3c5d2b43ec
Update Thread documentation, fix all subclasses that had a problem. This is to avoid a data racing between the destructor modifying the vtable, and Thread::PreRun calling virtual method Run at the same time. For example: [ RUN ] FileMediaEngineTest.TestGetCapabilities ================== WARNING: ThreadSanitizer: data race on vptr (ctor/dtor vs virtual call) (pid=2967) Read of size 8 at 0x7d480000bd00 by thread T1: #0 talk_base::Thread::PreRun(void*) /mnt/data/b/build/slave/Linux_Tsan_v2/build/src/out/Release/../../talk/base/thread.cc:353 (libjingle_media_unittest+0x000000234da8) Previous write of size 8 at 0x7d480000bd00 by main thread: #0 talk_base::Thread::~Thread() /mnt/data/b/build/slave/Linux_Tsan_v2/build/src/out/Release/../../talk/base/thread.cc:158 (libjingle_media_unittest+0x00000023478c) #1 ~RtpSenderReceiver /mnt/data/b/build/slave/Linux_Tsan_v2/build/src/out/Release/../../talk/media/base/filemediaengine.cc:122 (libjingle_media_unittest+0x0000001b551f) ... RISK=P2 TESTED=try bots and tsan BUG=2078,2080 R=fischman@webrtc.org Review URL: https://webrtc-codereview.appspot.com/2428004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@4999 4adac7df-926f-26a2-2b94-8c16560cd09d
406 lines
12 KiB
C++
406 lines
12 KiB
C++
/*
|
|
* libjingle
|
|
* Copyright 2010 Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <vector>
|
|
|
|
#ifdef WIN32
|
|
#include "talk/base/win32.h"
|
|
#endif
|
|
|
|
#include "talk/base/cpumonitor.h"
|
|
#include "talk/base/flags.h"
|
|
#include "talk/base/gunit.h"
|
|
#include "talk/base/scoped_ptr.h"
|
|
#include "talk/base/thread.h"
|
|
#include "talk/base/timeutils.h"
|
|
#include "talk/base/timing.h"
|
|
|
|
namespace talk_base {
|
|
|
|
static const int kMaxCpus = 1024;
|
|
static const int kSettleTime = 100; // Amount of time to between tests.
|
|
static const int kIdleTime = 500; // Amount of time to be idle in ms.
|
|
static const int kBusyTime = 1000; // Amount of time to be busy in ms.
|
|
static const int kLongInterval = 2000; // Interval longer than busy times
|
|
|
|
class BusyThread : public talk_base::Thread {
|
|
public:
|
|
BusyThread(double load, double duration, double interval) :
|
|
load_(load), duration_(duration), interval_(interval) {
|
|
}
|
|
virtual ~BusyThread() {
|
|
Stop();
|
|
}
|
|
void Run() {
|
|
Timing time;
|
|
double busy_time = interval_ * load_ / 100.0;
|
|
for (;;) {
|
|
time.BusyWait(busy_time);
|
|
time.IdleWait(interval_ - busy_time);
|
|
if (duration_) {
|
|
duration_ -= interval_;
|
|
if (duration_ <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
private:
|
|
double load_;
|
|
double duration_;
|
|
double interval_;
|
|
};
|
|
|
|
class CpuLoadListener : public sigslot::has_slots<> {
|
|
public:
|
|
CpuLoadListener()
|
|
: current_cpus_(0),
|
|
cpus_(0),
|
|
process_load_(.0f),
|
|
system_load_(.0f),
|
|
count_(0) {
|
|
}
|
|
|
|
void OnCpuLoad(int current_cpus, int cpus, float proc_load, float sys_load) {
|
|
current_cpus_ = current_cpus;
|
|
cpus_ = cpus;
|
|
process_load_ = proc_load;
|
|
system_load_ = sys_load;
|
|
++count_;
|
|
}
|
|
|
|
int current_cpus() const { return current_cpus_; }
|
|
int cpus() const { return cpus_; }
|
|
float process_load() const { return process_load_; }
|
|
float system_load() const { return system_load_; }
|
|
int count() const { return count_; }
|
|
|
|
private:
|
|
int current_cpus_;
|
|
int cpus_;
|
|
float process_load_;
|
|
float system_load_;
|
|
int count_;
|
|
};
|
|
|
|
// Set affinity (which cpu to run on), but respecting FLAG_affinity:
|
|
// -1 means no affinity - run on whatever cpu is available.
|
|
// 0 .. N means run on specific cpu. The tool will create N threads and call
|
|
// SetThreadAffinity on 0 to N - 1 as cpu. FLAG_affinity sets the first cpu
|
|
// so the range becomes affinity to affinity + N - 1
|
|
// Note that this function affects Windows scheduling, effectively giving
|
|
// the thread with affinity for a specified CPU more priority on that CPU.
|
|
bool SetThreadAffinity(BusyThread* t, int cpu, int affinity) {
|
|
#ifdef WIN32
|
|
if (affinity >= 0) {
|
|
return ::SetThreadAffinityMask(t->GetHandle(),
|
|
1 << (cpu + affinity)) != FALSE;
|
|
}
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool SetThreadPriority(BusyThread* t, int prio) {
|
|
if (!prio) {
|
|
return true;
|
|
}
|
|
bool ok = t->SetPriority(static_cast<talk_base::ThreadPriority>(prio));
|
|
if (!ok) {
|
|
std::cout << "Error setting thread priority." << std::endl;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
int CpuLoad(double cpuload, double duration, int numthreads,
|
|
int priority, double interval, int affinity) {
|
|
int ret = 0;
|
|
std::vector<BusyThread*> threads;
|
|
for (int i = 0; i < numthreads; ++i) {
|
|
threads.push_back(new BusyThread(cpuload, duration, interval));
|
|
// NOTE(fbarchard): Priority must be done before Start.
|
|
if (!SetThreadPriority(threads[i], priority) ||
|
|
!threads[i]->Start() ||
|
|
!SetThreadAffinity(threads[i], i, affinity)) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
// Wait on each thread
|
|
if (ret == 0) {
|
|
for (int i = 0; i < numthreads; ++i) {
|
|
threads[i]->Stop();
|
|
}
|
|
}
|
|
|
|
for (int i = 0; i < numthreads; ++i) {
|
|
delete threads[i];
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Make 2 CPUs busy
|
|
static void CpuTwoBusyLoop(int busytime) {
|
|
CpuLoad(100.0, busytime / 1000.0, 2, 1, 0.050, -1);
|
|
}
|
|
|
|
// Make 1 CPUs busy
|
|
static void CpuBusyLoop(int busytime) {
|
|
CpuLoad(100.0, busytime / 1000.0, 1, 1, 0.050, -1);
|
|
}
|
|
|
|
// Make 1 use half CPU time.
|
|
static void CpuHalfBusyLoop(int busytime) {
|
|
CpuLoad(50.0, busytime / 1000.0, 1, 1, 0.050, -1);
|
|
}
|
|
|
|
void TestCpuSampler(bool test_proc, bool test_sys, bool force_fallback) {
|
|
CpuSampler sampler;
|
|
sampler.set_force_fallback(force_fallback);
|
|
EXPECT_TRUE(sampler.Init());
|
|
sampler.set_load_interval(100);
|
|
int cpus = sampler.GetMaxCpus();
|
|
|
|
// Test1: CpuSampler under idle situation.
|
|
Thread::SleepMs(kSettleTime);
|
|
sampler.GetProcessLoad();
|
|
sampler.GetSystemLoad();
|
|
|
|
Thread::SleepMs(kIdleTime);
|
|
|
|
float proc_idle = 0.f, sys_idle = 0.f;
|
|
if (test_proc) {
|
|
proc_idle = sampler.GetProcessLoad();
|
|
}
|
|
if (test_sys) {
|
|
sys_idle = sampler.GetSystemLoad();
|
|
}
|
|
if (test_proc) {
|
|
LOG(LS_INFO) << "ProcessLoad Idle: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << proc_idle;
|
|
EXPECT_GE(proc_idle, 0.f);
|
|
EXPECT_LE(proc_idle, static_cast<float>(cpus));
|
|
}
|
|
if (test_sys) {
|
|
LOG(LS_INFO) << "SystemLoad Idle: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << sys_idle;
|
|
EXPECT_GE(sys_idle, 0.f);
|
|
EXPECT_LE(sys_idle, static_cast<float>(cpus));
|
|
}
|
|
|
|
// Test2: CpuSampler with main process at 50% busy.
|
|
Thread::SleepMs(kSettleTime);
|
|
sampler.GetProcessLoad();
|
|
sampler.GetSystemLoad();
|
|
|
|
CpuHalfBusyLoop(kBusyTime);
|
|
|
|
float proc_halfbusy = 0.f, sys_halfbusy = 0.f;
|
|
if (test_proc) {
|
|
proc_halfbusy = sampler.GetProcessLoad();
|
|
}
|
|
if (test_sys) {
|
|
sys_halfbusy = sampler.GetSystemLoad();
|
|
}
|
|
if (test_proc) {
|
|
LOG(LS_INFO) << "ProcessLoad Halfbusy: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << proc_halfbusy;
|
|
EXPECT_GE(proc_halfbusy, 0.f);
|
|
EXPECT_LE(proc_halfbusy, static_cast<float>(cpus));
|
|
}
|
|
if (test_sys) {
|
|
LOG(LS_INFO) << "SystemLoad Halfbusy: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << sys_halfbusy;
|
|
EXPECT_GE(sys_halfbusy, 0.f);
|
|
EXPECT_LE(sys_halfbusy, static_cast<float>(cpus));
|
|
}
|
|
|
|
// Test3: CpuSampler with main process busy.
|
|
Thread::SleepMs(kSettleTime);
|
|
sampler.GetProcessLoad();
|
|
sampler.GetSystemLoad();
|
|
|
|
CpuBusyLoop(kBusyTime);
|
|
|
|
float proc_busy = 0.f, sys_busy = 0.f;
|
|
if (test_proc) {
|
|
proc_busy = sampler.GetProcessLoad();
|
|
}
|
|
if (test_sys) {
|
|
sys_busy = sampler.GetSystemLoad();
|
|
}
|
|
if (test_proc) {
|
|
LOG(LS_INFO) << "ProcessLoad Busy: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << proc_busy;
|
|
EXPECT_GE(proc_busy, 0.f);
|
|
EXPECT_LE(proc_busy, static_cast<float>(cpus));
|
|
}
|
|
if (test_sys) {
|
|
LOG(LS_INFO) << "SystemLoad Busy: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << sys_busy;
|
|
EXPECT_GE(sys_busy, 0.f);
|
|
EXPECT_LE(sys_busy, static_cast<float>(cpus));
|
|
}
|
|
|
|
// Test4: CpuSampler with 2 cpus process busy.
|
|
if (cpus >= 2) {
|
|
Thread::SleepMs(kSettleTime);
|
|
sampler.GetProcessLoad();
|
|
sampler.GetSystemLoad();
|
|
|
|
CpuTwoBusyLoop(kBusyTime);
|
|
|
|
float proc_twobusy = 0.f, sys_twobusy = 0.f;
|
|
if (test_proc) {
|
|
proc_twobusy = sampler.GetProcessLoad();
|
|
}
|
|
if (test_sys) {
|
|
sys_twobusy = sampler.GetSystemLoad();
|
|
}
|
|
if (test_proc) {
|
|
LOG(LS_INFO) << "ProcessLoad 2 CPU Busy:"
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << proc_twobusy;
|
|
EXPECT_GE(proc_twobusy, 0.f);
|
|
EXPECT_LE(proc_twobusy, static_cast<float>(cpus));
|
|
}
|
|
if (test_sys) {
|
|
LOG(LS_INFO) << "SystemLoad 2 CPU Busy: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << sys_twobusy;
|
|
EXPECT_GE(sys_twobusy, 0.f);
|
|
EXPECT_LE(sys_twobusy, static_cast<float>(cpus));
|
|
}
|
|
}
|
|
|
|
// Test5: CpuSampler with idle process after being busy.
|
|
Thread::SleepMs(kSettleTime);
|
|
sampler.GetProcessLoad();
|
|
sampler.GetSystemLoad();
|
|
|
|
Thread::SleepMs(kIdleTime);
|
|
|
|
if (test_proc) {
|
|
proc_idle = sampler.GetProcessLoad();
|
|
}
|
|
if (test_sys) {
|
|
sys_idle = sampler.GetSystemLoad();
|
|
}
|
|
if (test_proc) {
|
|
LOG(LS_INFO) << "ProcessLoad Idle: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << proc_idle;
|
|
EXPECT_GE(proc_idle, 0.f);
|
|
EXPECT_LE(proc_idle, proc_busy);
|
|
}
|
|
if (test_sys) {
|
|
LOG(LS_INFO) << "SystemLoad Idle: "
|
|
<< std::setiosflags(std::ios_base::fixed)
|
|
<< std::setprecision(2) << std::setw(6) << sys_idle;
|
|
EXPECT_GE(sys_idle, 0.f);
|
|
EXPECT_LE(sys_idle, static_cast<float>(cpus));
|
|
}
|
|
}
|
|
|
|
TEST(CpuMonitorTest, TestCpus) {
|
|
CpuSampler sampler;
|
|
EXPECT_TRUE(sampler.Init());
|
|
int current_cpus = sampler.GetCurrentCpus();
|
|
int cpus = sampler.GetMaxCpus();
|
|
LOG(LS_INFO) << "Current Cpus: " << std::setw(9) << current_cpus;
|
|
LOG(LS_INFO) << "Maximum Cpus: " << std::setw(9) << cpus;
|
|
EXPECT_GT(cpus, 0);
|
|
EXPECT_LE(cpus, kMaxCpus);
|
|
EXPECT_GT(current_cpus, 0);
|
|
EXPECT_LE(current_cpus, cpus);
|
|
}
|
|
|
|
#ifdef WIN32
|
|
// Tests overall system CpuSampler using legacy OS fallback code if applicable.
|
|
TEST(CpuMonitorTest, TestGetSystemLoadForceFallback) {
|
|
TestCpuSampler(false, true, true);
|
|
}
|
|
#endif
|
|
|
|
// Tests both process and system functions in use at same time.
|
|
TEST(CpuMonitorTest, TestGetBothLoad) {
|
|
TestCpuSampler(true, true, false);
|
|
}
|
|
|
|
// Tests a query less than the interval produces the same value.
|
|
TEST(CpuMonitorTest, TestInterval) {
|
|
CpuSampler sampler;
|
|
EXPECT_TRUE(sampler.Init());
|
|
|
|
// Test1: Set interval to large value so sampler will not update.
|
|
sampler.set_load_interval(kLongInterval);
|
|
|
|
sampler.GetProcessLoad();
|
|
sampler.GetSystemLoad();
|
|
|
|
float proc_orig = sampler.GetProcessLoad();
|
|
float sys_orig = sampler.GetSystemLoad();
|
|
|
|
Thread::SleepMs(kIdleTime);
|
|
|
|
float proc_halftime = sampler.GetProcessLoad();
|
|
float sys_halftime = sampler.GetSystemLoad();
|
|
|
|
EXPECT_EQ(proc_orig, proc_halftime);
|
|
EXPECT_EQ(sys_orig, sys_halftime);
|
|
}
|
|
|
|
TEST(CpuMonitorTest, TestCpuMonitor) {
|
|
CpuMonitor monitor(Thread::Current());
|
|
CpuLoadListener listener;
|
|
monitor.SignalUpdate.connect(&listener, &CpuLoadListener::OnCpuLoad);
|
|
EXPECT_TRUE(monitor.Start(10));
|
|
Thread::Current()->ProcessMessages(50);
|
|
EXPECT_GT(listener.count(), 2); // We have checked cpu load more than twice.
|
|
EXPECT_GT(listener.current_cpus(), 0);
|
|
EXPECT_GT(listener.cpus(), 0);
|
|
EXPECT_GE(listener.process_load(), .0f);
|
|
EXPECT_GE(listener.system_load(), .0f);
|
|
|
|
monitor.Stop();
|
|
// Wait 20 ms to ake sure all signals are delivered.
|
|
Thread::Current()->ProcessMessages(20);
|
|
int old_count = listener.count();
|
|
Thread::Current()->ProcessMessages(20);
|
|
// Verfy no more siganls.
|
|
EXPECT_EQ(old_count, listener.count());
|
|
}
|
|
|
|
} // namespace talk_base
|