d4e598d57a
git-svn-id: http://webrtc.googlecode.com/svn/trunk@6799 4adac7df-926f-26a2-2b94-8c16560cd09d
1420 lines
54 KiB
C++
1420 lines
54 KiB
C++
/*
|
|
* libjingle
|
|
* Copyright 2004 Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <string>
|
|
|
|
#include "webrtc/base/bytebuffer.h"
|
|
#include "webrtc/base/gunit.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/messagedigest.h"
|
|
#include "webrtc/base/scoped_ptr.h"
|
|
#include "webrtc/base/socketaddress.h"
|
|
#include "talk/p2p/base/stun.h"
|
|
|
|
namespace cricket {
|
|
|
|
class StunTest : public ::testing::Test {
|
|
protected:
|
|
void CheckStunHeader(const StunMessage& msg, StunMessageType expected_type,
|
|
size_t expected_length) {
|
|
ASSERT_EQ(expected_type, msg.type());
|
|
ASSERT_EQ(expected_length, msg.length());
|
|
}
|
|
|
|
void CheckStunTransactionID(const StunMessage& msg,
|
|
const unsigned char* expectedID, size_t length) {
|
|
ASSERT_EQ(length, msg.transaction_id().size());
|
|
ASSERT_EQ(length == kStunTransactionIdLength + 4, msg.IsLegacy());
|
|
ASSERT_EQ(length == kStunTransactionIdLength, !msg.IsLegacy());
|
|
ASSERT_EQ(0, memcmp(msg.transaction_id().c_str(), expectedID, length));
|
|
}
|
|
|
|
void CheckStunAddressAttribute(const StunAddressAttribute* addr,
|
|
StunAddressFamily expected_family,
|
|
int expected_port,
|
|
rtc::IPAddress expected_address) {
|
|
ASSERT_EQ(expected_family, addr->family());
|
|
ASSERT_EQ(expected_port, addr->port());
|
|
|
|
if (addr->family() == STUN_ADDRESS_IPV4) {
|
|
in_addr v4_address = expected_address.ipv4_address();
|
|
in_addr stun_address = addr->ipaddr().ipv4_address();
|
|
ASSERT_EQ(0, memcmp(&v4_address, &stun_address, sizeof(stun_address)));
|
|
} else if (addr->family() == STUN_ADDRESS_IPV6) {
|
|
in6_addr v6_address = expected_address.ipv6_address();
|
|
in6_addr stun_address = addr->ipaddr().ipv6_address();
|
|
ASSERT_EQ(0, memcmp(&v6_address, &stun_address, sizeof(stun_address)));
|
|
} else {
|
|
ASSERT_TRUE(addr->family() == STUN_ADDRESS_IPV6 ||
|
|
addr->family() == STUN_ADDRESS_IPV4);
|
|
}
|
|
}
|
|
|
|
size_t ReadStunMessageTestCase(StunMessage* msg,
|
|
const unsigned char* testcase,
|
|
size_t size) {
|
|
const char* input = reinterpret_cast<const char*>(testcase);
|
|
rtc::ByteBuffer buf(input, size);
|
|
if (msg->Read(&buf)) {
|
|
// Returns the size the stun message should report itself as being
|
|
return (size - 20);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
// Sample STUN packets with various attributes
|
|
// Gathered by wiresharking pjproject's pjnath test programs
|
|
// pjproject available at www.pjsip.org
|
|
|
|
static const unsigned char kStunMessageWithIPv6MappedAddress[] = {
|
|
0x00, 0x01, 0x00, 0x18, // message header
|
|
0x21, 0x12, 0xa4, 0x42, // transaction id
|
|
0x29, 0x1f, 0xcd, 0x7c,
|
|
0xba, 0x58, 0xab, 0xd7,
|
|
0xf2, 0x41, 0x01, 0x00,
|
|
0x00, 0x01, 0x00, 0x14, // Address type (mapped), length
|
|
0x00, 0x02, 0xb8, 0x81, // family (IPv6), port
|
|
0x24, 0x01, 0xfa, 0x00, // an IPv6 address
|
|
0x00, 0x04, 0x10, 0x00,
|
|
0xbe, 0x30, 0x5b, 0xff,
|
|
0xfe, 0xe5, 0x00, 0xc3
|
|
};
|
|
|
|
static const unsigned char kStunMessageWithIPv4MappedAddress[] = {
|
|
0x01, 0x01, 0x00, 0x0c, // binding response, length 12
|
|
0x21, 0x12, 0xa4, 0x42, // magic cookie
|
|
0x29, 0x1f, 0xcd, 0x7c, // transaction ID
|
|
0xba, 0x58, 0xab, 0xd7,
|
|
0xf2, 0x41, 0x01, 0x00,
|
|
0x00, 0x01, 0x00, 0x08, // Mapped, 8 byte length
|
|
0x00, 0x01, 0x9d, 0xfc, // AF_INET, unxor-ed port
|
|
0xac, 0x17, 0x44, 0xe6 // IPv4 address
|
|
};
|
|
|
|
// Test XOR-mapped IP addresses:
|
|
static const unsigned char kStunMessageWithIPv6XorMappedAddress[] = {
|
|
0x01, 0x01, 0x00, 0x18, // message header (binding response)
|
|
0x21, 0x12, 0xa4, 0x42, // magic cookie (rfc5389)
|
|
0xe3, 0xa9, 0x46, 0xe1, // transaction ID
|
|
0x7c, 0x00, 0xc2, 0x62,
|
|
0x54, 0x08, 0x01, 0x00,
|
|
0x00, 0x20, 0x00, 0x14, // Address Type (XOR), length
|
|
0x00, 0x02, 0xcb, 0x5b, // family, XOR-ed port
|
|
0x05, 0x13, 0x5e, 0x42, // XOR-ed IPv6 address
|
|
0xe3, 0xad, 0x56, 0xe1,
|
|
0xc2, 0x30, 0x99, 0x9d,
|
|
0xaa, 0xed, 0x01, 0xc3
|
|
};
|
|
|
|
static const unsigned char kStunMessageWithIPv4XorMappedAddress[] = {
|
|
0x01, 0x01, 0x00, 0x0c, // message header (binding response)
|
|
0x21, 0x12, 0xa4, 0x42, // magic cookie
|
|
0x29, 0x1f, 0xcd, 0x7c, // transaction ID
|
|
0xba, 0x58, 0xab, 0xd7,
|
|
0xf2, 0x41, 0x01, 0x00,
|
|
0x00, 0x20, 0x00, 0x08, // address type (xor), length
|
|
0x00, 0x01, 0xfc, 0xb5, // family (AF_INET), XOR-ed port
|
|
0x8d, 0x05, 0xe0, 0xa4 // IPv4 address
|
|
};
|
|
|
|
// ByteString Attribute (username)
|
|
static const unsigned char kStunMessageWithByteStringAttribute[] = {
|
|
0x00, 0x01, 0x00, 0x0c,
|
|
0x21, 0x12, 0xa4, 0x42,
|
|
0xe3, 0xa9, 0x46, 0xe1,
|
|
0x7c, 0x00, 0xc2, 0x62,
|
|
0x54, 0x08, 0x01, 0x00,
|
|
0x00, 0x06, 0x00, 0x08, // username attribute (length 8)
|
|
0x61, 0x62, 0x63, 0x64, // abcdefgh
|
|
0x65, 0x66, 0x67, 0x68
|
|
};
|
|
|
|
// Message with an unknown but comprehensible optional attribute.
|
|
// Parsing should succeed despite this unknown attribute.
|
|
static const unsigned char kStunMessageWithUnknownAttribute[] = {
|
|
0x00, 0x01, 0x00, 0x14,
|
|
0x21, 0x12, 0xa4, 0x42,
|
|
0xe3, 0xa9, 0x46, 0xe1,
|
|
0x7c, 0x00, 0xc2, 0x62,
|
|
0x54, 0x08, 0x01, 0x00,
|
|
0x00, 0xaa, 0x00, 0x07, // Unknown attribute, length 7 (needs padding!)
|
|
0x61, 0x62, 0x63, 0x64, // abcdefg + padding
|
|
0x65, 0x66, 0x67, 0x00,
|
|
0x00, 0x06, 0x00, 0x03, // Followed by a known attribute we can
|
|
0x61, 0x62, 0x63, 0x00 // check for (username of length 3)
|
|
};
|
|
|
|
// ByteString Attribute (username) with padding byte
|
|
static const unsigned char kStunMessageWithPaddedByteStringAttribute[] = {
|
|
0x00, 0x01, 0x00, 0x08,
|
|
0x21, 0x12, 0xa4, 0x42,
|
|
0xe3, 0xa9, 0x46, 0xe1,
|
|
0x7c, 0x00, 0xc2, 0x62,
|
|
0x54, 0x08, 0x01, 0x00,
|
|
0x00, 0x06, 0x00, 0x03, // username attribute (length 3)
|
|
0x61, 0x62, 0x63, 0xcc // abc
|
|
};
|
|
|
|
// Message with an Unknown Attributes (uint16 list) attribute.
|
|
static const unsigned char kStunMessageWithUInt16ListAttribute[] = {
|
|
0x00, 0x01, 0x00, 0x0c,
|
|
0x21, 0x12, 0xa4, 0x42,
|
|
0xe3, 0xa9, 0x46, 0xe1,
|
|
0x7c, 0x00, 0xc2, 0x62,
|
|
0x54, 0x08, 0x01, 0x00,
|
|
0x00, 0x0a, 0x00, 0x06, // username attribute (length 6)
|
|
0x00, 0x01, 0x10, 0x00, // three attributes plus padding
|
|
0xAB, 0xCU, 0xBE, 0xEF
|
|
};
|
|
|
|
// Error response message (unauthorized)
|
|
static const unsigned char kStunMessageWithErrorAttribute[] = {
|
|
0x01, 0x11, 0x00, 0x14,
|
|
0x21, 0x12, 0xa4, 0x42,
|
|
0x29, 0x1f, 0xcd, 0x7c,
|
|
0xba, 0x58, 0xab, 0xd7,
|
|
0xf2, 0x41, 0x01, 0x00,
|
|
0x00, 0x09, 0x00, 0x10,
|
|
0x00, 0x00, 0x04, 0x01,
|
|
0x55, 0x6e, 0x61, 0x75,
|
|
0x74, 0x68, 0x6f, 0x72,
|
|
0x69, 0x7a, 0x65, 0x64
|
|
};
|
|
|
|
// Sample messages with an invalid length Field
|
|
|
|
// The actual length in bytes of the invalid messages (including STUN header)
|
|
static const int kRealLengthOfInvalidLengthTestCases = 32;
|
|
|
|
static const unsigned char kStunMessageWithZeroLength[] = {
|
|
0x00, 0x01, 0x00, 0x00, // length of 0 (last 2 bytes)
|
|
0x21, 0x12, 0xA4, 0x42, // magic cookie
|
|
'0', '1', '2', '3', // transaction id
|
|
'4', '5', '6', '7',
|
|
'8', '9', 'a', 'b',
|
|
0x00, 0x20, 0x00, 0x08, // xor mapped address
|
|
0x00, 0x01, 0x21, 0x1F,
|
|
0x21, 0x12, 0xA4, 0x53,
|
|
};
|
|
|
|
static const unsigned char kStunMessageWithExcessLength[] = {
|
|
0x00, 0x01, 0x00, 0x55, // length of 85
|
|
0x21, 0x12, 0xA4, 0x42, // magic cookie
|
|
'0', '1', '2', '3', // transaction id
|
|
'4', '5', '6', '7',
|
|
'8', '9', 'a', 'b',
|
|
0x00, 0x20, 0x00, 0x08, // xor mapped address
|
|
0x00, 0x01, 0x21, 0x1F,
|
|
0x21, 0x12, 0xA4, 0x53,
|
|
};
|
|
|
|
static const unsigned char kStunMessageWithSmallLength[] = {
|
|
0x00, 0x01, 0x00, 0x03, // length of 3
|
|
0x21, 0x12, 0xA4, 0x42, // magic cookie
|
|
'0', '1', '2', '3', // transaction id
|
|
'4', '5', '6', '7',
|
|
'8', '9', 'a', 'b',
|
|
0x00, 0x20, 0x00, 0x08, // xor mapped address
|
|
0x00, 0x01, 0x21, 0x1F,
|
|
0x21, 0x12, 0xA4, 0x53,
|
|
};
|
|
|
|
// RTCP packet, for testing we correctly ignore non stun packet types.
|
|
// V=2, P=false, RC=0, Type=200, Len=6, Sender-SSRC=85, etc
|
|
static const unsigned char kRtcpPacket[] = {
|
|
0x80, 0xc8, 0x00, 0x06, 0x00, 0x00, 0x00, 0x55,
|
|
0xce, 0xa5, 0x18, 0x3a, 0x39, 0xcc, 0x7d, 0x09,
|
|
0x23, 0xed, 0x19, 0x07, 0x00, 0x00, 0x01, 0x56,
|
|
0x00, 0x03, 0x73, 0x50,
|
|
};
|
|
|
|
// RFC5769 Test Vectors
|
|
// Software name (request): "STUN test client" (without quotes)
|
|
// Software name (response): "test vector" (without quotes)
|
|
// Username: "evtj:h6vY" (without quotes)
|
|
// Password: "VOkJxbRl1RmTxUk/WvJxBt" (without quotes)
|
|
static const unsigned char kRfc5769SampleMsgTransactionId[] = {
|
|
0xb7, 0xe7, 0xa7, 0x01, 0xbc, 0x34, 0xd6, 0x86, 0xfa, 0x87, 0xdf, 0xae
|
|
};
|
|
static const char kRfc5769SampleMsgClientSoftware[] = "STUN test client";
|
|
static const char kRfc5769SampleMsgServerSoftware[] = "test vector";
|
|
static const char kRfc5769SampleMsgUsername[] = "evtj:h6vY";
|
|
static const char kRfc5769SampleMsgPassword[] = "VOkJxbRl1RmTxUk/WvJxBt";
|
|
static const rtc::SocketAddress kRfc5769SampleMsgMappedAddress(
|
|
"192.0.2.1", 32853);
|
|
static const rtc::SocketAddress kRfc5769SampleMsgIPv6MappedAddress(
|
|
"2001:db8:1234:5678:11:2233:4455:6677", 32853);
|
|
|
|
static const unsigned char kRfc5769SampleMsgWithAuthTransactionId[] = {
|
|
0x78, 0xad, 0x34, 0x33, 0xc6, 0xad, 0x72, 0xc0, 0x29, 0xda, 0x41, 0x2e
|
|
};
|
|
static const char kRfc5769SampleMsgWithAuthUsername[] =
|
|
"\xe3\x83\x9e\xe3\x83\x88\xe3\x83\xaa\xe3\x83\x83\xe3\x82\xaf\xe3\x82\xb9";
|
|
static const char kRfc5769SampleMsgWithAuthPassword[] = "TheMatrIX";
|
|
static const char kRfc5769SampleMsgWithAuthNonce[] =
|
|
"f//499k954d6OL34oL9FSTvy64sA";
|
|
static const char kRfc5769SampleMsgWithAuthRealm[] = "example.org";
|
|
|
|
// 2.1. Sample Request
|
|
static const unsigned char kRfc5769SampleRequest[] = {
|
|
0x00, 0x01, 0x00, 0x58, // Request type and message length
|
|
0x21, 0x12, 0xa4, 0x42, // Magic cookie
|
|
0xb7, 0xe7, 0xa7, 0x01, // }
|
|
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
|
|
0xfa, 0x87, 0xdf, 0xae, // }
|
|
0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header
|
|
0x53, 0x54, 0x55, 0x4e, // }
|
|
0x20, 0x74, 0x65, 0x73, // } User-agent...
|
|
0x74, 0x20, 0x63, 0x6c, // } ...name
|
|
0x69, 0x65, 0x6e, 0x74, // }
|
|
0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header
|
|
0x6e, 0x00, 0x01, 0xff, // ICE priority value
|
|
0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header
|
|
0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker...
|
|
0x51, 0x26, 0x3b, 0x36, // } ...for ICE control
|
|
0x00, 0x06, 0x00, 0x09, // USERNAME attribute header
|
|
0x65, 0x76, 0x74, 0x6a, // }
|
|
0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes)
|
|
0x59, 0x20, 0x20, 0x20, // }
|
|
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
|
|
0x9a, 0xea, 0xa7, 0x0c, // }
|
|
0xbf, 0xd8, 0xcb, 0x56, // }
|
|
0x78, 0x1e, 0xf2, 0xb5, // } HMAC-SHA1 fingerprint
|
|
0xb2, 0xd3, 0xf2, 0x49, // }
|
|
0xc1, 0xb5, 0x71, 0xa2, // }
|
|
0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header
|
|
0xe5, 0x7a, 0x3b, 0xcf // CRC32 fingerprint
|
|
};
|
|
|
|
// 2.2. Sample IPv4 Response
|
|
static const unsigned char kRfc5769SampleResponse[] = {
|
|
0x01, 0x01, 0x00, 0x3c, // Response type and message length
|
|
0x21, 0x12, 0xa4, 0x42, // Magic cookie
|
|
0xb7, 0xe7, 0xa7, 0x01, // }
|
|
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
|
|
0xfa, 0x87, 0xdf, 0xae, // }
|
|
0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header
|
|
0x74, 0x65, 0x73, 0x74, // }
|
|
0x20, 0x76, 0x65, 0x63, // } UTF-8 server name
|
|
0x74, 0x6f, 0x72, 0x20, // }
|
|
0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header
|
|
0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port
|
|
0xe1, 0x12, 0xa6, 0x43, // Xor'd mapped IPv4 address
|
|
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
|
|
0x2b, 0x91, 0xf5, 0x99, // }
|
|
0xfd, 0x9e, 0x90, 0xc3, // }
|
|
0x8c, 0x74, 0x89, 0xf9, // } HMAC-SHA1 fingerprint
|
|
0x2a, 0xf9, 0xba, 0x53, // }
|
|
0xf0, 0x6b, 0xe7, 0xd7, // }
|
|
0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header
|
|
0xc0, 0x7d, 0x4c, 0x96 // CRC32 fingerprint
|
|
};
|
|
|
|
// 2.3. Sample IPv6 Response
|
|
static const unsigned char kRfc5769SampleResponseIPv6[] = {
|
|
0x01, 0x01, 0x00, 0x48, // Response type and message length
|
|
0x21, 0x12, 0xa4, 0x42, // Magic cookie
|
|
0xb7, 0xe7, 0xa7, 0x01, // }
|
|
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
|
|
0xfa, 0x87, 0xdf, 0xae, // }
|
|
0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header
|
|
0x74, 0x65, 0x73, 0x74, // }
|
|
0x20, 0x76, 0x65, 0x63, // } UTF-8 server name
|
|
0x74, 0x6f, 0x72, 0x20, // }
|
|
0x00, 0x20, 0x00, 0x14, // XOR-MAPPED-ADDRESS attribute header
|
|
0x00, 0x02, 0xa1, 0x47, // Address family (IPv6) and xor'd mapped port.
|
|
0x01, 0x13, 0xa9, 0xfa, // }
|
|
0xa5, 0xd3, 0xf1, 0x79, // } Xor'd mapped IPv6 address
|
|
0xbc, 0x25, 0xf4, 0xb5, // }
|
|
0xbe, 0xd2, 0xb9, 0xd9, // }
|
|
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
|
|
0xa3, 0x82, 0x95, 0x4e, // }
|
|
0x4b, 0xe6, 0x7b, 0xf1, // }
|
|
0x17, 0x84, 0xc9, 0x7c, // } HMAC-SHA1 fingerprint
|
|
0x82, 0x92, 0xc2, 0x75, // }
|
|
0xbf, 0xe3, 0xed, 0x41, // }
|
|
0x80, 0x28, 0x00, 0x04, // FINGERPRINT attribute header
|
|
0xc8, 0xfb, 0x0b, 0x4c // CRC32 fingerprint
|
|
};
|
|
|
|
// 2.4. Sample Request with Long-Term Authentication
|
|
static const unsigned char kRfc5769SampleRequestLongTermAuth[] = {
|
|
0x00, 0x01, 0x00, 0x60, // Request type and message length
|
|
0x21, 0x12, 0xa4, 0x42, // Magic cookie
|
|
0x78, 0xad, 0x34, 0x33, // }
|
|
0xc6, 0xad, 0x72, 0xc0, // } Transaction ID
|
|
0x29, 0xda, 0x41, 0x2e, // }
|
|
0x00, 0x06, 0x00, 0x12, // USERNAME attribute header
|
|
0xe3, 0x83, 0x9e, 0xe3, // }
|
|
0x83, 0x88, 0xe3, 0x83, // }
|
|
0xaa, 0xe3, 0x83, 0x83, // } Username value (18 bytes) and padding (2 bytes)
|
|
0xe3, 0x82, 0xaf, 0xe3, // }
|
|
0x82, 0xb9, 0x00, 0x00, // }
|
|
0x00, 0x15, 0x00, 0x1c, // NONCE attribute header
|
|
0x66, 0x2f, 0x2f, 0x34, // }
|
|
0x39, 0x39, 0x6b, 0x39, // }
|
|
0x35, 0x34, 0x64, 0x36, // }
|
|
0x4f, 0x4c, 0x33, 0x34, // } Nonce value
|
|
0x6f, 0x4c, 0x39, 0x46, // }
|
|
0x53, 0x54, 0x76, 0x79, // }
|
|
0x36, 0x34, 0x73, 0x41, // }
|
|
0x00, 0x14, 0x00, 0x0b, // REALM attribute header
|
|
0x65, 0x78, 0x61, 0x6d, // }
|
|
0x70, 0x6c, 0x65, 0x2e, // } Realm value (11 bytes) and padding (1 byte)
|
|
0x6f, 0x72, 0x67, 0x00, // }
|
|
0x00, 0x08, 0x00, 0x14, // MESSAGE-INTEGRITY attribute header
|
|
0xf6, 0x70, 0x24, 0x65, // }
|
|
0x6d, 0xd6, 0x4a, 0x3e, // }
|
|
0x02, 0xb8, 0xe0, 0x71, // } HMAC-SHA1 fingerprint
|
|
0x2e, 0x85, 0xc9, 0xa2, // }
|
|
0x8c, 0xa8, 0x96, 0x66 // }
|
|
};
|
|
|
|
// Length parameter is changed to 0x38 from 0x58.
|
|
// AddMessageIntegrity will add MI information and update the length param
|
|
// accordingly.
|
|
static const unsigned char kRfc5769SampleRequestWithoutMI[] = {
|
|
0x00, 0x01, 0x00, 0x38, // Request type and message length
|
|
0x21, 0x12, 0xa4, 0x42, // Magic cookie
|
|
0xb7, 0xe7, 0xa7, 0x01, // }
|
|
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
|
|
0xfa, 0x87, 0xdf, 0xae, // }
|
|
0x80, 0x22, 0x00, 0x10, // SOFTWARE attribute header
|
|
0x53, 0x54, 0x55, 0x4e, // }
|
|
0x20, 0x74, 0x65, 0x73, // } User-agent...
|
|
0x74, 0x20, 0x63, 0x6c, // } ...name
|
|
0x69, 0x65, 0x6e, 0x74, // }
|
|
0x00, 0x24, 0x00, 0x04, // PRIORITY attribute header
|
|
0x6e, 0x00, 0x01, 0xff, // ICE priority value
|
|
0x80, 0x29, 0x00, 0x08, // ICE-CONTROLLED attribute header
|
|
0x93, 0x2f, 0xf9, 0xb1, // } Pseudo-random tie breaker...
|
|
0x51, 0x26, 0x3b, 0x36, // } ...for ICE control
|
|
0x00, 0x06, 0x00, 0x09, // USERNAME attribute header
|
|
0x65, 0x76, 0x74, 0x6a, // }
|
|
0x3a, 0x68, 0x36, 0x76, // } Username (9 bytes) and padding (3 bytes)
|
|
0x59, 0x20, 0x20, 0x20 // }
|
|
};
|
|
|
|
// This HMAC differs from the RFC 5769 SampleRequest message. This differs
|
|
// because spec uses 0x20 for the padding where as our implementation uses 0.
|
|
static const unsigned char kCalculatedHmac1[] = {
|
|
0x79, 0x07, 0xc2, 0xd2, // }
|
|
0xed, 0xbf, 0xea, 0x48, // }
|
|
0x0e, 0x4c, 0x76, 0xd8, // } HMAC-SHA1 fingerprint
|
|
0x29, 0x62, 0xd5, 0xc3, // }
|
|
0x74, 0x2a, 0xf9, 0xe3 // }
|
|
};
|
|
|
|
// Length parameter is changed to 0x1c from 0x3c.
|
|
// AddMessageIntegrity will add MI information and update the length param
|
|
// accordingly.
|
|
static const unsigned char kRfc5769SampleResponseWithoutMI[] = {
|
|
0x01, 0x01, 0x00, 0x1c, // Response type and message length
|
|
0x21, 0x12, 0xa4, 0x42, // Magic cookie
|
|
0xb7, 0xe7, 0xa7, 0x01, // }
|
|
0xbc, 0x34, 0xd6, 0x86, // } Transaction ID
|
|
0xfa, 0x87, 0xdf, 0xae, // }
|
|
0x80, 0x22, 0x00, 0x0b, // SOFTWARE attribute header
|
|
0x74, 0x65, 0x73, 0x74, // }
|
|
0x20, 0x76, 0x65, 0x63, // } UTF-8 server name
|
|
0x74, 0x6f, 0x72, 0x20, // }
|
|
0x00, 0x20, 0x00, 0x08, // XOR-MAPPED-ADDRESS attribute header
|
|
0x00, 0x01, 0xa1, 0x47, // Address family (IPv4) and xor'd mapped port
|
|
0xe1, 0x12, 0xa6, 0x43 // Xor'd mapped IPv4 address
|
|
};
|
|
|
|
// This HMAC differs from the RFC 5769 SampleResponse message. This differs
|
|
// because spec uses 0x20 for the padding where as our implementation uses 0.
|
|
static const unsigned char kCalculatedHmac2[] = {
|
|
0x5d, 0x6b, 0x58, 0xbe, // }
|
|
0xad, 0x94, 0xe0, 0x7e, // }
|
|
0xef, 0x0d, 0xfc, 0x12, // } HMAC-SHA1 fingerprint
|
|
0x82, 0xa2, 0xbd, 0x08, // }
|
|
0x43, 0x14, 0x10, 0x28 // }
|
|
};
|
|
|
|
// A transaction ID without the 'magic cookie' portion
|
|
// pjnat's test programs use this transaction ID a lot.
|
|
const unsigned char kTestTransactionId1[] = { 0x029, 0x01f, 0x0cd, 0x07c,
|
|
0x0ba, 0x058, 0x0ab, 0x0d7,
|
|
0x0f2, 0x041, 0x001, 0x000 };
|
|
|
|
// They use this one sometimes too.
|
|
const unsigned char kTestTransactionId2[] = { 0x0e3, 0x0a9, 0x046, 0x0e1,
|
|
0x07c, 0x000, 0x0c2, 0x062,
|
|
0x054, 0x008, 0x001, 0x000 };
|
|
|
|
const in6_addr kIPv6TestAddress1 = { { { 0x24, 0x01, 0xfa, 0x00,
|
|
0x00, 0x04, 0x10, 0x00,
|
|
0xbe, 0x30, 0x5b, 0xff,
|
|
0xfe, 0xe5, 0x00, 0xc3 } } };
|
|
const in6_addr kIPv6TestAddress2 = { { { 0x24, 0x01, 0xfa, 0x00,
|
|
0x00, 0x04, 0x10, 0x12,
|
|
0x06, 0x0c, 0xce, 0xff,
|
|
0xfe, 0x1f, 0x61, 0xa4 } } };
|
|
|
|
#ifdef POSIX
|
|
const in_addr kIPv4TestAddress1 = { 0xe64417ac };
|
|
#elif defined WIN32
|
|
// Windows in_addr has a union with a uchar[] array first.
|
|
const in_addr kIPv4TestAddress1 = { { 0x0ac, 0x017, 0x044, 0x0e6 } };
|
|
#endif
|
|
const char kTestUserName1[] = "abcdefgh";
|
|
const char kTestUserName2[] = "abc";
|
|
const char kTestErrorReason[] = "Unauthorized";
|
|
const int kTestErrorClass = 4;
|
|
const int kTestErrorNumber = 1;
|
|
const int kTestErrorCode = 401;
|
|
|
|
const int kTestMessagePort1 = 59977;
|
|
const int kTestMessagePort2 = 47233;
|
|
const int kTestMessagePort3 = 56743;
|
|
const int kTestMessagePort4 = 40444;
|
|
|
|
#define ReadStunMessage(X, Y) ReadStunMessageTestCase(X, Y, sizeof(Y));
|
|
|
|
// Test that the GetStun*Type and IsStun*Type methods work as expected.
|
|
TEST_F(StunTest, MessageTypes) {
|
|
EXPECT_EQ(STUN_BINDING_RESPONSE,
|
|
GetStunSuccessResponseType(STUN_BINDING_REQUEST));
|
|
EXPECT_EQ(STUN_BINDING_ERROR_RESPONSE,
|
|
GetStunErrorResponseType(STUN_BINDING_REQUEST));
|
|
EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_INDICATION));
|
|
EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_RESPONSE));
|
|
EXPECT_EQ(-1, GetStunSuccessResponseType(STUN_BINDING_ERROR_RESPONSE));
|
|
EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_INDICATION));
|
|
EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_RESPONSE));
|
|
EXPECT_EQ(-1, GetStunErrorResponseType(STUN_BINDING_ERROR_RESPONSE));
|
|
|
|
int types[] = {
|
|
STUN_BINDING_REQUEST, STUN_BINDING_INDICATION,
|
|
STUN_BINDING_RESPONSE, STUN_BINDING_ERROR_RESPONSE
|
|
};
|
|
for (int i = 0; i < ARRAY_SIZE(types); ++i) {
|
|
EXPECT_EQ(i == 0, IsStunRequestType(types[i]));
|
|
EXPECT_EQ(i == 1, IsStunIndicationType(types[i]));
|
|
EXPECT_EQ(i == 2, IsStunSuccessResponseType(types[i]));
|
|
EXPECT_EQ(i == 3, IsStunErrorResponseType(types[i]));
|
|
EXPECT_EQ(1, types[i] & 0xFEEF);
|
|
}
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithIPv4AddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4MappedAddress);
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
rtc::IPAddress test_address(kIPv4TestAddress1);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
|
|
kTestMessagePort4, test_address);
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithIPv4XorAddressAttribute) {
|
|
StunMessage msg;
|
|
StunMessage msg2;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress);
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
const StunAddressAttribute* addr =
|
|
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
rtc::IPAddress test_address(kIPv4TestAddress1);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
|
|
kTestMessagePort3, test_address);
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithIPv6AddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
rtc::IPAddress test_address(kIPv6TestAddress1);
|
|
|
|
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
|
|
kTestMessagePort2, test_address);
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithInvalidAddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6MappedAddress);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
rtc::IPAddress test_address(kIPv6TestAddress1);
|
|
|
|
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
|
|
kTestMessagePort2, test_address);
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithIPv6XorAddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress);
|
|
|
|
rtc::IPAddress test_address(kIPv6TestAddress1);
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
|
|
|
|
const StunAddressAttribute* addr =
|
|
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
|
|
kTestMessagePort1, test_address);
|
|
}
|
|
|
|
// Read the RFC5389 fields from the RFC5769 sample STUN request.
|
|
TEST_F(StunTest, ReadRfc5769RequestMessage) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kRfc5769SampleRequest);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId,
|
|
kStunTransactionIdLength);
|
|
|
|
const StunByteStringAttribute* software =
|
|
msg.GetByteString(STUN_ATTR_SOFTWARE);
|
|
ASSERT_TRUE(software != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgClientSoftware, software->GetString());
|
|
|
|
const StunByteStringAttribute* username =
|
|
msg.GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgUsername, username->GetString());
|
|
|
|
// Actual M-I value checked in a later test.
|
|
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
|
|
// Fingerprint checked in a later test, but double-check the value here.
|
|
const StunUInt32Attribute* fingerprint =
|
|
msg.GetUInt32(STUN_ATTR_FINGERPRINT);
|
|
ASSERT_TRUE(fingerprint != NULL);
|
|
EXPECT_EQ(0xe57a3bcf, fingerprint->value());
|
|
}
|
|
|
|
// Read the RFC5389 fields from the RFC5769 sample STUN response.
|
|
TEST_F(StunTest, ReadRfc5769ResponseMessage) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kRfc5769SampleResponse);
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId,
|
|
kStunTransactionIdLength);
|
|
|
|
const StunByteStringAttribute* software =
|
|
msg.GetByteString(STUN_ATTR_SOFTWARE);
|
|
ASSERT_TRUE(software != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString());
|
|
|
|
const StunAddressAttribute* mapped_address =
|
|
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
ASSERT_TRUE(mapped_address != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgMappedAddress, mapped_address->GetAddress());
|
|
|
|
// Actual M-I and fingerprint checked in later tests.
|
|
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
|
|
}
|
|
|
|
// Read the RFC5389 fields from the RFC5769 sample STUN response for IPv6.
|
|
TEST_F(StunTest, ReadRfc5769ResponseMessageIPv6) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kRfc5769SampleResponseIPv6);
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kRfc5769SampleMsgTransactionId,
|
|
kStunTransactionIdLength);
|
|
|
|
const StunByteStringAttribute* software =
|
|
msg.GetByteString(STUN_ATTR_SOFTWARE);
|
|
ASSERT_TRUE(software != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgServerSoftware, software->GetString());
|
|
|
|
const StunAddressAttribute* mapped_address =
|
|
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
ASSERT_TRUE(mapped_address != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgIPv6MappedAddress, mapped_address->GetAddress());
|
|
|
|
// Actual M-I and fingerprint checked in later tests.
|
|
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) != NULL);
|
|
}
|
|
|
|
// Read the RFC5389 fields from the RFC5769 sample STUN response with auth.
|
|
TEST_F(StunTest, ReadRfc5769RequestMessageLongTermAuth) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kRfc5769SampleRequestLongTermAuth);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
CheckStunTransactionID(msg, kRfc5769SampleMsgWithAuthTransactionId,
|
|
kStunTransactionIdLength);
|
|
|
|
const StunByteStringAttribute* username =
|
|
msg.GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgWithAuthUsername, username->GetString());
|
|
|
|
const StunByteStringAttribute* nonce =
|
|
msg.GetByteString(STUN_ATTR_NONCE);
|
|
ASSERT_TRUE(nonce != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgWithAuthNonce, nonce->GetString());
|
|
|
|
const StunByteStringAttribute* realm =
|
|
msg.GetByteString(STUN_ATTR_REALM);
|
|
ASSERT_TRUE(realm != NULL);
|
|
EXPECT_EQ(kRfc5769SampleMsgWithAuthRealm, realm->GetString());
|
|
|
|
// No fingerprint, actual M-I checked in later tests.
|
|
ASSERT_TRUE(msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY) != NULL);
|
|
ASSERT_TRUE(msg.GetUInt32(STUN_ATTR_FINGERPRINT) == NULL);
|
|
}
|
|
|
|
// The RFC3489 packet in this test is the same as
|
|
// kStunMessageWithIPv4MappedAddress, but with a different value where the
|
|
// magic cookie was.
|
|
TEST_F(StunTest, ReadLegacyMessage) {
|
|
unsigned char rfc3489_packet[sizeof(kStunMessageWithIPv4MappedAddress)];
|
|
memcpy(rfc3489_packet, kStunMessageWithIPv4MappedAddress,
|
|
sizeof(kStunMessageWithIPv4MappedAddress));
|
|
// Overwrite the magic cookie here.
|
|
memcpy(&rfc3489_packet[4], "ABCD", 4);
|
|
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, rfc3489_packet);
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, &rfc3489_packet[4], kStunTransactionIdLength + 4);
|
|
|
|
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
rtc::IPAddress test_address(kIPv4TestAddress1);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
|
|
kTestMessagePort4, test_address);
|
|
}
|
|
|
|
TEST_F(StunTest, SetIPv6XorAddressAttributeOwner) {
|
|
StunMessage msg;
|
|
StunMessage msg2;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv6XorMappedAddress);
|
|
|
|
rtc::IPAddress test_address(kIPv6TestAddress1);
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
|
|
|
|
const StunAddressAttribute* addr =
|
|
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
|
|
kTestMessagePort1, test_address);
|
|
|
|
// Owner with a different transaction ID.
|
|
msg2.SetTransactionID("ABCDABCDABCD");
|
|
StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL);
|
|
addr2.SetIP(addr->ipaddr());
|
|
addr2.SetPort(addr->port());
|
|
addr2.SetOwner(&msg2);
|
|
// The internal IP address shouldn't change.
|
|
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
|
|
|
|
rtc::ByteBuffer correct_buf;
|
|
rtc::ByteBuffer wrong_buf;
|
|
EXPECT_TRUE(addr->Write(&correct_buf));
|
|
EXPECT_TRUE(addr2.Write(&wrong_buf));
|
|
// But when written out, the buffers should look different.
|
|
ASSERT_NE(0,
|
|
memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length()));
|
|
// And when reading a known good value, the address should be wrong.
|
|
addr2.Read(&correct_buf);
|
|
ASSERT_NE(addr->ipaddr(), addr2.ipaddr());
|
|
addr2.SetIP(addr->ipaddr());
|
|
addr2.SetPort(addr->port());
|
|
// Try writing with no owner at all, should fail and write nothing.
|
|
addr2.SetOwner(NULL);
|
|
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
|
|
wrong_buf.Consume(wrong_buf.Length());
|
|
EXPECT_FALSE(addr2.Write(&wrong_buf));
|
|
ASSERT_EQ(0U, wrong_buf.Length());
|
|
}
|
|
|
|
TEST_F(StunTest, SetIPv4XorAddressAttributeOwner) {
|
|
// Unlike the IPv6XorAddressAttributeOwner test, IPv4 XOR address attributes
|
|
// should _not_ be affected by a change in owner. IPv4 XOR address uses the
|
|
// magic cookie value which is fixed.
|
|
StunMessage msg;
|
|
StunMessage msg2;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithIPv4XorMappedAddress);
|
|
|
|
rtc::IPAddress test_address(kIPv4TestAddress1);
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
const StunAddressAttribute* addr =
|
|
msg.GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
|
|
kTestMessagePort3, test_address);
|
|
|
|
// Owner with a different transaction ID.
|
|
msg2.SetTransactionID("ABCDABCDABCD");
|
|
StunXorAddressAttribute addr2(STUN_ATTR_XOR_MAPPED_ADDRESS, 20, NULL);
|
|
addr2.SetIP(addr->ipaddr());
|
|
addr2.SetPort(addr->port());
|
|
addr2.SetOwner(&msg2);
|
|
// The internal IP address shouldn't change.
|
|
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
|
|
|
|
rtc::ByteBuffer correct_buf;
|
|
rtc::ByteBuffer wrong_buf;
|
|
EXPECT_TRUE(addr->Write(&correct_buf));
|
|
EXPECT_TRUE(addr2.Write(&wrong_buf));
|
|
// The same address data should be written.
|
|
ASSERT_EQ(0,
|
|
memcmp(correct_buf.Data(), wrong_buf.Data(), wrong_buf.Length()));
|
|
// And an attribute should be able to un-XOR an address belonging to a message
|
|
// with a different transaction ID.
|
|
EXPECT_TRUE(addr2.Read(&correct_buf));
|
|
ASSERT_EQ(addr->ipaddr(), addr2.ipaddr());
|
|
|
|
// However, no owner is still an error, should fail and write nothing.
|
|
addr2.SetOwner(NULL);
|
|
ASSERT_EQ(addr2.ipaddr(), addr->ipaddr());
|
|
wrong_buf.Consume(wrong_buf.Length());
|
|
EXPECT_FALSE(addr2.Write(&wrong_buf));
|
|
}
|
|
|
|
TEST_F(StunTest, CreateIPv6AddressAttribute) {
|
|
rtc::IPAddress test_ip(kIPv6TestAddress2);
|
|
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
rtc::SocketAddress test_addr(test_ip, kTestMessagePort2);
|
|
addr->SetAddress(test_addr);
|
|
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV6,
|
|
kTestMessagePort2, test_ip);
|
|
delete addr;
|
|
}
|
|
|
|
TEST_F(StunTest, CreateIPv4AddressAttribute) {
|
|
struct in_addr test_in_addr;
|
|
test_in_addr.s_addr = 0xBEB0B0BE;
|
|
rtc::IPAddress test_ip(test_in_addr);
|
|
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
rtc::SocketAddress test_addr(test_ip, kTestMessagePort2);
|
|
addr->SetAddress(test_addr);
|
|
|
|
CheckStunAddressAttribute(addr, STUN_ADDRESS_IPV4,
|
|
kTestMessagePort2, test_ip);
|
|
delete addr;
|
|
}
|
|
|
|
// Test that we don't care what order we set the parts of an address
|
|
TEST_F(StunTest, CreateAddressInArbitraryOrder) {
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
|
|
// Port first
|
|
addr->SetPort(kTestMessagePort1);
|
|
addr->SetIP(rtc::IPAddress(kIPv4TestAddress1));
|
|
ASSERT_EQ(kTestMessagePort1, addr->port());
|
|
ASSERT_EQ(rtc::IPAddress(kIPv4TestAddress1), addr->ipaddr());
|
|
|
|
StunAddressAttribute* addr2 =
|
|
StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
|
|
// IP first
|
|
addr2->SetIP(rtc::IPAddress(kIPv4TestAddress1));
|
|
addr2->SetPort(kTestMessagePort2);
|
|
ASSERT_EQ(kTestMessagePort2, addr2->port());
|
|
ASSERT_EQ(rtc::IPAddress(kIPv4TestAddress1), addr2->ipaddr());
|
|
|
|
delete addr;
|
|
delete addr2;
|
|
}
|
|
|
|
TEST_F(StunTest, WriteMessageWithIPv6AddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = sizeof(kStunMessageWithIPv6MappedAddress);
|
|
|
|
rtc::IPAddress test_ip(kIPv6TestAddress1);
|
|
|
|
msg.SetType(STUN_BINDING_REQUEST);
|
|
msg.SetTransactionID(
|
|
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
|
|
kStunTransactionIdLength));
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
rtc::SocketAddress test_addr(test_ip, kTestMessagePort2);
|
|
addr->SetAddress(test_addr);
|
|
EXPECT_TRUE(msg.AddAttribute(addr));
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6MappedAddress));
|
|
int len1 = static_cast<int>(out.Length());
|
|
std::string bytes;
|
|
out.ReadString(&bytes, len1);
|
|
ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv6MappedAddress, len1));
|
|
}
|
|
|
|
TEST_F(StunTest, WriteMessageWithIPv4AddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = sizeof(kStunMessageWithIPv4MappedAddress);
|
|
|
|
rtc::IPAddress test_ip(kIPv4TestAddress1);
|
|
|
|
msg.SetType(STUN_BINDING_RESPONSE);
|
|
msg.SetTransactionID(
|
|
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
|
|
kStunTransactionIdLength));
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
rtc::SocketAddress test_addr(test_ip, kTestMessagePort4);
|
|
addr->SetAddress(test_addr);
|
|
EXPECT_TRUE(msg.AddAttribute(addr));
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4MappedAddress));
|
|
int len1 = static_cast<int>(out.Length());
|
|
std::string bytes;
|
|
out.ReadString(&bytes, len1);
|
|
ASSERT_EQ(0, memcmp(bytes.c_str(), kStunMessageWithIPv4MappedAddress, len1));
|
|
}
|
|
|
|
TEST_F(StunTest, WriteMessageWithIPv6XorAddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = sizeof(kStunMessageWithIPv6XorMappedAddress);
|
|
|
|
rtc::IPAddress test_ip(kIPv6TestAddress1);
|
|
|
|
msg.SetType(STUN_BINDING_RESPONSE);
|
|
msg.SetTransactionID(
|
|
std::string(reinterpret_cast<const char*>(kTestTransactionId2),
|
|
kStunTransactionIdLength));
|
|
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
|
|
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
rtc::SocketAddress test_addr(test_ip, kTestMessagePort1);
|
|
addr->SetAddress(test_addr);
|
|
EXPECT_TRUE(msg.AddAttribute(addr));
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv6XorMappedAddress));
|
|
int len1 = static_cast<int>(out.Length());
|
|
std::string bytes;
|
|
out.ReadString(&bytes, len1);
|
|
ASSERT_EQ(0,
|
|
memcmp(bytes.c_str(), kStunMessageWithIPv6XorMappedAddress, len1));
|
|
}
|
|
|
|
TEST_F(StunTest, WriteMessageWithIPv4XoreAddressAttribute) {
|
|
StunMessage msg;
|
|
size_t size = sizeof(kStunMessageWithIPv4XorMappedAddress);
|
|
|
|
rtc::IPAddress test_ip(kIPv4TestAddress1);
|
|
|
|
msg.SetType(STUN_BINDING_RESPONSE);
|
|
msg.SetTransactionID(
|
|
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
|
|
kStunTransactionIdLength));
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
|
|
StunAddressAttribute* addr =
|
|
StunAttribute::CreateXorAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
rtc::SocketAddress test_addr(test_ip, kTestMessagePort3);
|
|
addr->SetAddress(test_addr);
|
|
EXPECT_TRUE(msg.AddAttribute(addr));
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_RESPONSE, (size - 20));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
ASSERT_EQ(out.Length(), sizeof(kStunMessageWithIPv4XorMappedAddress));
|
|
int len1 = static_cast<int>(out.Length());
|
|
std::string bytes;
|
|
out.ReadString(&bytes, len1);
|
|
ASSERT_EQ(0,
|
|
memcmp(bytes.c_str(), kStunMessageWithIPv4XorMappedAddress, len1));
|
|
}
|
|
|
|
TEST_F(StunTest, ReadByteStringAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithByteStringAttribute);
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
|
|
const StunByteStringAttribute* username =
|
|
msg.GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username != NULL);
|
|
EXPECT_EQ(kTestUserName1, username->GetString());
|
|
}
|
|
|
|
TEST_F(StunTest, ReadPaddedByteStringAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg,
|
|
kStunMessageWithPaddedByteStringAttribute);
|
|
ASSERT_NE(0U, size);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
|
|
const StunByteStringAttribute* username =
|
|
msg.GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username != NULL);
|
|
EXPECT_EQ(kTestUserName2, username->GetString());
|
|
}
|
|
|
|
TEST_F(StunTest, ReadErrorCodeAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithErrorAttribute);
|
|
|
|
CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, size);
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
const StunErrorCodeAttribute* errorcode = msg.GetErrorCode();
|
|
ASSERT_TRUE(errorcode != NULL);
|
|
EXPECT_EQ(kTestErrorClass, errorcode->eclass());
|
|
EXPECT_EQ(kTestErrorNumber, errorcode->number());
|
|
EXPECT_EQ(kTestErrorReason, errorcode->reason());
|
|
EXPECT_EQ(kTestErrorCode, errorcode->code());
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithAUInt16ListAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithUInt16ListAttribute);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
const StunUInt16ListAttribute* types = msg.GetUnknownAttributes();
|
|
ASSERT_TRUE(types != NULL);
|
|
EXPECT_EQ(3U, types->Size());
|
|
EXPECT_EQ(0x1U, types->GetType(0));
|
|
EXPECT_EQ(0x1000U, types->GetType(1));
|
|
EXPECT_EQ(0xAB0CU, types->GetType(2));
|
|
}
|
|
|
|
TEST_F(StunTest, ReadMessageWithAnUnknownAttribute) {
|
|
StunMessage msg;
|
|
size_t size = ReadStunMessage(&msg, kStunMessageWithUnknownAttribute);
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, size);
|
|
|
|
// Parsing should have succeeded and there should be a USERNAME attribute
|
|
const StunByteStringAttribute* username =
|
|
msg.GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(username != NULL);
|
|
EXPECT_EQ(kTestUserName2, username->GetString());
|
|
}
|
|
|
|
TEST_F(StunTest, WriteMessageWithAnErrorCodeAttribute) {
|
|
StunMessage msg;
|
|
size_t size = sizeof(kStunMessageWithErrorAttribute);
|
|
|
|
msg.SetType(STUN_BINDING_ERROR_RESPONSE);
|
|
msg.SetTransactionID(
|
|
std::string(reinterpret_cast<const char*>(kTestTransactionId1),
|
|
kStunTransactionIdLength));
|
|
CheckStunTransactionID(msg, kTestTransactionId1, kStunTransactionIdLength);
|
|
StunErrorCodeAttribute* errorcode = StunAttribute::CreateErrorCode();
|
|
errorcode->SetCode(kTestErrorCode);
|
|
errorcode->SetReason(kTestErrorReason);
|
|
EXPECT_TRUE(msg.AddAttribute(errorcode));
|
|
CheckStunHeader(msg, STUN_BINDING_ERROR_RESPONSE, (size - 20));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
ASSERT_EQ(size, out.Length());
|
|
// No padding.
|
|
ASSERT_EQ(0, memcmp(out.Data(), kStunMessageWithErrorAttribute, size));
|
|
}
|
|
|
|
TEST_F(StunTest, WriteMessageWithAUInt16ListAttribute) {
|
|
StunMessage msg;
|
|
size_t size = sizeof(kStunMessageWithUInt16ListAttribute);
|
|
|
|
msg.SetType(STUN_BINDING_REQUEST);
|
|
msg.SetTransactionID(
|
|
std::string(reinterpret_cast<const char*>(kTestTransactionId2),
|
|
kStunTransactionIdLength));
|
|
CheckStunTransactionID(msg, kTestTransactionId2, kStunTransactionIdLength);
|
|
StunUInt16ListAttribute* list = StunAttribute::CreateUnknownAttributes();
|
|
list->AddType(0x1U);
|
|
list->AddType(0x1000U);
|
|
list->AddType(0xAB0CU);
|
|
EXPECT_TRUE(msg.AddAttribute(list));
|
|
CheckStunHeader(msg, STUN_BINDING_REQUEST, (size - 20));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
ASSERT_EQ(size, out.Length());
|
|
// Check everything up to the padding.
|
|
ASSERT_EQ(0,
|
|
memcmp(out.Data(), kStunMessageWithUInt16ListAttribute, size - 2));
|
|
}
|
|
|
|
// Test that we fail to read messages with invalid lengths.
|
|
void CheckFailureToRead(const unsigned char* testcase, size_t length) {
|
|
StunMessage msg;
|
|
const char* input = reinterpret_cast<const char*>(testcase);
|
|
rtc::ByteBuffer buf(input, length);
|
|
ASSERT_FALSE(msg.Read(&buf));
|
|
}
|
|
|
|
TEST_F(StunTest, FailToReadInvalidMessages) {
|
|
CheckFailureToRead(kStunMessageWithZeroLength,
|
|
kRealLengthOfInvalidLengthTestCases);
|
|
CheckFailureToRead(kStunMessageWithSmallLength,
|
|
kRealLengthOfInvalidLengthTestCases);
|
|
CheckFailureToRead(kStunMessageWithExcessLength,
|
|
kRealLengthOfInvalidLengthTestCases);
|
|
}
|
|
|
|
// Test that we properly fail to read a non-STUN message.
|
|
TEST_F(StunTest, FailToReadRtcpPacket) {
|
|
CheckFailureToRead(kRtcpPacket, sizeof(kRtcpPacket));
|
|
}
|
|
|
|
// Check our STUN message validation code against the RFC5769 test messages.
|
|
TEST_F(StunTest, ValidateMessageIntegrity) {
|
|
// Try the messages from RFC 5769.
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequest),
|
|
sizeof(kRfc5769SampleRequest),
|
|
kRfc5769SampleMsgPassword));
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequest),
|
|
sizeof(kRfc5769SampleRequest),
|
|
"InvalidPassword"));
|
|
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponse),
|
|
sizeof(kRfc5769SampleResponse),
|
|
kRfc5769SampleMsgPassword));
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponse),
|
|
sizeof(kRfc5769SampleResponse),
|
|
"InvalidPassword"));
|
|
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6),
|
|
sizeof(kRfc5769SampleResponseIPv6),
|
|
kRfc5769SampleMsgPassword));
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6),
|
|
sizeof(kRfc5769SampleResponseIPv6),
|
|
"InvalidPassword"));
|
|
|
|
// We first need to compute the key for the long-term authentication HMAC.
|
|
std::string key;
|
|
ComputeStunCredentialHash(kRfc5769SampleMsgWithAuthUsername,
|
|
kRfc5769SampleMsgWithAuthRealm, kRfc5769SampleMsgWithAuthPassword, &key);
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequestLongTermAuth),
|
|
sizeof(kRfc5769SampleRequestLongTermAuth), key));
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequestLongTermAuth),
|
|
sizeof(kRfc5769SampleRequestLongTermAuth),
|
|
"InvalidPassword"));
|
|
|
|
// Try some edge cases.
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kStunMessageWithZeroLength),
|
|
sizeof(kStunMessageWithZeroLength),
|
|
kRfc5769SampleMsgPassword));
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kStunMessageWithExcessLength),
|
|
sizeof(kStunMessageWithExcessLength),
|
|
kRfc5769SampleMsgPassword));
|
|
EXPECT_FALSE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(kStunMessageWithSmallLength),
|
|
sizeof(kStunMessageWithSmallLength),
|
|
kRfc5769SampleMsgPassword));
|
|
|
|
// Test that munging a single bit anywhere in the message causes the
|
|
// message-integrity check to fail, unless it is after the M-I attribute.
|
|
char buf[sizeof(kRfc5769SampleRequest)];
|
|
memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest));
|
|
for (size_t i = 0; i < sizeof(buf); ++i) {
|
|
buf[i] ^= 0x01;
|
|
if (i > 0)
|
|
buf[i - 1] ^= 0x01;
|
|
EXPECT_EQ(i >= sizeof(buf) - 8, StunMessage::ValidateMessageIntegrity(
|
|
buf, sizeof(buf), kRfc5769SampleMsgPassword));
|
|
}
|
|
}
|
|
|
|
// Validate that we generate correct MESSAGE-INTEGRITY attributes.
|
|
// Note the use of IceMessage instead of StunMessage; this is necessary because
|
|
// the RFC5769 test messages used include attributes not found in basic STUN.
|
|
TEST_F(StunTest, AddMessageIntegrity) {
|
|
IceMessage msg;
|
|
rtc::ByteBuffer buf(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequestWithoutMI),
|
|
sizeof(kRfc5769SampleRequestWithoutMI));
|
|
EXPECT_TRUE(msg.Read(&buf));
|
|
EXPECT_TRUE(msg.AddMessageIntegrity(kRfc5769SampleMsgPassword));
|
|
const StunByteStringAttribute* mi_attr =
|
|
msg.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
|
|
EXPECT_EQ(20U, mi_attr->length());
|
|
EXPECT_EQ(0, memcmp(
|
|
mi_attr->bytes(), kCalculatedHmac1, sizeof(kCalculatedHmac1)));
|
|
|
|
rtc::ByteBuffer buf1;
|
|
EXPECT_TRUE(msg.Write(&buf1));
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(buf1.Data()), buf1.Length(),
|
|
kRfc5769SampleMsgPassword));
|
|
|
|
IceMessage msg2;
|
|
rtc::ByteBuffer buf2(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponseWithoutMI),
|
|
sizeof(kRfc5769SampleResponseWithoutMI));
|
|
EXPECT_TRUE(msg2.Read(&buf2));
|
|
EXPECT_TRUE(msg2.AddMessageIntegrity(kRfc5769SampleMsgPassword));
|
|
const StunByteStringAttribute* mi_attr2 =
|
|
msg2.GetByteString(STUN_ATTR_MESSAGE_INTEGRITY);
|
|
EXPECT_EQ(20U, mi_attr2->length());
|
|
EXPECT_EQ(
|
|
0, memcmp(mi_attr2->bytes(), kCalculatedHmac2, sizeof(kCalculatedHmac2)));
|
|
|
|
rtc::ByteBuffer buf3;
|
|
EXPECT_TRUE(msg2.Write(&buf3));
|
|
EXPECT_TRUE(StunMessage::ValidateMessageIntegrity(
|
|
reinterpret_cast<const char*>(buf3.Data()), buf3.Length(),
|
|
kRfc5769SampleMsgPassword));
|
|
}
|
|
|
|
// Check our STUN message validation code against the RFC5769 test messages.
|
|
TEST_F(StunTest, ValidateFingerprint) {
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequest),
|
|
sizeof(kRfc5769SampleRequest)));
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponse),
|
|
sizeof(kRfc5769SampleResponse)));
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(kRfc5769SampleResponseIPv6),
|
|
sizeof(kRfc5769SampleResponseIPv6)));
|
|
|
|
EXPECT_FALSE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(kStunMessageWithZeroLength),
|
|
sizeof(kStunMessageWithZeroLength)));
|
|
EXPECT_FALSE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(kStunMessageWithExcessLength),
|
|
sizeof(kStunMessageWithExcessLength)));
|
|
EXPECT_FALSE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(kStunMessageWithSmallLength),
|
|
sizeof(kStunMessageWithSmallLength)));
|
|
|
|
// Test that munging a single bit anywhere in the message causes the
|
|
// fingerprint check to fail.
|
|
char buf[sizeof(kRfc5769SampleRequest)];
|
|
memcpy(buf, kRfc5769SampleRequest, sizeof(kRfc5769SampleRequest));
|
|
for (size_t i = 0; i < sizeof(buf); ++i) {
|
|
buf[i] ^= 0x01;
|
|
if (i > 0)
|
|
buf[i - 1] ^= 0x01;
|
|
EXPECT_FALSE(StunMessage::ValidateFingerprint(buf, sizeof(buf)));
|
|
}
|
|
// Put them all back to normal and the check should pass again.
|
|
buf[sizeof(buf) - 1] ^= 0x01;
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(buf, sizeof(buf)));
|
|
}
|
|
|
|
TEST_F(StunTest, AddFingerprint) {
|
|
IceMessage msg;
|
|
rtc::ByteBuffer buf(
|
|
reinterpret_cast<const char*>(kRfc5769SampleRequestWithoutMI),
|
|
sizeof(kRfc5769SampleRequestWithoutMI));
|
|
EXPECT_TRUE(msg.Read(&buf));
|
|
EXPECT_TRUE(msg.AddFingerprint());
|
|
|
|
rtc::ByteBuffer buf1;
|
|
EXPECT_TRUE(msg.Write(&buf1));
|
|
EXPECT_TRUE(StunMessage::ValidateFingerprint(
|
|
reinterpret_cast<const char*>(buf1.Data()), buf1.Length()));
|
|
}
|
|
|
|
// Sample "GTURN" relay message.
|
|
static const unsigned char kRelayMessage[] = {
|
|
0x00, 0x01, 0x00, 88, // message header
|
|
0x21, 0x12, 0xA4, 0x42, // magic cookie
|
|
'0', '1', '2', '3', // transaction id
|
|
'4', '5', '6', '7',
|
|
'8', '9', 'a', 'b',
|
|
0x00, 0x01, 0x00, 8, // mapped address
|
|
0x00, 0x01, 0x00, 13,
|
|
0x00, 0x00, 0x00, 17,
|
|
0x00, 0x06, 0x00, 12, // username
|
|
'a', 'b', 'c', 'd',
|
|
'e', 'f', 'g', 'h',
|
|
'i', 'j', 'k', 'l',
|
|
0x00, 0x0d, 0x00, 4, // lifetime
|
|
0x00, 0x00, 0x00, 11,
|
|
0x00, 0x0f, 0x00, 4, // magic cookie
|
|
0x72, 0xc6, 0x4b, 0xc6,
|
|
0x00, 0x10, 0x00, 4, // bandwidth
|
|
0x00, 0x00, 0x00, 6,
|
|
0x00, 0x11, 0x00, 8, // destination address
|
|
0x00, 0x01, 0x00, 13,
|
|
0x00, 0x00, 0x00, 17,
|
|
0x00, 0x12, 0x00, 8, // source address 2
|
|
0x00, 0x01, 0x00, 13,
|
|
0x00, 0x00, 0x00, 17,
|
|
0x00, 0x13, 0x00, 7, // data
|
|
'a', 'b', 'c', 'd',
|
|
'e', 'f', 'g', 0 // DATA must be padded per rfc5766.
|
|
};
|
|
|
|
// Test that we can read the GTURN-specific fields.
|
|
TEST_F(StunTest, ReadRelayMessage) {
|
|
RelayMessage msg, msg2;
|
|
|
|
const char* input = reinterpret_cast<const char*>(kRelayMessage);
|
|
size_t size = sizeof(kRelayMessage);
|
|
rtc::ByteBuffer buf(input, size);
|
|
EXPECT_TRUE(msg.Read(&buf));
|
|
|
|
EXPECT_EQ(STUN_BINDING_REQUEST, msg.type());
|
|
EXPECT_EQ(size - 20, msg.length());
|
|
EXPECT_EQ("0123456789ab", msg.transaction_id());
|
|
|
|
msg2.SetType(STUN_BINDING_REQUEST);
|
|
msg2.SetTransactionID("0123456789ab");
|
|
|
|
in_addr legacy_in_addr;
|
|
legacy_in_addr.s_addr = htonl(17U);
|
|
rtc::IPAddress legacy_ip(legacy_in_addr);
|
|
|
|
const StunAddressAttribute* addr = msg.GetAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
ASSERT_TRUE(addr != NULL);
|
|
EXPECT_EQ(1, addr->family());
|
|
EXPECT_EQ(13, addr->port());
|
|
EXPECT_EQ(legacy_ip, addr->ipaddr());
|
|
|
|
StunAddressAttribute* addr2 =
|
|
StunAttribute::CreateAddress(STUN_ATTR_MAPPED_ADDRESS);
|
|
addr2->SetPort(13);
|
|
addr2->SetIP(legacy_ip);
|
|
EXPECT_TRUE(msg2.AddAttribute(addr2));
|
|
|
|
const StunByteStringAttribute* bytes = msg.GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT_TRUE(bytes != NULL);
|
|
EXPECT_EQ(12U, bytes->length());
|
|
EXPECT_EQ("abcdefghijkl", bytes->GetString());
|
|
|
|
StunByteStringAttribute* bytes2 =
|
|
StunAttribute::CreateByteString(STUN_ATTR_USERNAME);
|
|
bytes2->CopyBytes("abcdefghijkl");
|
|
EXPECT_TRUE(msg2.AddAttribute(bytes2));
|
|
|
|
const StunUInt32Attribute* uval = msg.GetUInt32(STUN_ATTR_LIFETIME);
|
|
ASSERT_TRUE(uval != NULL);
|
|
EXPECT_EQ(11U, uval->value());
|
|
|
|
StunUInt32Attribute* uval2 = StunAttribute::CreateUInt32(STUN_ATTR_LIFETIME);
|
|
uval2->SetValue(11);
|
|
EXPECT_TRUE(msg2.AddAttribute(uval2));
|
|
|
|
bytes = msg.GetByteString(STUN_ATTR_MAGIC_COOKIE);
|
|
ASSERT_TRUE(bytes != NULL);
|
|
EXPECT_EQ(4U, bytes->length());
|
|
EXPECT_EQ(0,
|
|
memcmp(bytes->bytes(),
|
|
TURN_MAGIC_COOKIE_VALUE,
|
|
sizeof(TURN_MAGIC_COOKIE_VALUE)));
|
|
|
|
bytes2 = StunAttribute::CreateByteString(STUN_ATTR_MAGIC_COOKIE);
|
|
bytes2->CopyBytes(reinterpret_cast<const char*>(TURN_MAGIC_COOKIE_VALUE),
|
|
sizeof(TURN_MAGIC_COOKIE_VALUE));
|
|
EXPECT_TRUE(msg2.AddAttribute(bytes2));
|
|
|
|
uval = msg.GetUInt32(STUN_ATTR_BANDWIDTH);
|
|
ASSERT_TRUE(uval != NULL);
|
|
EXPECT_EQ(6U, uval->value());
|
|
|
|
uval2 = StunAttribute::CreateUInt32(STUN_ATTR_BANDWIDTH);
|
|
uval2->SetValue(6);
|
|
EXPECT_TRUE(msg2.AddAttribute(uval2));
|
|
|
|
addr = msg.GetAddress(STUN_ATTR_DESTINATION_ADDRESS);
|
|
ASSERT_TRUE(addr != NULL);
|
|
EXPECT_EQ(1, addr->family());
|
|
EXPECT_EQ(13, addr->port());
|
|
EXPECT_EQ(legacy_ip, addr->ipaddr());
|
|
|
|
addr2 = StunAttribute::CreateAddress(STUN_ATTR_DESTINATION_ADDRESS);
|
|
addr2->SetPort(13);
|
|
addr2->SetIP(legacy_ip);
|
|
EXPECT_TRUE(msg2.AddAttribute(addr2));
|
|
|
|
addr = msg.GetAddress(STUN_ATTR_SOURCE_ADDRESS2);
|
|
ASSERT_TRUE(addr != NULL);
|
|
EXPECT_EQ(1, addr->family());
|
|
EXPECT_EQ(13, addr->port());
|
|
EXPECT_EQ(legacy_ip, addr->ipaddr());
|
|
|
|
addr2 = StunAttribute::CreateAddress(STUN_ATTR_SOURCE_ADDRESS2);
|
|
addr2->SetPort(13);
|
|
addr2->SetIP(legacy_ip);
|
|
EXPECT_TRUE(msg2.AddAttribute(addr2));
|
|
|
|
bytes = msg.GetByteString(STUN_ATTR_DATA);
|
|
ASSERT_TRUE(bytes != NULL);
|
|
EXPECT_EQ(7U, bytes->length());
|
|
EXPECT_EQ("abcdefg", bytes->GetString());
|
|
|
|
bytes2 = StunAttribute::CreateByteString(STUN_ATTR_DATA);
|
|
bytes2->CopyBytes("abcdefg");
|
|
EXPECT_TRUE(msg2.AddAttribute(bytes2));
|
|
|
|
rtc::ByteBuffer out;
|
|
EXPECT_TRUE(msg.Write(&out));
|
|
EXPECT_EQ(size, out.Length());
|
|
size_t len1 = out.Length();
|
|
std::string outstring;
|
|
out.ReadString(&outstring, len1);
|
|
EXPECT_EQ(0, memcmp(outstring.c_str(), input, len1));
|
|
|
|
rtc::ByteBuffer out2;
|
|
EXPECT_TRUE(msg2.Write(&out2));
|
|
EXPECT_EQ(size, out2.Length());
|
|
size_t len2 = out2.Length();
|
|
std::string outstring2;
|
|
out2.ReadString(&outstring2, len2);
|
|
EXPECT_EQ(0, memcmp(outstring2.c_str(), input, len2));
|
|
}
|
|
|
|
} // namespace cricket
|