   //   (C++98 [expr.delete]p3). If you're doing this, fix your code.
 | |
|   // - it cannot be NULL, because NULL is an integral expression, not a
 | |
|   //   pointer to T. Use the no-argument version instead of explicitly
 | |
|   //   passing NULL.
 | |
|   // - it cannot be const-qualified differently from T per unique_ptr spec
 | |
|   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting
 | |
|   //   to work around this may use implicit_cast<const T*>().
 | |
|   //   However, because of the first bullet in this comment, users MUST
 | |
|   //   NOT use implicit_cast<Base*>() to upcast the static type of the array.
 | |
|   explicit scoped_ptr(element_type* array) : impl_(array) { }
 | |
| 
 | |
|   // Constructor.  Move constructor for C++03 move emulation of this type.
 | |
|   scoped_ptr(RValue rvalue) : impl_(&rvalue.object->impl_) { }
 | |
| 
 | |
|   // operator=.  Move operator= for C++03 move emulation of this type.
 | |
|   scoped_ptr& operator=(RValue rhs) {
 | |
|     impl_.TakeState(&rhs.object->impl_);
 | |
|     return *this;
 | |
|   }
 | |
| 
 | |
|   // Reset.  Deletes the currently owned array, if any.
 | |
|   // Then takes ownership of a new object, if given.
 | |
|   void reset(element_type* array = NULL) { impl_.reset(array); }
 | |
| 
 | |
|   // Accessors to get the owned array.
 | |
|   element_type& operator[](size_t i) const {
 | |
|     ASSERT(impl_.get() != NULL);
 | |
|     return impl_.get()[i];
 | |
|   }
 | |
|   element_type* get() const { return impl_.get(); }
 | |
| 
 | |
|   // Access to the deleter.
 | |
|   deleter_type& get_deleter() { return impl_.get_deleter(); }
 | |
|   const deleter_type& get_deleter() const { return impl_.get_deleter(); }
 | |
| 
 | |
|   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not
 | |
|   // implicitly convertible to a real bool (which is dangerous).
 | |
|  private:
 | |
|   typedef talk_base::internal::scoped_ptr_impl<element_type, deleter_type>
 | |
|       scoped_ptr::*Testable;
 | |
| 
 | |
|  public:
 | |
|   operator Testable() const { return impl_.get() ? &scoped_ptr::impl_ : NULL; }
 | |
| 
 | |
|   // Comparison operators.
 | |
|   // These return whether two scoped_ptr refer to the same object, not just to
 | |
|   // two different but equal objects.
 | |
|   bool operator==(element_type* array) const { return impl_.get() == array; }
 | |
|   bool operator!=(element_type* array) const { return impl_.get() != array; }
 | |
| 
 | |
|   // Swap two scoped pointers.
 | |
|   void swap(scoped_ptr& p2) {
 | |
|     impl_.swap(p2.impl_);
 | |
|   }
 | |
| 
 | |
|   // Release a pointer.
 | |
|   // The return value is the current pointer held by this object.
 | |
|   // If this object holds a NULL pointer, the return value is NULL.
 | |
|   // After this operation, this object will hold a NULL pointer,
 | |
|   // and will not own the object any more.
 | |
|   element_type* release() WARN_UNUSED_RESULT {
 | |
|     return impl_.release();
 | |
|   }
 | |
| 
 | |
|   // Delete the currently held pointer and return a pointer
 | |
|   // to allow overwriting of the current pointer address.
 | |
|   element_type** accept() WARN_UNUSED_RESULT {
 | |
|     return impl_.accept();
 | |
|   }
 | |
| 
 | |
|   // Return a pointer to the current pointer address.
 | |
|   element_type** use() WARN_UNUSED_RESULT {
 | |
|     return impl_.use();
 | |
|   }
 | |
| 
 | |
|  private:
 | |
|   // Force element_type to be a complete type.
 | |
|   enum { type_must_be_complete = sizeof(element_type) };
 | |
| 
 | |
|   // Actually hold the data.
 | |
|   talk_base::internal::scoped_ptr_impl<element_type, deleter_type> impl_;
 | |
| 
 | |
|   // Disable initialization from any type other than element_type*, by
 | |
|   // providing a constructor that matches such an initialization, but is
 | |
|   // private and has no definition. This is disabled because it is not safe to
 | |
|   // call delete[] on an array whose static type does not match its dynamic
 | |
|   // type.
 | |
|   template <typename U> explicit scoped_ptr(U* array);
 | |
|   explicit scoped_ptr(int disallow_construction_from_null);
 | |
| 
 | |
|   // Disable reset() from any type other than element_type*, for the same
 | |
|   // reasons as the constructor above.
 | |
|   template <typename U> void reset(U* array);
 | |
|   void reset(int disallow_reset_from_null);
 | |
| 
 | |
|   // Forbid comparison of scoped_ptr types.  If U != T, it totally
 | |
|   // doesn't make sense, and if U == T, it still doesn't make sense
 | |
|   // because you should never have the same object owned by two different
 | |
|   // scoped_ptrs.
 | |
|   template <class U> bool operator==(scoped_ptr<U> const& p2) const;
 | |
|   template <class U> bool operator!=(scoped_ptr<U> const& p2) const;
 | |
| };
 | |
| 
 | |
| }  // namespace talk_base
 | |
| 
 | |
| // Free functions
 | |
| template <class T, class D>
 | |
| void swap(talk_base::scoped_ptr<T, D>& p1, talk_base::scoped_ptr<T, D>& p2) {
 | |
|   p1.swap(p2);
 | |
| }
 | |
| 
 | |
| template <class T, class D>
 | |
| bool operator==(T* p1, const talk_base::scoped_ptr<T, D>& p2) {
 | |
|   return p1 == p2.get();
 | |
| }
 | |
| 
 | |
| template <class T, class D>
 | |
| bool operator!=(T* p1, const talk_base::scoped_ptr<T, D>& p2) {
 | |
|   return p1 != p2.get();
 | |
| }
 | |
| 
 | |
| #endif  // #ifndef TALK_BASE_SCOPED_PTR_H__
 |