webrtc/talk/p2p/base/p2ptransportchannel_unittest.cc
jiayl@webrtc.org 46fb331bc5 Add support of multiple STUN servers in UDPPort.
Now UDPPort signals PortComplete or PortError when the Bind requests for all STUN servers are responded or failed. If any STUN bind is successful, PortComplete is signaled; otherwise, PortError is signaled.

I discovered a bug in SocketAddress while working on this. It didn't consider two addresses unequal if they have unresolved IP and different hosts. It's fixed now.

BUG=3310
R=mallinath@webrtc.org

Review URL: https://webrtc-codereview.appspot.com/13879004

git-svn-id: http://webrtc.googlecode.com/svn/trunk@6707 4adac7df-926f-26a2-2b94-8c16560cd09d
2014-07-16 20:55:31 +00:00

1728 lines
74 KiB
C++

/*
* libjingle
* Copyright 2009 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "talk/base/dscp.h"
#include "talk/base/fakenetwork.h"
#include "talk/base/firewallsocketserver.h"
#include "talk/base/gunit.h"
#include "talk/base/helpers.h"
#include "talk/base/logging.h"
#include "talk/base/natserver.h"
#include "talk/base/natsocketfactory.h"
#include "talk/base/physicalsocketserver.h"
#include "talk/base/proxyserver.h"
#include "talk/base/socketaddress.h"
#include "talk/base/ssladapter.h"
#include "talk/base/thread.h"
#include "talk/base/virtualsocketserver.h"
#include "talk/p2p/base/p2ptransportchannel.h"
#include "talk/p2p/base/testrelayserver.h"
#include "talk/p2p/base/teststunserver.h"
#include "talk/p2p/base/testturnserver.h"
#include "talk/p2p/client/basicportallocator.h"
using cricket::kDefaultPortAllocatorFlags;
using cricket::kMinimumStepDelay;
using cricket::kDefaultStepDelay;
using cricket::PORTALLOCATOR_ENABLE_SHARED_UFRAG;
using cricket::PORTALLOCATOR_ENABLE_SHARED_SOCKET;
using cricket::ServerAddresses;
using talk_base::SocketAddress;
static const int kDefaultTimeout = 1000;
static const int kOnlyLocalPorts = cricket::PORTALLOCATOR_DISABLE_STUN |
cricket::PORTALLOCATOR_DISABLE_RELAY |
cricket::PORTALLOCATOR_DISABLE_TCP;
// Addresses on the public internet.
static const SocketAddress kPublicAddrs[2] =
{ SocketAddress("11.11.11.11", 0), SocketAddress("22.22.22.22", 0) };
// IPv6 Addresses on the public internet.
static const SocketAddress kIPv6PublicAddrs[2] = {
SocketAddress("2400:4030:1:2c00:be30:abcd:efab:cdef", 0),
SocketAddress("2620:0:1000:1b03:2e41:38ff:fea6:f2a4", 0)
};
// For configuring multihomed clients.
static const SocketAddress kAlternateAddrs[2] =
{ SocketAddress("11.11.11.101", 0), SocketAddress("22.22.22.202", 0) };
// Addresses for HTTP proxy servers.
static const SocketAddress kHttpsProxyAddrs[2] =
{ SocketAddress("11.11.11.1", 443), SocketAddress("22.22.22.1", 443) };
// Addresses for SOCKS proxy servers.
static const SocketAddress kSocksProxyAddrs[2] =
{ SocketAddress("11.11.11.1", 1080), SocketAddress("22.22.22.1", 1080) };
// Internal addresses for NAT boxes.
static const SocketAddress kNatAddrs[2] =
{ SocketAddress("192.168.1.1", 0), SocketAddress("192.168.2.1", 0) };
// Private addresses inside the NAT private networks.
static const SocketAddress kPrivateAddrs[2] =
{ SocketAddress("192.168.1.11", 0), SocketAddress("192.168.2.22", 0) };
// For cascaded NATs, the internal addresses of the inner NAT boxes.
static const SocketAddress kCascadedNatAddrs[2] =
{ SocketAddress("192.168.10.1", 0), SocketAddress("192.168.20.1", 0) };
// For cascaded NATs, private addresses inside the inner private networks.
static const SocketAddress kCascadedPrivateAddrs[2] =
{ SocketAddress("192.168.10.11", 0), SocketAddress("192.168.20.22", 0) };
// The address of the public STUN server.
static const SocketAddress kStunAddr("99.99.99.1", cricket::STUN_SERVER_PORT);
// The addresses for the public relay server.
static const SocketAddress kRelayUdpIntAddr("99.99.99.2", 5000);
static const SocketAddress kRelayUdpExtAddr("99.99.99.3", 5001);
static const SocketAddress kRelayTcpIntAddr("99.99.99.2", 5002);
static const SocketAddress kRelayTcpExtAddr("99.99.99.3", 5003);
static const SocketAddress kRelaySslTcpIntAddr("99.99.99.2", 5004);
static const SocketAddress kRelaySslTcpExtAddr("99.99.99.3", 5005);
// The addresses for the public turn server.
static const SocketAddress kTurnUdpIntAddr("99.99.99.4",
cricket::STUN_SERVER_PORT);
static const SocketAddress kTurnUdpExtAddr("99.99.99.5", 0);
static const cricket::RelayCredentials kRelayCredentials("test", "test");
// Based on ICE_UFRAG_LENGTH
static const char* kIceUfrag[4] = {"TESTICEUFRAG0000", "TESTICEUFRAG0001",
"TESTICEUFRAG0002", "TESTICEUFRAG0003"};
// Based on ICE_PWD_LENGTH
static const char* kIcePwd[4] = {"TESTICEPWD00000000000000",
"TESTICEPWD00000000000001",
"TESTICEPWD00000000000002",
"TESTICEPWD00000000000003"};
static const uint64 kTiebreaker1 = 11111;
static const uint64 kTiebreaker2 = 22222;
// This test simulates 2 P2P endpoints that want to establish connectivity
// with each other over various network topologies and conditions, which can be
// specified in each individial test.
// A virtual network (via VirtualSocketServer) along with virtual firewalls and
// NATs (via Firewall/NATSocketServer) are used to simulate the various network
// conditions. We can configure the IP addresses of the endpoints,
// block various types of connectivity, or add arbitrary levels of NAT.
// We also run a STUN server and a relay server on the virtual network to allow
// our typical P2P mechanisms to do their thing.
// For each case, we expect the P2P stack to eventually settle on a specific
// form of connectivity to the other side. The test checks that the P2P
// negotiation successfully establishes connectivity within a certain time,
// and that the result is what we expect.
// Note that this class is a base class for use by other tests, who will provide
// specialized test behavior.
class P2PTransportChannelTestBase : public testing::Test,
public talk_base::MessageHandler,
public sigslot::has_slots<> {
public:
P2PTransportChannelTestBase()
: main_(talk_base::Thread::Current()),
pss_(new talk_base::PhysicalSocketServer),
vss_(new talk_base::VirtualSocketServer(pss_.get())),
nss_(new talk_base::NATSocketServer(vss_.get())),
ss_(new talk_base::FirewallSocketServer(nss_.get())),
ss_scope_(ss_.get()),
stun_server_(main_, kStunAddr),
turn_server_(main_, kTurnUdpIntAddr, kTurnUdpExtAddr),
relay_server_(main_, kRelayUdpIntAddr, kRelayUdpExtAddr,
kRelayTcpIntAddr, kRelayTcpExtAddr,
kRelaySslTcpIntAddr, kRelaySslTcpExtAddr),
socks_server1_(ss_.get(), kSocksProxyAddrs[0],
ss_.get(), kSocksProxyAddrs[0]),
socks_server2_(ss_.get(), kSocksProxyAddrs[1],
ss_.get(), kSocksProxyAddrs[1]),
clear_remote_candidates_ufrag_pwd_(false),
force_relay_(false) {
ep1_.role_ = cricket::ICEROLE_CONTROLLING;
ep2_.role_ = cricket::ICEROLE_CONTROLLED;
ServerAddresses stun_servers;
stun_servers.insert(kStunAddr);
ep1_.allocator_.reset(new cricket::BasicPortAllocator(
&ep1_.network_manager_,
stun_servers, kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr));
ep2_.allocator_.reset(new cricket::BasicPortAllocator(
&ep2_.network_manager_,
stun_servers, kRelayUdpIntAddr, kRelayTcpIntAddr, kRelaySslTcpIntAddr));
}
protected:
enum Config {
OPEN, // Open to the Internet
NAT_FULL_CONE, // NAT, no filtering
NAT_ADDR_RESTRICTED, // NAT, must send to an addr to recv
NAT_PORT_RESTRICTED, // NAT, must send to an addr+port to recv
NAT_SYMMETRIC, // NAT, endpoint-dependent bindings
NAT_DOUBLE_CONE, // Double NAT, both cone
NAT_SYMMETRIC_THEN_CONE, // Double NAT, symmetric outer, cone inner
BLOCK_UDP, // Firewall, UDP in/out blocked
BLOCK_UDP_AND_INCOMING_TCP, // Firewall, UDP in/out and TCP in blocked
BLOCK_ALL_BUT_OUTGOING_HTTP, // Firewall, only TCP out on 80/443
PROXY_HTTPS, // All traffic through HTTPS proxy
PROXY_SOCKS, // All traffic through SOCKS proxy
NUM_CONFIGS
};
struct Result {
Result(const std::string& lt, const std::string& lp,
const std::string& rt, const std::string& rp,
const std::string& lt2, const std::string& lp2,
const std::string& rt2, const std::string& rp2, int wait)
: local_type(lt), local_proto(lp), remote_type(rt), remote_proto(rp),
local_type2(lt2), local_proto2(lp2), remote_type2(rt2),
remote_proto2(rp2), connect_wait(wait) {
}
std::string local_type;
std::string local_proto;
std::string remote_type;
std::string remote_proto;
std::string local_type2;
std::string local_proto2;
std::string remote_type2;
std::string remote_proto2;
int connect_wait;
};
struct ChannelData {
bool CheckData(const char* data, int len) {
bool ret = false;
if (!ch_packets_.empty()) {
std::string packet = ch_packets_.front();
ret = (packet == std::string(data, len));
ch_packets_.pop_front();
}
return ret;
}
std::string name_; // TODO - Currently not used.
std::list<std::string> ch_packets_;
talk_base::scoped_ptr<cricket::P2PTransportChannel> ch_;
};
struct Endpoint {
Endpoint() : signaling_delay_(0), role_(cricket::ICEROLE_UNKNOWN),
tiebreaker_(0), role_conflict_(false),
protocol_type_(cricket::ICEPROTO_GOOGLE) {}
bool HasChannel(cricket::TransportChannel* ch) {
return (ch == cd1_.ch_.get() || ch == cd2_.ch_.get());
}
ChannelData* GetChannelData(cricket::TransportChannel* ch) {
if (!HasChannel(ch)) return NULL;
if (cd1_.ch_.get() == ch)
return &cd1_;
else
return &cd2_;
}
void SetSignalingDelay(int delay) { signaling_delay_ = delay; }
void SetIceRole(cricket::IceRole role) { role_ = role; }
cricket::IceRole ice_role() { return role_; }
void SetIceProtocolType(cricket::IceProtocolType type) {
protocol_type_ = type;
}
cricket::IceProtocolType protocol_type() { return protocol_type_; }
void SetIceTiebreaker(uint64 tiebreaker) { tiebreaker_ = tiebreaker; }
uint64 GetIceTiebreaker() { return tiebreaker_; }
void OnRoleConflict(bool role_conflict) { role_conflict_ = role_conflict; }
bool role_conflict() { return role_conflict_; }
void SetAllocationStepDelay(uint32 delay) {
allocator_->set_step_delay(delay);
}
void SetAllowTcpListen(bool allow_tcp_listen) {
allocator_->set_allow_tcp_listen(allow_tcp_listen);
}
talk_base::FakeNetworkManager network_manager_;
talk_base::scoped_ptr<cricket::BasicPortAllocator> allocator_;
ChannelData cd1_;
ChannelData cd2_;
int signaling_delay_;
cricket::IceRole role_;
uint64 tiebreaker_;
bool role_conflict_;
cricket::IceProtocolType protocol_type_;
};
struct CandidateData : public talk_base::MessageData {
CandidateData(cricket::TransportChannel* ch, const cricket::Candidate& c)
: channel(ch), candidate(c) {
}
cricket::TransportChannel* channel;
cricket::Candidate candidate;
};
ChannelData* GetChannelData(cricket::TransportChannel* channel) {
if (ep1_.HasChannel(channel))
return ep1_.GetChannelData(channel);
else
return ep2_.GetChannelData(channel);
}
void CreateChannels(int num) {
std::string ice_ufrag_ep1_cd1_ch = kIceUfrag[0];
std::string ice_pwd_ep1_cd1_ch = kIcePwd[0];
std::string ice_ufrag_ep2_cd1_ch = kIceUfrag[1];
std::string ice_pwd_ep2_cd1_ch = kIcePwd[1];
ep1_.cd1_.ch_.reset(CreateChannel(
0, cricket::ICE_CANDIDATE_COMPONENT_DEFAULT,
ice_ufrag_ep1_cd1_ch, ice_pwd_ep1_cd1_ch,
ice_ufrag_ep2_cd1_ch, ice_pwd_ep2_cd1_ch));
ep2_.cd1_.ch_.reset(CreateChannel(
1, cricket::ICE_CANDIDATE_COMPONENT_DEFAULT,
ice_ufrag_ep2_cd1_ch, ice_pwd_ep2_cd1_ch,
ice_ufrag_ep1_cd1_ch, ice_pwd_ep1_cd1_ch));
if (num == 2) {
std::string ice_ufrag_ep1_cd2_ch = kIceUfrag[2];
std::string ice_pwd_ep1_cd2_ch = kIcePwd[2];
std::string ice_ufrag_ep2_cd2_ch = kIceUfrag[3];
std::string ice_pwd_ep2_cd2_ch = kIcePwd[3];
// In BUNDLE each endpoint must share common ICE credentials.
if (ep1_.allocator_->flags() & cricket::PORTALLOCATOR_ENABLE_BUNDLE) {
ice_ufrag_ep1_cd2_ch = ice_ufrag_ep1_cd1_ch;
ice_pwd_ep1_cd2_ch = ice_pwd_ep1_cd1_ch;
}
if (ep2_.allocator_->flags() & cricket::PORTALLOCATOR_ENABLE_BUNDLE) {
ice_ufrag_ep2_cd2_ch = ice_ufrag_ep2_cd1_ch;
ice_pwd_ep2_cd2_ch = ice_pwd_ep2_cd1_ch;
}
ep1_.cd2_.ch_.reset(CreateChannel(
0, cricket::ICE_CANDIDATE_COMPONENT_DEFAULT,
ice_ufrag_ep1_cd2_ch, ice_pwd_ep1_cd2_ch,
ice_ufrag_ep2_cd2_ch, ice_pwd_ep2_cd2_ch));
ep2_.cd2_.ch_.reset(CreateChannel(
1, cricket::ICE_CANDIDATE_COMPONENT_DEFAULT,
ice_ufrag_ep2_cd2_ch, ice_pwd_ep2_cd2_ch,
ice_ufrag_ep1_cd2_ch, ice_pwd_ep1_cd2_ch));
}
}
cricket::P2PTransportChannel* CreateChannel(
int endpoint,
int component,
const std::string& local_ice_ufrag,
const std::string& local_ice_pwd,
const std::string& remote_ice_ufrag,
const std::string& remote_ice_pwd) {
cricket::P2PTransportChannel* channel = new cricket::P2PTransportChannel(
"test content name", component, NULL, GetAllocator(endpoint));
channel->SignalRequestSignaling.connect(
this, &P2PTransportChannelTestBase::OnChannelRequestSignaling);
channel->SignalCandidateReady.connect(this,
&P2PTransportChannelTestBase::OnCandidate);
channel->SignalReadPacket.connect(
this, &P2PTransportChannelTestBase::OnReadPacket);
channel->SignalRoleConflict.connect(
this, &P2PTransportChannelTestBase::OnRoleConflict);
channel->SetIceProtocolType(GetEndpoint(endpoint)->protocol_type());
channel->SetIceCredentials(local_ice_ufrag, local_ice_pwd);
if (clear_remote_candidates_ufrag_pwd_) {
// This only needs to be set if we're clearing them from the
// candidates. Some unit tests rely on this not being set.
channel->SetRemoteIceCredentials(remote_ice_ufrag, remote_ice_pwd);
}
channel->SetIceRole(GetEndpoint(endpoint)->ice_role());
channel->SetIceTiebreaker(GetEndpoint(endpoint)->GetIceTiebreaker());
channel->Connect();
return channel;
}
void DestroyChannels() {
ep1_.cd1_.ch_.reset();
ep2_.cd1_.ch_.reset();
ep1_.cd2_.ch_.reset();
ep2_.cd2_.ch_.reset();
}
cricket::P2PTransportChannel* ep1_ch1() { return ep1_.cd1_.ch_.get(); }
cricket::P2PTransportChannel* ep1_ch2() { return ep1_.cd2_.ch_.get(); }
cricket::P2PTransportChannel* ep2_ch1() { return ep2_.cd1_.ch_.get(); }
cricket::P2PTransportChannel* ep2_ch2() { return ep2_.cd2_.ch_.get(); }
// Common results.
static const Result kLocalUdpToLocalUdp;
static const Result kLocalUdpToStunUdp;
static const Result kLocalUdpToPrflxUdp;
static const Result kPrflxUdpToLocalUdp;
static const Result kStunUdpToLocalUdp;
static const Result kStunUdpToStunUdp;
static const Result kPrflxUdpToStunUdp;
static const Result kLocalUdpToRelayUdp;
static const Result kPrflxUdpToRelayUdp;
static const Result kLocalTcpToLocalTcp;
static const Result kLocalTcpToPrflxTcp;
static const Result kPrflxTcpToLocalTcp;
static void SetUpTestCase() {
talk_base::InitializeSSL();
}
static void TearDownTestCase() {
talk_base::CleanupSSL();
}
talk_base::NATSocketServer* nat() { return nss_.get(); }
talk_base::FirewallSocketServer* fw() { return ss_.get(); }
Endpoint* GetEndpoint(int endpoint) {
if (endpoint == 0) {
return &ep1_;
} else if (endpoint == 1) {
return &ep2_;
} else {
return NULL;
}
}
cricket::PortAllocator* GetAllocator(int endpoint) {
return GetEndpoint(endpoint)->allocator_.get();
}
void AddAddress(int endpoint, const SocketAddress& addr) {
GetEndpoint(endpoint)->network_manager_.AddInterface(addr);
}
void RemoveAddress(int endpoint, const SocketAddress& addr) {
GetEndpoint(endpoint)->network_manager_.RemoveInterface(addr);
}
void SetProxy(int endpoint, talk_base::ProxyType type) {
talk_base::ProxyInfo info;
info.type = type;
info.address = (type == talk_base::PROXY_HTTPS) ?
kHttpsProxyAddrs[endpoint] : kSocksProxyAddrs[endpoint];
GetAllocator(endpoint)->set_proxy("unittest/1.0", info);
}
void SetAllocatorFlags(int endpoint, int flags) {
GetAllocator(endpoint)->set_flags(flags);
}
void SetSignalingDelay(int endpoint, int delay) {
GetEndpoint(endpoint)->SetSignalingDelay(delay);
}
void SetIceProtocol(int endpoint, cricket::IceProtocolType type) {
GetEndpoint(endpoint)->SetIceProtocolType(type);
}
void SetIceRole(int endpoint, cricket::IceRole role) {
GetEndpoint(endpoint)->SetIceRole(role);
}
void SetIceTiebreaker(int endpoint, uint64 tiebreaker) {
GetEndpoint(endpoint)->SetIceTiebreaker(tiebreaker);
}
bool GetRoleConflict(int endpoint) {
return GetEndpoint(endpoint)->role_conflict();
}
void SetAllocationStepDelay(int endpoint, uint32 delay) {
return GetEndpoint(endpoint)->SetAllocationStepDelay(delay);
}
void SetAllowTcpListen(int endpoint, bool allow_tcp_listen) {
return GetEndpoint(endpoint)->SetAllowTcpListen(allow_tcp_listen);
}
void Test(const Result& expected) {
int32 connect_start = talk_base::Time(), connect_time;
// Create the channels and wait for them to connect.
CreateChannels(1);
EXPECT_TRUE_WAIT_MARGIN(ep1_ch1() != NULL &&
ep2_ch1() != NULL &&
ep1_ch1()->readable() &&
ep1_ch1()->writable() &&
ep2_ch1()->readable() &&
ep2_ch1()->writable(),
expected.connect_wait,
1000);
connect_time = talk_base::TimeSince(connect_start);
if (connect_time < expected.connect_wait) {
LOG(LS_INFO) << "Connect time: " << connect_time << " ms";
} else {
LOG(LS_INFO) << "Connect time: " << "TIMEOUT ("
<< expected.connect_wait << " ms)";
}
// Allow a few turns of the crank for the best connections to emerge.
// This may take up to 2 seconds.
if (ep1_ch1()->best_connection() &&
ep2_ch1()->best_connection()) {
int32 converge_start = talk_base::Time(), converge_time;
int converge_wait = 2000;
EXPECT_TRUE_WAIT_MARGIN(
LocalCandidate(ep1_ch1())->type() == expected.local_type &&
LocalCandidate(ep1_ch1())->protocol() == expected.local_proto &&
RemoteCandidate(ep1_ch1())->type() == expected.remote_type &&
RemoteCandidate(ep1_ch1())->protocol() == expected.remote_proto,
converge_wait,
converge_wait);
// Also do EXPECT_EQ on each part so that failures are more verbose.
EXPECT_EQ(expected.local_type, LocalCandidate(ep1_ch1())->type());
EXPECT_EQ(expected.local_proto, LocalCandidate(ep1_ch1())->protocol());
EXPECT_EQ(expected.remote_type, RemoteCandidate(ep1_ch1())->type());
EXPECT_EQ(expected.remote_proto, RemoteCandidate(ep1_ch1())->protocol());
// Verifying remote channel best connection information. This is done
// only for the RFC 5245 as controlled agent will use USE-CANDIDATE
// from controlling (ep1) agent. We can easily predict from EP1 result
// matrix.
if (ep2_.protocol_type_ == cricket::ICEPROTO_RFC5245) {
// Checking for best connection candidates information at remote.
EXPECT_TRUE_WAIT(
LocalCandidate(ep2_ch1())->type() == expected.local_type2 &&
LocalCandidate(ep2_ch1())->protocol() == expected.local_proto2 &&
RemoteCandidate(ep2_ch1())->protocol() == expected.remote_proto2,
kDefaultTimeout);
// For verbose
EXPECT_EQ(expected.local_type2, LocalCandidate(ep2_ch1())->type());
EXPECT_EQ(expected.local_proto2, LocalCandidate(ep2_ch1())->protocol());
EXPECT_EQ(expected.remote_proto2,
RemoteCandidate(ep2_ch1())->protocol());
// Removed remote_type comparision aginst best connection remote
// candidate. This is done to handle remote type discrepancy from
// local to stun based on the test type.
// For example in case of Open -> NAT, ep2 channels will have LULU
// and in other cases like NAT -> NAT it will be LUSU. To avoid these
// mismatches and we are doing comparision in different way.
// i.e. when don't match its remote type is either local or stun.
// TODO(ronghuawu): Refine the test criteria.
// https://code.google.com/p/webrtc/issues/detail?id=1953
if (expected.remote_type2 != RemoteCandidate(ep2_ch1())->type()) {
EXPECT_TRUE(expected.remote_type2 == cricket::LOCAL_PORT_TYPE ||
expected.remote_type2 == cricket::STUN_PORT_TYPE);
EXPECT_TRUE(
RemoteCandidate(ep2_ch1())->type() == cricket::LOCAL_PORT_TYPE ||
RemoteCandidate(ep2_ch1())->type() == cricket::STUN_PORT_TYPE ||
RemoteCandidate(ep2_ch1())->type() == cricket::PRFLX_PORT_TYPE);
}
}
converge_time = talk_base::TimeSince(converge_start);
if (converge_time < converge_wait) {
LOG(LS_INFO) << "Converge time: " << converge_time << " ms";
} else {
LOG(LS_INFO) << "Converge time: " << "TIMEOUT ("
<< converge_wait << " ms)";
}
}
// Try sending some data to other end.
TestSendRecv(1);
// Destroy the channels, and wait for them to be fully cleaned up.
DestroyChannels();
}
void TestSendRecv(int channels) {
for (int i = 0; i < 10; ++i) {
const char* data = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890";
int len = static_cast<int>(strlen(data));
// local_channel1 <==> remote_channel1
EXPECT_EQ_WAIT(len, SendData(ep1_ch1(), data, len), 1000);
EXPECT_TRUE_WAIT(CheckDataOnChannel(ep2_ch1(), data, len), 1000);
EXPECT_EQ_WAIT(len, SendData(ep2_ch1(), data, len), 1000);
EXPECT_TRUE_WAIT(CheckDataOnChannel(ep1_ch1(), data, len), 1000);
if (channels == 2 && ep1_ch2() && ep2_ch2()) {
// local_channel2 <==> remote_channel2
EXPECT_EQ_WAIT(len, SendData(ep1_ch2(), data, len), 1000);
EXPECT_TRUE_WAIT(CheckDataOnChannel(ep2_ch2(), data, len), 1000);
EXPECT_EQ_WAIT(len, SendData(ep2_ch2(), data, len), 1000);
EXPECT_TRUE_WAIT(CheckDataOnChannel(ep1_ch2(), data, len), 1000);
}
}
}
// This test waits for the transport to become readable and writable on both
// end points. Once they are, the end points set new local ice credentials to
// restart the ice gathering. Finally it waits for the transport to select a
// new connection using the newly generated ice candidates.
// Before calling this function the end points must be configured.
void TestHandleIceUfragPasswordChanged() {
ep1_ch1()->SetRemoteIceCredentials(kIceUfrag[1], kIcePwd[1]);
ep2_ch1()->SetRemoteIceCredentials(kIceUfrag[0], kIcePwd[0]);
EXPECT_TRUE_WAIT_MARGIN(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000, 1000);
const cricket::Candidate* old_local_candidate1 = LocalCandidate(ep1_ch1());
const cricket::Candidate* old_local_candidate2 = LocalCandidate(ep2_ch1());
const cricket::Candidate* old_remote_candidate1 =
RemoteCandidate(ep1_ch1());
const cricket::Candidate* old_remote_candidate2 =
RemoteCandidate(ep2_ch1());
ep1_ch1()->SetIceCredentials(kIceUfrag[2], kIcePwd[2]);
ep1_ch1()->SetRemoteIceCredentials(kIceUfrag[3], kIcePwd[3]);
ep2_ch1()->SetIceCredentials(kIceUfrag[3], kIcePwd[3]);
ep2_ch1()->SetRemoteIceCredentials(kIceUfrag[2], kIcePwd[2]);
EXPECT_TRUE_WAIT_MARGIN(LocalCandidate(ep1_ch1())->generation() !=
old_local_candidate1->generation(),
1000, 1000);
EXPECT_TRUE_WAIT_MARGIN(LocalCandidate(ep2_ch1())->generation() !=
old_local_candidate2->generation(),
1000, 1000);
EXPECT_TRUE_WAIT_MARGIN(RemoteCandidate(ep1_ch1())->generation() !=
old_remote_candidate1->generation(),
1000, 1000);
EXPECT_TRUE_WAIT_MARGIN(RemoteCandidate(ep2_ch1())->generation() !=
old_remote_candidate2->generation(),
1000, 1000);
EXPECT_EQ(1u, RemoteCandidate(ep2_ch1())->generation());
EXPECT_EQ(1u, RemoteCandidate(ep1_ch1())->generation());
}
void TestSignalRoleConflict() {
SetIceProtocol(0, cricket::ICEPROTO_RFC5245);
SetIceTiebreaker(0, kTiebreaker1); // Default EP1 is in controlling state.
SetIceProtocol(1, cricket::ICEPROTO_RFC5245);
SetIceRole(1, cricket::ICEROLE_CONTROLLING);
SetIceTiebreaker(1, kTiebreaker2);
// Creating channels with both channels role set to CONTROLLING.
CreateChannels(1);
// Since both the channels initiated with controlling state and channel2
// has higher tiebreaker value, channel1 should receive SignalRoleConflict.
EXPECT_TRUE_WAIT(GetRoleConflict(0), 1000);
EXPECT_FALSE(GetRoleConflict(1));
EXPECT_TRUE_WAIT(ep1_ch1()->readable() &&
ep1_ch1()->writable() &&
ep2_ch1()->readable() &&
ep2_ch1()->writable(),
1000);
EXPECT_TRUE(ep1_ch1()->best_connection() &&
ep2_ch1()->best_connection());
TestSendRecv(1);
}
void TestHybridConnectivity(cricket::IceProtocolType proto) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
SetAllocationStepDelay(0, kMinimumStepDelay);
SetAllocationStepDelay(1, kMinimumStepDelay);
SetIceRole(0, cricket::ICEROLE_CONTROLLING);
SetIceProtocol(0, cricket::ICEPROTO_HYBRID);
SetIceTiebreaker(0, kTiebreaker1);
SetIceRole(1, cricket::ICEROLE_CONTROLLED);
SetIceProtocol(1, proto);
SetIceTiebreaker(1, kTiebreaker2);
CreateChannels(1);
// When channel is in hybrid and it's controlling agent, channel will
// receive ping request from the remote. Hence connection is readable.
// Since channel is in hybrid, it will not send any pings, so no writable
// connection. Since channel2 is in controlled state, it will not have
// any connections which are readable or writable, as it didn't received
// pings (or none) with USE-CANDIDATE attribute.
EXPECT_TRUE_WAIT(ep1_ch1()->readable(), 1000);
// Set real protocol type.
ep1_ch1()->SetIceProtocolType(proto);
// Channel should able to send ping requests and connections become writable
// in both directions.
EXPECT_TRUE_WAIT(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000);
EXPECT_TRUE(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[1]));
TestSendRecv(1);
DestroyChannels();
}
void OnChannelRequestSignaling(cricket::TransportChannelImpl* channel) {
channel->OnSignalingReady();
}
// We pass the candidates directly to the other side.
void OnCandidate(cricket::TransportChannelImpl* ch,
const cricket::Candidate& c) {
if (force_relay_ && c.type() != cricket::RELAY_PORT_TYPE)
return;
main_->PostDelayed(GetEndpoint(ch)->signaling_delay_, this, 0,
new CandidateData(ch, c));
}
void OnMessage(talk_base::Message* msg) {
talk_base::scoped_ptr<CandidateData> data(
static_cast<CandidateData*>(msg->pdata));
cricket::P2PTransportChannel* rch = GetRemoteChannel(data->channel);
cricket::Candidate c = data->candidate;
if (clear_remote_candidates_ufrag_pwd_) {
c.set_username("");
c.set_password("");
}
LOG(LS_INFO) << "Candidate(" << data->channel->component() << "->"
<< rch->component() << "): " << c.type() << ", " << c.protocol()
<< ", " << c.address().ToString() << ", " << c.username()
<< ", " << c.generation();
rch->OnCandidate(c);
}
void OnReadPacket(cricket::TransportChannel* channel, const char* data,
size_t len, const talk_base::PacketTime& packet_time,
int flags) {
std::list<std::string>& packets = GetPacketList(channel);
packets.push_front(std::string(data, len));
}
void OnRoleConflict(cricket::TransportChannelImpl* channel) {
GetEndpoint(channel)->OnRoleConflict(true);
cricket::IceRole new_role =
GetEndpoint(channel)->ice_role() == cricket::ICEROLE_CONTROLLING ?
cricket::ICEROLE_CONTROLLED : cricket::ICEROLE_CONTROLLING;
channel->SetIceRole(new_role);
}
int SendData(cricket::TransportChannel* channel,
const char* data, size_t len) {
talk_base::PacketOptions options;
return channel->SendPacket(data, len, options, 0);
}
bool CheckDataOnChannel(cricket::TransportChannel* channel,
const char* data, int len) {
return GetChannelData(channel)->CheckData(data, len);
}
static const cricket::Candidate* LocalCandidate(
cricket::P2PTransportChannel* ch) {
return (ch && ch->best_connection()) ?
&ch->best_connection()->local_candidate() : NULL;
}
static const cricket::Candidate* RemoteCandidate(
cricket::P2PTransportChannel* ch) {
return (ch && ch->best_connection()) ?
&ch->best_connection()->remote_candidate() : NULL;
}
Endpoint* GetEndpoint(cricket::TransportChannel* ch) {
if (ep1_.HasChannel(ch)) {
return &ep1_;
} else if (ep2_.HasChannel(ch)) {
return &ep2_;
} else {
return NULL;
}
}
cricket::P2PTransportChannel* GetRemoteChannel(
cricket::TransportChannel* ch) {
if (ch == ep1_ch1())
return ep2_ch1();
else if (ch == ep1_ch2())
return ep2_ch2();
else if (ch == ep2_ch1())
return ep1_ch1();
else if (ch == ep2_ch2())
return ep1_ch2();
else
return NULL;
}
std::list<std::string>& GetPacketList(cricket::TransportChannel* ch) {
return GetChannelData(ch)->ch_packets_;
}
void set_clear_remote_candidates_ufrag_pwd(bool clear) {
clear_remote_candidates_ufrag_pwd_ = clear;
}
void set_force_relay(bool relay) {
force_relay_ = relay;
}
private:
talk_base::Thread* main_;
talk_base::scoped_ptr<talk_base::PhysicalSocketServer> pss_;
talk_base::scoped_ptr<talk_base::VirtualSocketServer> vss_;
talk_base::scoped_ptr<talk_base::NATSocketServer> nss_;
talk_base::scoped_ptr<talk_base::FirewallSocketServer> ss_;
talk_base::SocketServerScope ss_scope_;
cricket::TestStunServer stun_server_;
cricket::TestTurnServer turn_server_;
cricket::TestRelayServer relay_server_;
talk_base::SocksProxyServer socks_server1_;
talk_base::SocksProxyServer socks_server2_;
Endpoint ep1_;
Endpoint ep2_;
bool clear_remote_candidates_ufrag_pwd_;
bool force_relay_;
};
// The tests have only a few outcomes, which we predefine.
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kLocalUdpToLocalUdp("local", "udp", "local", "udp",
"local", "udp", "local", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kLocalUdpToStunUdp("local", "udp", "stun", "udp",
"local", "udp", "stun", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kLocalUdpToPrflxUdp("local", "udp", "prflx", "udp",
"prflx", "udp", "local", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kPrflxUdpToLocalUdp("prflx", "udp", "local", "udp",
"local", "udp", "prflx", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kStunUdpToLocalUdp("stun", "udp", "local", "udp",
"local", "udp", "stun", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kStunUdpToStunUdp("stun", "udp", "stun", "udp",
"stun", "udp", "stun", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kPrflxUdpToStunUdp("prflx", "udp", "stun", "udp",
"local", "udp", "prflx", "udp", 1000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kLocalUdpToRelayUdp("local", "udp", "relay", "udp",
"relay", "udp", "local", "udp", 2000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kPrflxUdpToRelayUdp("prflx", "udp", "relay", "udp",
"relay", "udp", "prflx", "udp", 2000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kLocalTcpToLocalTcp("local", "tcp", "local", "tcp",
"local", "tcp", "local", "tcp", 3000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kLocalTcpToPrflxTcp("local", "tcp", "prflx", "tcp",
"prflx", "tcp", "local", "tcp", 3000);
const P2PTransportChannelTestBase::Result P2PTransportChannelTestBase::
kPrflxTcpToLocalTcp("prflx", "tcp", "local", "tcp",
"local", "tcp", "prflx", "tcp", 3000);
// Test the matrix of all the connectivity types we expect to see in the wild.
// Just test every combination of the configs in the Config enum.
class P2PTransportChannelTest : public P2PTransportChannelTestBase {
protected:
static const Result* kMatrix[NUM_CONFIGS][NUM_CONFIGS];
static const Result* kMatrixSharedUfrag[NUM_CONFIGS][NUM_CONFIGS];
static const Result* kMatrixSharedSocketAsGice[NUM_CONFIGS][NUM_CONFIGS];
static const Result* kMatrixSharedSocketAsIce[NUM_CONFIGS][NUM_CONFIGS];
void ConfigureEndpoints(Config config1, Config config2,
int allocator_flags1, int allocator_flags2,
int delay1, int delay2,
cricket::IceProtocolType type) {
// Ideally we want to use TURN server for both GICE and ICE, but in case
// of GICE, TURN server usage is not producing results reliabally.
// TODO(mallinath): Remove Relay and use TURN server for all tests.
ServerAddresses stun_servers;
stun_servers.insert(kStunAddr);
GetEndpoint(0)->allocator_.reset(
new cricket::BasicPortAllocator(&(GetEndpoint(0)->network_manager_),
stun_servers,
talk_base::SocketAddress(), talk_base::SocketAddress(),
talk_base::SocketAddress()));
GetEndpoint(1)->allocator_.reset(
new cricket::BasicPortAllocator(&(GetEndpoint(1)->network_manager_),
stun_servers,
talk_base::SocketAddress(), talk_base::SocketAddress(),
talk_base::SocketAddress()));
cricket::RelayServerConfig relay_server(cricket::RELAY_GTURN);
if (type == cricket::ICEPROTO_RFC5245) {
relay_server.type = cricket::RELAY_TURN;
relay_server.credentials = kRelayCredentials;
relay_server.ports.push_back(cricket::ProtocolAddress(
kTurnUdpIntAddr, cricket::PROTO_UDP, false));
} else {
relay_server.ports.push_back(cricket::ProtocolAddress(
kRelayUdpIntAddr, cricket::PROTO_UDP, false));
relay_server.ports.push_back(cricket::ProtocolAddress(
kRelayTcpIntAddr, cricket::PROTO_TCP, false));
relay_server.ports.push_back(cricket::ProtocolAddress(
kRelaySslTcpIntAddr, cricket::PROTO_SSLTCP, false));
}
GetEndpoint(0)->allocator_->AddRelay(relay_server);
GetEndpoint(1)->allocator_->AddRelay(relay_server);
ConfigureEndpoint(0, config1);
SetIceProtocol(0, type);
SetAllocatorFlags(0, allocator_flags1);
SetAllocationStepDelay(0, delay1);
ConfigureEndpoint(1, config2);
SetIceProtocol(1, type);
SetAllocatorFlags(1, allocator_flags2);
SetAllocationStepDelay(1, delay2);
}
void ConfigureEndpoint(int endpoint, Config config) {
switch (config) {
case OPEN:
AddAddress(endpoint, kPublicAddrs[endpoint]);
break;
case NAT_FULL_CONE:
case NAT_ADDR_RESTRICTED:
case NAT_PORT_RESTRICTED:
case NAT_SYMMETRIC:
AddAddress(endpoint, kPrivateAddrs[endpoint]);
// Add a single NAT of the desired type
nat()->AddTranslator(kPublicAddrs[endpoint], kNatAddrs[endpoint],
static_cast<talk_base::NATType>(config - NAT_FULL_CONE))->
AddClient(kPrivateAddrs[endpoint]);
break;
case NAT_DOUBLE_CONE:
case NAT_SYMMETRIC_THEN_CONE:
AddAddress(endpoint, kCascadedPrivateAddrs[endpoint]);
// Add a two cascaded NATs of the desired types
nat()->AddTranslator(kPublicAddrs[endpoint], kNatAddrs[endpoint],
(config == NAT_DOUBLE_CONE) ?
talk_base::NAT_OPEN_CONE : talk_base::NAT_SYMMETRIC)->
AddTranslator(kPrivateAddrs[endpoint], kCascadedNatAddrs[endpoint],
talk_base::NAT_OPEN_CONE)->
AddClient(kCascadedPrivateAddrs[endpoint]);
break;
case BLOCK_UDP:
case BLOCK_UDP_AND_INCOMING_TCP:
case BLOCK_ALL_BUT_OUTGOING_HTTP:
case PROXY_HTTPS:
case PROXY_SOCKS:
AddAddress(endpoint, kPublicAddrs[endpoint]);
// Block all UDP
fw()->AddRule(false, talk_base::FP_UDP, talk_base::FD_ANY,
kPublicAddrs[endpoint]);
if (config == BLOCK_UDP_AND_INCOMING_TCP) {
// Block TCP inbound to the endpoint
fw()->AddRule(false, talk_base::FP_TCP, SocketAddress(),
kPublicAddrs[endpoint]);
} else if (config == BLOCK_ALL_BUT_OUTGOING_HTTP) {
// Block all TCP to/from the endpoint except 80/443 out
fw()->AddRule(true, talk_base::FP_TCP, kPublicAddrs[endpoint],
SocketAddress(talk_base::IPAddress(INADDR_ANY), 80));
fw()->AddRule(true, talk_base::FP_TCP, kPublicAddrs[endpoint],
SocketAddress(talk_base::IPAddress(INADDR_ANY), 443));
fw()->AddRule(false, talk_base::FP_TCP, talk_base::FD_ANY,
kPublicAddrs[endpoint]);
} else if (config == PROXY_HTTPS) {
// Block all TCP to/from the endpoint except to the proxy server
fw()->AddRule(true, talk_base::FP_TCP, kPublicAddrs[endpoint],
kHttpsProxyAddrs[endpoint]);
fw()->AddRule(false, talk_base::FP_TCP, talk_base::FD_ANY,
kPublicAddrs[endpoint]);
SetProxy(endpoint, talk_base::PROXY_HTTPS);
} else if (config == PROXY_SOCKS) {
// Block all TCP to/from the endpoint except to the proxy server
fw()->AddRule(true, talk_base::FP_TCP, kPublicAddrs[endpoint],
kSocksProxyAddrs[endpoint]);
fw()->AddRule(false, talk_base::FP_TCP, talk_base::FD_ANY,
kPublicAddrs[endpoint]);
SetProxy(endpoint, talk_base::PROXY_SOCKS5);
}
break;
default:
break;
}
}
};
// Shorthands for use in the test matrix.
#define LULU &kLocalUdpToLocalUdp
#define LUSU &kLocalUdpToStunUdp
#define LUPU &kLocalUdpToPrflxUdp
#define PULU &kPrflxUdpToLocalUdp
#define SULU &kStunUdpToLocalUdp
#define SUSU &kStunUdpToStunUdp
#define PUSU &kPrflxUdpToStunUdp
#define LURU &kLocalUdpToRelayUdp
#define PURU &kPrflxUdpToRelayUdp
#define LTLT &kLocalTcpToLocalTcp
#define LTPT &kLocalTcpToPrflxTcp
#define PTLT &kPrflxTcpToLocalTcp
// TODO: Enable these once TestRelayServer can accept external TCP.
#define LTRT NULL
#define LSRS NULL
// Test matrix. Originator behavior defined by rows, receiever by columns.
// Currently the p2ptransportchannel.cc (specifically the
// P2PTransportChannel::OnUnknownAddress) operates in 2 modes depend on the
// remote candidates - ufrag per port or shared ufrag.
// For example, if the remote candidates have the shared ufrag, for the unknown
// address reaches the OnUnknownAddress, we will try to find the matched
// remote candidate based on the address and protocol, if not found, a new
// remote candidate will be created for this address. But if the remote
// candidates have different ufrags, we will try to find the matched remote
// candidate by comparing the ufrag. If not found, an error will be returned.
// Because currently the shared ufrag feature is under the experiment and will
// be rolled out gradually. We want to test the different combinations of peers
// with/without the shared ufrag enabled. And those different combinations have
// different expectation of the best connection. For example in the OpenToCONE
// case, an unknown address will be updated to a "host" remote candidate if the
// remote peer uses different ufrag per port. But in the shared ufrag case,
// a "stun" (should be peer-reflexive eventually) candidate will be created for
// that. So the expected best candidate will be LUSU instead of LULU.
// With all these, we have to keep 2 test matrixes for the tests:
// kMatrix - for the tests that the remote peer uses different ufrag per port.
// kMatrixSharedUfrag - for the tests that remote peer uses shared ufrag.
// The different between the two matrixes are on:
// OPToCONE, OPTo2CON,
// COToCONE, COToADDR, COToPORT, COToSYMM, COTo2CON, COToSCON,
// ADToCONE, ADToADDR, ADTo2CON,
// POToADDR,
// SYToADDR,
// 2CToCONE, 2CToADDR, 2CToPORT, 2CToSYMM, 2CTo2CON, 2CToSCON,
// SCToADDR,
// TODO: Fix NULLs caused by lack of TCP support in NATSocket.
// TODO: Fix NULLs caused by no HTTP proxy support.
// TODO: Rearrange rows/columns from best to worst.
// TODO(ronghuawu): Keep only one test matrix once the shared ufrag is enabled.
const P2PTransportChannelTest::Result*
P2PTransportChannelTest::kMatrix[NUM_CONFIGS][NUM_CONFIGS] = {
// OPEN CONE ADDR PORT SYMM 2CON SCON !UDP !TCP HTTP PRXH PRXS
/*OP*/ {LULU, LULU, LULU, LULU, LULU, LULU, LULU, LTLT, LTLT, LSRS, NULL, LTLT},
/*CO*/ {LULU, LULU, LULU, SULU, SULU, LULU, SULU, NULL, NULL, LSRS, NULL, LTRT},
/*AD*/ {LULU, LULU, LULU, SUSU, SUSU, LULU, SUSU, NULL, NULL, LSRS, NULL, LTRT},
/*PO*/ {LULU, LUSU, LUSU, SUSU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*SY*/ {LULU, LUSU, LUSU, LURU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*2C*/ {LULU, LULU, LULU, SULU, SULU, LULU, SULU, NULL, NULL, LSRS, NULL, LTRT},
/*SC*/ {LULU, LUSU, LUSU, LURU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*!U*/ {LTLT, NULL, NULL, NULL, NULL, NULL, NULL, LTLT, LTLT, LSRS, NULL, LTRT},
/*!T*/ {LTRT, NULL, NULL, NULL, NULL, NULL, NULL, LTLT, LTRT, LSRS, NULL, LTRT},
/*HT*/ {LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, NULL, LSRS},
/*PR*/ {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
/*PR*/ {LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LSRS, NULL, LTRT},
};
const P2PTransportChannelTest::Result*
P2PTransportChannelTest::kMatrixSharedUfrag[NUM_CONFIGS][NUM_CONFIGS] = {
// OPEN CONE ADDR PORT SYMM 2CON SCON !UDP !TCP HTTP PRXH PRXS
/*OP*/ {LULU, LUSU, LULU, LULU, LULU, LUSU, LULU, LTLT, LTLT, LSRS, NULL, LTLT},
/*CO*/ {LULU, LUSU, LUSU, SUSU, SUSU, LUSU, SUSU, NULL, NULL, LSRS, NULL, LTRT},
/*AD*/ {LULU, LUSU, LUSU, SUSU, SUSU, LUSU, SUSU, NULL, NULL, LSRS, NULL, LTRT},
/*PO*/ {LULU, LUSU, LUSU, SUSU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*SY*/ {LULU, LUSU, LUSU, LURU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*2C*/ {LULU, LUSU, LUSU, SUSU, SUSU, LUSU, SUSU, NULL, NULL, LSRS, NULL, LTRT},
/*SC*/ {LULU, LUSU, LUSU, LURU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*!U*/ {LTLT, NULL, NULL, NULL, NULL, NULL, NULL, LTLT, LTLT, LSRS, NULL, LTRT},
/*!T*/ {LTRT, NULL, NULL, NULL, NULL, NULL, NULL, LTLT, LTRT, LSRS, NULL, LTRT},
/*HT*/ {LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, NULL, LSRS},
/*PR*/ {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
/*PR*/ {LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LSRS, NULL, LTRT},
};
const P2PTransportChannelTest::Result*
P2PTransportChannelTest::kMatrixSharedSocketAsGice
[NUM_CONFIGS][NUM_CONFIGS] = {
// OPEN CONE ADDR PORT SYMM 2CON SCON !UDP !TCP HTTP PRXH PRXS
/*OP*/ {LULU, LUSU, LUSU, LUSU, LUSU, LUSU, LUSU, LTLT, LTLT, LSRS, NULL, LTLT},
/*CO*/ {LULU, LUSU, LUSU, LUSU, LUSU, LUSU, LUSU, NULL, NULL, LSRS, NULL, LTRT},
/*AD*/ {LULU, LUSU, LUSU, LUSU, LUSU, LUSU, LUSU, NULL, NULL, LSRS, NULL, LTRT},
/*PO*/ {LULU, LUSU, LUSU, LUSU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*SY*/ {LULU, LUSU, LUSU, LURU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*2C*/ {LULU, LUSU, LUSU, LUSU, LUSU, LUSU, LUSU, NULL, NULL, LSRS, NULL, LTRT},
/*SC*/ {LULU, LUSU, LUSU, LURU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*!U*/ {LTLT, NULL, NULL, NULL, NULL, NULL, NULL, LTLT, LTLT, LSRS, NULL, LTRT},
/*!T*/ {LTRT, NULL, NULL, NULL, NULL, NULL, NULL, LTLT, LTRT, LSRS, NULL, LTRT},
/*HT*/ {LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, NULL, LSRS},
/*PR*/ {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
/*PR*/ {LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LSRS, NULL, LTRT},
};
const P2PTransportChannelTest::Result*
P2PTransportChannelTest::kMatrixSharedSocketAsIce
[NUM_CONFIGS][NUM_CONFIGS] = {
// OPEN CONE ADDR PORT SYMM 2CON SCON !UDP !TCP HTTP PRXH PRXS
/*OP*/ {LULU, LUSU, LUSU, LUSU, LUPU, LUSU, LUPU, PTLT, LTPT, LSRS, NULL, PTLT},
/*CO*/ {LULU, LUSU, LUSU, LUSU, LUPU, LUSU, LUPU, NULL, NULL, LSRS, NULL, LTRT},
/*AD*/ {LULU, LUSU, LUSU, LUSU, LUPU, LUSU, LUPU, NULL, NULL, LSRS, NULL, LTRT},
/*PO*/ {LULU, LUSU, LUSU, LUSU, LURU, LUSU, LURU, NULL, NULL, LSRS, NULL, LTRT},
/*SY*/ {PULU, PUSU, PUSU, PURU, PURU, PUSU, PURU, NULL, NULL, LSRS, NULL, LTRT},
/*2C*/ {LULU, LUSU, LUSU, LUSU, LUPU, LUSU, LUPU, NULL, NULL, LSRS, NULL, LTRT},
/*SC*/ {PULU, PUSU, PUSU, PURU, PURU, PUSU, PURU, NULL, NULL, LSRS, NULL, LTRT},
/*!U*/ {PTLT, NULL, NULL, NULL, NULL, NULL, NULL, PTLT, LTPT, LSRS, NULL, LTRT},
/*!T*/ {LTRT, NULL, NULL, NULL, NULL, NULL, NULL, PTLT, LTRT, LSRS, NULL, LTRT},
/*HT*/ {LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, LSRS, NULL, LSRS},
/*PR*/ {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL},
/*PR*/ {LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LTRT, LSRS, NULL, LTRT},
};
// The actual tests that exercise all the various configurations.
// Test names are of the form P2PTransportChannelTest_TestOPENToNAT_FULL_CONE
// Same test case is run in both GICE and ICE mode.
// kDefaultStepDelay - is used for all Gice cases.
// kMinimumStepDelay - is used when both end points have
// PORTALLOCATOR_ENABLE_SHARED_UFRAG flag enabled.
// Technically we should be able to use kMinimumStepDelay irrespective of
// protocol type. But which might need modifications to current result matrices
// for tests in this file.
#define P2P_TEST_DECLARATION(x, y, z) \
TEST_F(P2PTransportChannelTest, z##Test##x##To##y##AsGiceNoneSharedUfrag) { \
ConfigureEndpoints(x, y, kDefaultPortAllocatorFlags, \
kDefaultPortAllocatorFlags, \
kDefaultStepDelay, kDefaultStepDelay, \
cricket::ICEPROTO_GOOGLE); \
if (kMatrix[x][y] != NULL) \
Test(*kMatrix[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
} \
TEST_F(P2PTransportChannelTest, z##Test##x##To##y##AsGiceP0SharedUfrag) { \
ConfigureEndpoints(x, y, PORTALLOCATOR_ENABLE_SHARED_UFRAG, \
kDefaultPortAllocatorFlags, \
kDefaultStepDelay, kDefaultStepDelay, \
cricket::ICEPROTO_GOOGLE); \
if (kMatrix[x][y] != NULL) \
Test(*kMatrix[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
} \
TEST_F(P2PTransportChannelTest, z##Test##x##To##y##AsGiceP1SharedUfrag) { \
ConfigureEndpoints(x, y, kDefaultPortAllocatorFlags, \
PORTALLOCATOR_ENABLE_SHARED_UFRAG, \
kDefaultStepDelay, kDefaultStepDelay, \
cricket::ICEPROTO_GOOGLE); \
if (kMatrixSharedUfrag[x][y] != NULL) \
Test(*kMatrixSharedUfrag[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
} \
TEST_F(P2PTransportChannelTest, z##Test##x##To##y##AsGiceBothSharedUfrag) { \
ConfigureEndpoints(x, y, PORTALLOCATOR_ENABLE_SHARED_UFRAG, \
PORTALLOCATOR_ENABLE_SHARED_UFRAG, \
kDefaultStepDelay, kDefaultStepDelay, \
cricket::ICEPROTO_GOOGLE); \
if (kMatrixSharedUfrag[x][y] != NULL) \
Test(*kMatrixSharedUfrag[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
} \
TEST_F(P2PTransportChannelTest, \
z##Test##x##To##y##AsGiceBothSharedUfragWithMinimumStepDelay) { \
ConfigureEndpoints(x, y, PORTALLOCATOR_ENABLE_SHARED_UFRAG, \
PORTALLOCATOR_ENABLE_SHARED_UFRAG, \
kMinimumStepDelay, kMinimumStepDelay, \
cricket::ICEPROTO_GOOGLE); \
if (kMatrixSharedUfrag[x][y] != NULL) \
Test(*kMatrixSharedUfrag[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
} \
TEST_F(P2PTransportChannelTest, \
z##Test##x##To##y##AsGiceBothSharedUfragSocket) { \
ConfigureEndpoints(x, y, PORTALLOCATOR_ENABLE_SHARED_UFRAG | \
PORTALLOCATOR_ENABLE_SHARED_SOCKET, \
PORTALLOCATOR_ENABLE_SHARED_UFRAG | \
PORTALLOCATOR_ENABLE_SHARED_SOCKET, \
kMinimumStepDelay, kMinimumStepDelay, \
cricket::ICEPROTO_GOOGLE); \
if (kMatrixSharedSocketAsGice[x][y] != NULL) \
Test(*kMatrixSharedSocketAsGice[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
} \
TEST_F(P2PTransportChannelTest, z##Test##x##To##y##AsIce) { \
ConfigureEndpoints(x, y, PORTALLOCATOR_ENABLE_SHARED_UFRAG | \
PORTALLOCATOR_ENABLE_SHARED_SOCKET, \
PORTALLOCATOR_ENABLE_SHARED_UFRAG | \
PORTALLOCATOR_ENABLE_SHARED_SOCKET, \
kMinimumStepDelay, kMinimumStepDelay, \
cricket::ICEPROTO_RFC5245); \
if (kMatrixSharedSocketAsIce[x][y] != NULL) \
Test(*kMatrixSharedSocketAsIce[x][y]); \
else \
LOG(LS_WARNING) << "Not yet implemented"; \
}
#define P2P_TEST(x, y) \
P2P_TEST_DECLARATION(x, y,)
#define FLAKY_P2P_TEST(x, y) \
P2P_TEST_DECLARATION(x, y, DISABLED_)
// TODO(holmer): Disabled due to randomly failing on webrtc buildbots.
// Issue: webrtc/2383
#define P2P_TEST_SET(x) \
P2P_TEST(x, OPEN) \
FLAKY_P2P_TEST(x, NAT_FULL_CONE) \
FLAKY_P2P_TEST(x, NAT_ADDR_RESTRICTED) \
FLAKY_P2P_TEST(x, NAT_PORT_RESTRICTED) \
P2P_TEST(x, NAT_SYMMETRIC) \
FLAKY_P2P_TEST(x, NAT_DOUBLE_CONE) \
P2P_TEST(x, NAT_SYMMETRIC_THEN_CONE) \
P2P_TEST(x, BLOCK_UDP) \
P2P_TEST(x, BLOCK_UDP_AND_INCOMING_TCP) \
P2P_TEST(x, BLOCK_ALL_BUT_OUTGOING_HTTP) \
P2P_TEST(x, PROXY_HTTPS) \
P2P_TEST(x, PROXY_SOCKS)
#define FLAKY_P2P_TEST_SET(x) \
P2P_TEST(x, OPEN) \
P2P_TEST(x, NAT_FULL_CONE) \
P2P_TEST(x, NAT_ADDR_RESTRICTED) \
P2P_TEST(x, NAT_PORT_RESTRICTED) \
P2P_TEST(x, NAT_SYMMETRIC) \
P2P_TEST(x, NAT_DOUBLE_CONE) \
P2P_TEST(x, NAT_SYMMETRIC_THEN_CONE) \
P2P_TEST(x, BLOCK_UDP) \
P2P_TEST(x, BLOCK_UDP_AND_INCOMING_TCP) \
P2P_TEST(x, BLOCK_ALL_BUT_OUTGOING_HTTP) \
P2P_TEST(x, PROXY_HTTPS) \
P2P_TEST(x, PROXY_SOCKS)
P2P_TEST_SET(OPEN)
P2P_TEST_SET(NAT_FULL_CONE)
P2P_TEST_SET(NAT_ADDR_RESTRICTED)
P2P_TEST_SET(NAT_PORT_RESTRICTED)
P2P_TEST_SET(NAT_SYMMETRIC)
P2P_TEST_SET(NAT_DOUBLE_CONE)
P2P_TEST_SET(NAT_SYMMETRIC_THEN_CONE)
P2P_TEST_SET(BLOCK_UDP)
P2P_TEST_SET(BLOCK_UDP_AND_INCOMING_TCP)
P2P_TEST_SET(BLOCK_ALL_BUT_OUTGOING_HTTP)
P2P_TEST_SET(PROXY_HTTPS)
P2P_TEST_SET(PROXY_SOCKS)
// Test that we restart candidate allocation when local ufrag&pwd changed.
// Standard Ice protocol is used.
TEST_F(P2PTransportChannelTest, HandleUfragPwdChangeAsIce) {
ConfigureEndpoints(OPEN, OPEN,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kMinimumStepDelay, kMinimumStepDelay,
cricket::ICEPROTO_RFC5245);
CreateChannels(1);
TestHandleIceUfragPasswordChanged();
DestroyChannels();
}
// Test that we restart candidate allocation when local ufrag&pwd changed.
// Standard Ice protocol is used.
TEST_F(P2PTransportChannelTest, HandleUfragPwdChangeBundleAsIce) {
ConfigureEndpoints(OPEN, OPEN,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kMinimumStepDelay, kMinimumStepDelay,
cricket::ICEPROTO_RFC5245);
SetAllocatorFlags(0, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
SetAllocatorFlags(1, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
CreateChannels(2);
TestHandleIceUfragPasswordChanged();
DestroyChannels();
}
// Test that we restart candidate allocation when local ufrag&pwd changed.
// Google Ice protocol is used.
TEST_F(P2PTransportChannelTest, HandleUfragPwdChangeAsGice) {
ConfigureEndpoints(OPEN, OPEN,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_GOOGLE);
CreateChannels(1);
TestHandleIceUfragPasswordChanged();
DestroyChannels();
}
// Test that ICE restart works when bundle is enabled.
// Google Ice protocol is used.
TEST_F(P2PTransportChannelTest, HandleUfragPwdChangeBundleAsGice) {
ConfigureEndpoints(OPEN, OPEN,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_GOOGLE);
SetAllocatorFlags(0, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
SetAllocatorFlags(1, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
CreateChannels(2);
TestHandleIceUfragPasswordChanged();
DestroyChannels();
}
// Test the operation of GetStats.
TEST_F(P2PTransportChannelTest, GetStats) {
ConfigureEndpoints(OPEN, OPEN,
kDefaultPortAllocatorFlags,
kDefaultPortAllocatorFlags,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_GOOGLE);
CreateChannels(1);
EXPECT_TRUE_WAIT_MARGIN(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000, 1000);
TestSendRecv(1);
cricket::ConnectionInfos infos;
ASSERT_TRUE(ep1_ch1()->GetStats(&infos));
ASSERT_EQ(1U, infos.size());
EXPECT_TRUE(infos[0].new_connection);
EXPECT_TRUE(infos[0].best_connection);
EXPECT_TRUE(infos[0].readable);
EXPECT_TRUE(infos[0].writable);
EXPECT_FALSE(infos[0].timeout);
EXPECT_EQ(10 * 36U, infos[0].sent_total_bytes);
EXPECT_EQ(10 * 36U, infos[0].recv_total_bytes);
EXPECT_GT(infos[0].rtt, 0U);
DestroyChannels();
}
// Test that we properly handle getting a STUN error due to slow signaling.
TEST_F(P2PTransportChannelTest, DISABLED_SlowSignaling) {
ConfigureEndpoints(OPEN, NAT_SYMMETRIC,
kDefaultPortAllocatorFlags,
kDefaultPortAllocatorFlags,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_GOOGLE);
// Make signaling from the callee take 500ms, so that the initial STUN pings
// from the callee beat the signaling, and so the caller responds with a
// unknown username error. We should just eat that and carry on; mishandling
// this will instead cause all the callee's connections to be discarded.
SetSignalingDelay(1, 1000);
CreateChannels(1);
const cricket::Connection* best_connection = NULL;
// Wait until the callee's connections are created.
WAIT((best_connection = ep2_ch1()->best_connection()) != NULL, 1000);
// Wait to see if they get culled; they shouldn't.
WAIT(ep2_ch1()->best_connection() != best_connection, 1000);
EXPECT_TRUE(ep2_ch1()->best_connection() == best_connection);
DestroyChannels();
}
// Test that if remote candidates don't have ufrag and pwd, we still work.
TEST_F(P2PTransportChannelTest, RemoteCandidatesWithoutUfragPwd) {
set_clear_remote_candidates_ufrag_pwd(true);
ConfigureEndpoints(OPEN, OPEN,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kMinimumStepDelay, kMinimumStepDelay,
cricket::ICEPROTO_GOOGLE);
CreateChannels(1);
const cricket::Connection* best_connection = NULL;
// Wait until the callee's connections are created.
WAIT((best_connection = ep2_ch1()->best_connection()) != NULL, 1000);
// Wait to see if they get culled; they shouldn't.
WAIT(ep2_ch1()->best_connection() != best_connection, 1000);
EXPECT_TRUE(ep2_ch1()->best_connection() == best_connection);
DestroyChannels();
}
// Test that a host behind NAT cannot be reached when incoming_only
// is set to true.
TEST_F(P2PTransportChannelTest, IncomingOnlyBlocked) {
ConfigureEndpoints(NAT_FULL_CONE, OPEN,
kDefaultPortAllocatorFlags,
kDefaultPortAllocatorFlags,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_GOOGLE);
SetAllocatorFlags(0, kOnlyLocalPorts);
CreateChannels(1);
ep1_ch1()->set_incoming_only(true);
// Pump for 1 second and verify that the channels are not connected.
talk_base::Thread::Current()->ProcessMessages(1000);
EXPECT_FALSE(ep1_ch1()->readable());
EXPECT_FALSE(ep1_ch1()->writable());
EXPECT_FALSE(ep2_ch1()->readable());
EXPECT_FALSE(ep2_ch1()->writable());
DestroyChannels();
}
// Test that a peer behind NAT can connect to a peer that has
// incoming_only flag set.
TEST_F(P2PTransportChannelTest, IncomingOnlyOpen) {
ConfigureEndpoints(OPEN, NAT_FULL_CONE,
kDefaultPortAllocatorFlags,
kDefaultPortAllocatorFlags,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_GOOGLE);
SetAllocatorFlags(0, kOnlyLocalPorts);
CreateChannels(1);
ep1_ch1()->set_incoming_only(true);
EXPECT_TRUE_WAIT_MARGIN(ep1_ch1() != NULL && ep2_ch1() != NULL &&
ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000, 1000);
DestroyChannels();
}
TEST_F(P2PTransportChannelTest, TestTcpConnectionsFromActiveToPassive) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
SetAllocationStepDelay(0, kMinimumStepDelay);
SetAllocationStepDelay(1, kMinimumStepDelay);
int kOnlyLocalTcpPorts = cricket::PORTALLOCATOR_DISABLE_UDP |
cricket::PORTALLOCATOR_DISABLE_STUN |
cricket::PORTALLOCATOR_DISABLE_RELAY |
cricket::PORTALLOCATOR_ENABLE_SHARED_UFRAG;
// Disable all protocols except TCP.
SetAllocatorFlags(0, kOnlyLocalTcpPorts);
SetAllocatorFlags(1, kOnlyLocalTcpPorts);
SetAllowTcpListen(0, true); // actpass.
SetAllowTcpListen(1, false); // active.
CreateChannels(1);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000);
EXPECT_TRUE(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[1]));
std::string kTcpProtocol = "tcp";
EXPECT_EQ(kTcpProtocol, RemoteCandidate(ep1_ch1())->protocol());
EXPECT_EQ(kTcpProtocol, LocalCandidate(ep1_ch1())->protocol());
EXPECT_EQ(kTcpProtocol, RemoteCandidate(ep2_ch1())->protocol());
EXPECT_EQ(kTcpProtocol, LocalCandidate(ep2_ch1())->protocol());
TestSendRecv(1);
DestroyChannels();
}
TEST_F(P2PTransportChannelTest, TestBundleAllocatorToBundleAllocator) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
SetAllocatorFlags(0, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
SetAllocatorFlags(1, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
CreateChannels(2);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() &&
ep1_ch1()->writable() &&
ep2_ch1()->readable() &&
ep2_ch1()->writable(),
1000);
EXPECT_TRUE(ep1_ch1()->best_connection() &&
ep2_ch1()->best_connection());
EXPECT_FALSE(ep1_ch2()->readable());
EXPECT_FALSE(ep1_ch2()->writable());
EXPECT_FALSE(ep2_ch2()->readable());
EXPECT_FALSE(ep2_ch2()->writable());
TestSendRecv(1); // Only 1 channel is writable per Endpoint.
DestroyChannels();
}
TEST_F(P2PTransportChannelTest, TestBundleAllocatorToNonBundleAllocator) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
// Enable BUNDLE flag at one side.
SetAllocatorFlags(0, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
CreateChannels(2);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() &&
ep1_ch1()->writable() &&
ep2_ch1()->readable() &&
ep2_ch1()->writable(),
1000);
EXPECT_TRUE_WAIT(ep1_ch2()->readable() &&
ep1_ch2()->writable() &&
ep2_ch2()->readable() &&
ep2_ch2()->writable(),
1000);
EXPECT_TRUE(ep1_ch1()->best_connection() &&
ep2_ch1()->best_connection());
EXPECT_TRUE(ep1_ch2()->best_connection() &&
ep2_ch2()->best_connection());
TestSendRecv(2);
DestroyChannels();
}
TEST_F(P2PTransportChannelTest, TestIceRoleConflictWithoutBundle) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
TestSignalRoleConflict();
}
TEST_F(P2PTransportChannelTest, TestIceRoleConflictWithBundle) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
SetAllocatorFlags(0, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
SetAllocatorFlags(1, cricket::PORTALLOCATOR_ENABLE_BUNDLE);
TestSignalRoleConflict();
}
// Tests that the ice configs (protocol, tiebreaker and role) can be passed
// down to ports.
TEST_F(P2PTransportChannelTest, TestIceConfigWillPassDownToPort) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
SetIceRole(0, cricket::ICEROLE_CONTROLLING);
SetIceProtocol(0, cricket::ICEPROTO_GOOGLE);
SetIceTiebreaker(0, kTiebreaker1);
SetIceRole(1, cricket::ICEROLE_CONTROLLING);
SetIceProtocol(1, cricket::ICEPROTO_RFC5245);
SetIceTiebreaker(1, kTiebreaker2);
CreateChannels(1);
EXPECT_EQ_WAIT(2u, ep1_ch1()->ports().size(), 1000);
const std::vector<cricket::PortInterface *> ports_before = ep1_ch1()->ports();
for (size_t i = 0; i < ports_before.size(); ++i) {
EXPECT_EQ(cricket::ICEROLE_CONTROLLING, ports_before[i]->GetIceRole());
EXPECT_EQ(cricket::ICEPROTO_GOOGLE, ports_before[i]->IceProtocol());
EXPECT_EQ(kTiebreaker1, ports_before[i]->IceTiebreaker());
}
ep1_ch1()->SetIceRole(cricket::ICEROLE_CONTROLLED);
ep1_ch1()->SetIceProtocolType(cricket::ICEPROTO_RFC5245);
ep1_ch1()->SetIceTiebreaker(kTiebreaker2);
const std::vector<cricket::PortInterface *> ports_after = ep1_ch1()->ports();
for (size_t i = 0; i < ports_after.size(); ++i) {
EXPECT_EQ(cricket::ICEROLE_CONTROLLED, ports_before[i]->GetIceRole());
EXPECT_EQ(cricket::ICEPROTO_RFC5245, ports_before[i]->IceProtocol());
// SetIceTiebreaker after Connect() has been called will fail. So expect the
// original value.
EXPECT_EQ(kTiebreaker1, ports_before[i]->IceTiebreaker());
}
EXPECT_TRUE_WAIT(ep1_ch1()->readable() &&
ep1_ch1()->writable() &&
ep2_ch1()->readable() &&
ep2_ch1()->writable(),
1000);
EXPECT_TRUE(ep1_ch1()->best_connection() &&
ep2_ch1()->best_connection());
TestSendRecv(1);
DestroyChannels();
}
// This test verifies channel can handle ice messages when channel is in
// hybrid mode.
TEST_F(P2PTransportChannelTest, TestConnectivityBetweenHybridandIce) {
TestHybridConnectivity(cricket::ICEPROTO_RFC5245);
}
// This test verifies channel can handle Gice messages when channel is in
// hybrid mode.
TEST_F(P2PTransportChannelTest, TestConnectivityBetweenHybridandGice) {
TestHybridConnectivity(cricket::ICEPROTO_GOOGLE);
}
// Verify that we can set DSCP value and retrieve properly from P2PTC.
TEST_F(P2PTransportChannelTest, TestDefaultDscpValue) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
CreateChannels(1);
EXPECT_EQ(talk_base::DSCP_NO_CHANGE,
GetEndpoint(0)->cd1_.ch_->DefaultDscpValue());
EXPECT_EQ(talk_base::DSCP_NO_CHANGE,
GetEndpoint(1)->cd1_.ch_->DefaultDscpValue());
GetEndpoint(0)->cd1_.ch_->SetOption(
talk_base::Socket::OPT_DSCP, talk_base::DSCP_CS6);
GetEndpoint(1)->cd1_.ch_->SetOption(
talk_base::Socket::OPT_DSCP, talk_base::DSCP_CS6);
EXPECT_EQ(talk_base::DSCP_CS6,
GetEndpoint(0)->cd1_.ch_->DefaultDscpValue());
EXPECT_EQ(talk_base::DSCP_CS6,
GetEndpoint(1)->cd1_.ch_->DefaultDscpValue());
GetEndpoint(0)->cd1_.ch_->SetOption(
talk_base::Socket::OPT_DSCP, talk_base::DSCP_AF41);
GetEndpoint(1)->cd1_.ch_->SetOption(
talk_base::Socket::OPT_DSCP, talk_base::DSCP_AF41);
EXPECT_EQ(talk_base::DSCP_AF41,
GetEndpoint(0)->cd1_.ch_->DefaultDscpValue());
EXPECT_EQ(talk_base::DSCP_AF41,
GetEndpoint(1)->cd1_.ch_->DefaultDscpValue());
}
// Verify IPv6 connection is preferred over IPv4.
// Flaky: https://code.google.com/p/webrtc/issues/detail?id=3317
TEST_F(P2PTransportChannelTest, DISABLED_TestIPv6Connections) {
AddAddress(0, kIPv6PublicAddrs[0]);
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kIPv6PublicAddrs[1]);
AddAddress(1, kPublicAddrs[1]);
SetAllocationStepDelay(0, kMinimumStepDelay);
SetAllocationStepDelay(1, kMinimumStepDelay);
// Enable IPv6
SetAllocatorFlags(0, cricket::PORTALLOCATOR_ENABLE_IPV6);
SetAllocatorFlags(1, cricket::PORTALLOCATOR_ENABLE_IPV6);
CreateChannels(1);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000);
EXPECT_TRUE(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kIPv6PublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kIPv6PublicAddrs[1]));
TestSendRecv(1);
DestroyChannels();
}
// Testing forceful TURN connections.
TEST_F(P2PTransportChannelTest, TestForceTurn) {
ConfigureEndpoints(NAT_PORT_RESTRICTED, NAT_SYMMETRIC,
kDefaultPortAllocatorFlags |
cricket::PORTALLOCATOR_ENABLE_SHARED_SOCKET |
cricket::PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kDefaultPortAllocatorFlags |
cricket::PORTALLOCATOR_ENABLE_SHARED_SOCKET |
cricket::PORTALLOCATOR_ENABLE_SHARED_UFRAG,
kDefaultStepDelay, kDefaultStepDelay,
cricket::ICEPROTO_RFC5245);
set_force_relay(true);
SetAllocationStepDelay(0, kMinimumStepDelay);
SetAllocationStepDelay(1, kMinimumStepDelay);
CreateChannels(1);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() &&
ep1_ch1()->writable() &&
ep2_ch1()->readable() &&
ep2_ch1()->writable(),
1000);
EXPECT_TRUE(ep1_ch1()->best_connection() &&
ep2_ch1()->best_connection());
EXPECT_EQ("relay", RemoteCandidate(ep1_ch1())->type());
EXPECT_EQ("relay", LocalCandidate(ep1_ch1())->type());
EXPECT_EQ("relay", RemoteCandidate(ep2_ch1())->type());
EXPECT_EQ("relay", LocalCandidate(ep2_ch1())->type());
TestSendRecv(1);
DestroyChannels();
}
// Test what happens when we have 2 users behind the same NAT. This can lead
// to interesting behavior because the STUN server will only give out the
// address of the outermost NAT.
class P2PTransportChannelSameNatTest : public P2PTransportChannelTestBase {
protected:
void ConfigureEndpoints(Config nat_type, Config config1, Config config2) {
ASSERT(nat_type >= NAT_FULL_CONE && nat_type <= NAT_SYMMETRIC);
talk_base::NATSocketServer::Translator* outer_nat =
nat()->AddTranslator(kPublicAddrs[0], kNatAddrs[0],
static_cast<talk_base::NATType>(nat_type - NAT_FULL_CONE));
ConfigureEndpoint(outer_nat, 0, config1);
ConfigureEndpoint(outer_nat, 1, config2);
}
void ConfigureEndpoint(talk_base::NATSocketServer::Translator* nat,
int endpoint, Config config) {
ASSERT(config <= NAT_SYMMETRIC);
if (config == OPEN) {
AddAddress(endpoint, kPrivateAddrs[endpoint]);
nat->AddClient(kPrivateAddrs[endpoint]);
} else {
AddAddress(endpoint, kCascadedPrivateAddrs[endpoint]);
nat->AddTranslator(kPrivateAddrs[endpoint], kCascadedNatAddrs[endpoint],
static_cast<talk_base::NATType>(config - NAT_FULL_CONE))->AddClient(
kCascadedPrivateAddrs[endpoint]);
}
}
};
TEST_F(P2PTransportChannelSameNatTest, TestConesBehindSameCone) {
ConfigureEndpoints(NAT_FULL_CONE, NAT_FULL_CONE, NAT_FULL_CONE);
Test(kLocalUdpToStunUdp);
}
// Test what happens when we have multiple available pathways.
// In the future we will try different RTTs and configs for the different
// interfaces, so that we can simulate a user with Ethernet and VPN networks.
class P2PTransportChannelMultihomedTest : public P2PTransportChannelTestBase {
};
// Test that we can establish connectivity when both peers are multihomed.
TEST_F(P2PTransportChannelMultihomedTest, DISABLED_TestBasic) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(0, kAlternateAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
AddAddress(1, kAlternateAddrs[1]);
Test(kLocalUdpToLocalUdp);
}
// Test that we can quickly switch links if an interface goes down.
TEST_F(P2PTransportChannelMultihomedTest, TestFailover) {
AddAddress(0, kPublicAddrs[0]);
// Adding alternate address will make sure |kPublicAddrs| has the higher
// priority than others. This is due to FakeNetwork::AddInterface method.
AddAddress(1, kAlternateAddrs[1]);
AddAddress(1, kPublicAddrs[1]);
// Use only local ports for simplicity.
SetAllocatorFlags(0, kOnlyLocalPorts);
SetAllocatorFlags(1, kOnlyLocalPorts);
// Create channels and let them go writable, as usual.
CreateChannels(1);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000);
EXPECT_TRUE(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[1]));
// Blackhole any traffic to or from the public addrs.
LOG(LS_INFO) << "Failing over...";
fw()->AddRule(false, talk_base::FP_ANY, talk_base::FD_ANY,
kPublicAddrs[1]);
// We should detect loss of connectivity within 5 seconds or so.
EXPECT_TRUE_WAIT(!ep1_ch1()->writable(), 7000);
// We should switch over to use the alternate addr immediately
// when we lose writability.
EXPECT_TRUE_WAIT(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kAlternateAddrs[1]),
3000);
DestroyChannels();
}
// Test that we can switch links in a coordinated fashion.
TEST_F(P2PTransportChannelMultihomedTest, TestDrain) {
AddAddress(0, kPublicAddrs[0]);
AddAddress(1, kPublicAddrs[1]);
// Use only local ports for simplicity.
SetAllocatorFlags(0, kOnlyLocalPorts);
SetAllocatorFlags(1, kOnlyLocalPorts);
// Create channels and let them go writable, as usual.
CreateChannels(1);
EXPECT_TRUE_WAIT(ep1_ch1()->readable() && ep1_ch1()->writable() &&
ep2_ch1()->readable() && ep2_ch1()->writable(),
1000);
EXPECT_TRUE(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[1]));
// Remove the public interface, add the alternate interface, and allocate
// a new generation of candidates for the new interface (via Connect()).
LOG(LS_INFO) << "Draining...";
AddAddress(1, kAlternateAddrs[1]);
RemoveAddress(1, kPublicAddrs[1]);
ep2_ch1()->Connect();
// We should switch over to use the alternate address after
// an exchange of pings.
EXPECT_TRUE_WAIT(
ep1_ch1()->best_connection() && ep2_ch1()->best_connection() &&
LocalCandidate(ep1_ch1())->address().EqualIPs(kPublicAddrs[0]) &&
RemoteCandidate(ep1_ch1())->address().EqualIPs(kAlternateAddrs[1]),
3000);
DestroyChannels();
}