1689 lines
72 KiB
C++
1689 lines
72 KiB
C++
//Templated spread_sort library
|
|
|
|
// Copyright Steven J. Ross 2001 - 2009.
|
|
// Distributed under the Boost Software License, Version 1.0.
|
|
// (See accompanying file LICENSE_1_0.txt or copy at
|
|
// http://www.boost.org/LICENSE_1_0.txt)
|
|
|
|
// See http://www.boost.org/ for updates, documentation, and revision history.
|
|
|
|
/*
|
|
Some improvements suggested by:
|
|
Phil Endecott and Frank Gennari
|
|
Cygwin fix provided by:
|
|
Scott McMurray
|
|
*/
|
|
|
|
#ifndef BOOST_SPREAD_SORT_H
|
|
#define BOOST_SPREAD_SORT_H
|
|
#include <algorithm>
|
|
#include <vector>
|
|
#include "constants.hpp"
|
|
#include <cstring>
|
|
|
|
namespace boost {
|
|
namespace detail {
|
|
//This only works on unsigned data types
|
|
template <typename T>
|
|
inline unsigned
|
|
rough_log_2_size(const T& input)
|
|
{
|
|
unsigned result = 0;
|
|
//The && is necessary on some compilers to avoid infinite loops; it doesn't significantly impair performance
|
|
while((input >> result) && (result < (8*sizeof(T)))) ++result;
|
|
return result;
|
|
}
|
|
|
|
//Gets the maximum size which we'll call spread_sort on to control worst-case performance
|
|
//Maintains both a minimum size to recurse and a check of distribution size versus count
|
|
//This is called for a set of bins, instead of bin-by-bin, to avoid performance overhead
|
|
inline size_t
|
|
get_max_count(unsigned log_range, size_t count)
|
|
{
|
|
unsigned divisor = rough_log_2_size(count);
|
|
//Making sure the divisor is positive
|
|
if(divisor > LOG_MEAN_BIN_SIZE)
|
|
divisor -= LOG_MEAN_BIN_SIZE;
|
|
else
|
|
divisor = 1;
|
|
unsigned relative_width = (LOG_CONST * log_range)/((divisor > MAX_SPLITS) ? MAX_SPLITS : divisor);
|
|
//Don't try to bitshift more than the size of an element
|
|
if((8*sizeof(size_t)) <= relative_width)
|
|
relative_width = (8*sizeof(size_t)) - 1;
|
|
return (size_t)1 << ((relative_width < (LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT)) ?
|
|
(LOG_MEAN_BIN_SIZE + LOG_MIN_SPLIT_COUNT) : relative_width);
|
|
}
|
|
|
|
//Find the minimum and maximum using <
|
|
template <class RandomAccessIter>
|
|
inline void
|
|
find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min)
|
|
{
|
|
min = max = current;
|
|
//Start from the second item, as max and min are initialized to the first
|
|
while(++current < last) {
|
|
if(*max < *current)
|
|
max = current;
|
|
else if(*current < *min)
|
|
min = current;
|
|
}
|
|
}
|
|
|
|
//Uses a user-defined comparison operator to find minimum and maximum
|
|
template <class RandomAccessIter, class compare>
|
|
inline void
|
|
find_extremes(RandomAccessIter current, RandomAccessIter last, RandomAccessIter & max, RandomAccessIter & min, compare comp)
|
|
{
|
|
min = max = current;
|
|
while(++current < last) {
|
|
if(comp(*max, *current))
|
|
max = current;
|
|
else if(comp(*current, *min))
|
|
min = current;
|
|
}
|
|
}
|
|
|
|
//Gets a non-negative right bit shift to operate as a logarithmic divisor
|
|
inline int
|
|
get_log_divisor(size_t count, unsigned log_range)
|
|
{
|
|
int log_divisor;
|
|
//If we can finish in one iteration without exceeding either (2 to the MAX_SPLITS) or n bins, do so
|
|
if((log_divisor = log_range - rough_log_2_size(count)) <= 0 && log_range < MAX_SPLITS)
|
|
log_divisor = 0;
|
|
else {
|
|
//otherwise divide the data into an optimized number of pieces
|
|
log_divisor += LOG_MEAN_BIN_SIZE;
|
|
if(log_divisor < 0)
|
|
log_divisor = 0;
|
|
//Cannot exceed MAX_SPLITS or cache misses slow down bin lookups dramatically
|
|
if((log_range - log_divisor) > MAX_SPLITS)
|
|
log_divisor = log_range - MAX_SPLITS;
|
|
}
|
|
return log_divisor;
|
|
}
|
|
|
|
template <class RandomAccessIter>
|
|
inline RandomAccessIter *
|
|
size_bins(std::vector<size_t> &bin_sizes, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset, unsigned &cache_end, unsigned bin_count)
|
|
{
|
|
//Assure space for the size of each bin, followed by initializing sizes
|
|
if(bin_count > bin_sizes.size())
|
|
bin_sizes.resize(bin_count);
|
|
for(size_t u = 0; u < bin_count; u++)
|
|
bin_sizes[u] = 0;
|
|
//Make sure there is space for the bins
|
|
cache_end = cache_offset + bin_count;
|
|
if(cache_end > bin_cache.size())
|
|
bin_cache.resize(cache_end);
|
|
return &(bin_cache[cache_offset]);
|
|
}
|
|
|
|
//Implementation for recursive integer sorting
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void
|
|
spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes)
|
|
{
|
|
//This step is roughly 10% of runtime, but it helps avoid worst-case behavior and improve behavior with real data
|
|
//If you know the maximum and minimum ahead of time, you can pass those values in and skip this step for the first iteration
|
|
RandomAccessIter max, min;
|
|
find_extremes(first, last, max, min);
|
|
//max and min will be the same (the first item) iff all values are equivalent
|
|
if(max == min)
|
|
return;
|
|
RandomAccessIter * target_bin;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(*max >> 0) - (*min >> 0)));
|
|
div_type div_min = *min >> log_divisor;
|
|
div_type div_max = *max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin; this takes roughly 10% of runtime
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[(*(current++) >> log_divisor) - div_min]++;
|
|
//Assign the bin positions
|
|
bins[0] = first;
|
|
for(unsigned u = 0; u < bin_count - 1; u++)
|
|
bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
//This dominates runtime, mostly in the swap and bin lookups
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned u = 0; u < bin_count - 1; ++u) {
|
|
RandomAccessIter * local_bin = bins + u;
|
|
nextbinstart += bin_sizes[u];
|
|
//Iterating over each element in this bin
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//Swapping elements in current into place until the correct element has been swapped in
|
|
for(target_bin = (bins + ((*current >> log_divisor) - div_min)); target_bin != local_bin;
|
|
target_bin = bins + ((*current >> log_divisor) - div_min)) {
|
|
//3-way swap; this is about 1% faster than a 2-way swap with integers
|
|
//The main advantage is less copies are involved per item put in the correct place
|
|
data_type tmp;
|
|
RandomAccessIter b = (*target_bin)++;
|
|
RandomAccessIter * b_bin = bins + ((*b >> log_divisor) - div_min);
|
|
if (b_bin != local_bin) {
|
|
RandomAccessIter c = (*b_bin)++;
|
|
tmp = *c;
|
|
*c = *b;
|
|
}
|
|
else
|
|
tmp = *b;
|
|
*b = *current;
|
|
*current = tmp;
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
bins[bin_count - 1] = last;
|
|
|
|
//If we've bucketsorted, the array is sorted and we should skip recursion
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing; log_divisor is the remaining range
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
//don't sort unless there are at least two items to compare
|
|
if(count < 2)
|
|
continue;
|
|
//using std::sort if its worst-case is better
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u]);
|
|
else
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
}
|
|
}
|
|
|
|
//Generic bitshift-based 3-way swapping code
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void inner_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
|
|
, const unsigned log_divisor, const div_type div_min)
|
|
{
|
|
RandomAccessIter * local_bin = bins + ii;
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
for(RandomAccessIter * target_bin = (bins + (shift(*current, log_divisor) - div_min)); target_bin != local_bin;
|
|
target_bin = bins + (shift(*current, log_divisor) - div_min)) {
|
|
data_type tmp;
|
|
RandomAccessIter b = (*target_bin)++;
|
|
RandomAccessIter * b_bin = bins + (shift(*b, log_divisor) - div_min);
|
|
//Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
|
|
if (b_bin != local_bin) {
|
|
RandomAccessIter c = (*b_bin)++;
|
|
tmp = *c;
|
|
*c = *b;
|
|
}
|
|
//Note: we could increment current once the swap is done in this case, but that seems to impair performance
|
|
else
|
|
tmp = *b;
|
|
*b = *current;
|
|
*current = tmp;
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
|
|
//Standard swapping wrapper for ascending values
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii, right_shift &shift
|
|
, const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
|
|
{
|
|
nextbinstart += bin_sizes[ii];
|
|
inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, log_divisor, div_min);
|
|
}
|
|
|
|
//Functor implementation for recursive sorting
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
inline void
|
|
spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
{
|
|
RandomAccessIter max, min;
|
|
find_extremes(first, last, max, min, comp);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
|
|
div_type div_min = shift(*min, log_divisor);
|
|
div_type div_max = shift(*max, log_divisor);
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
bins[0] = first;
|
|
for(unsigned u = 0; u < bin_count - 1; u++)
|
|
bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned u = 0; u < bin_count - 1; ++u)
|
|
swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, bin_sizes, log_divisor, div_min);
|
|
bins[bin_count - 1] = last;
|
|
|
|
//If we've bucketsorted, the array is sorted and we should skip recursion
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u], comp);
|
|
else
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
}
|
|
}
|
|
|
|
//Functor implementation for recursive sorting with only Shift overridden
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void
|
|
spread_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes, right_shift shift)
|
|
{
|
|
RandomAccessIter max, min;
|
|
find_extremes(first, last, max, min);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(shift(*max, 0)) - (shift(*min, 0))));
|
|
div_type div_min = shift(*min, log_divisor);
|
|
div_type div_max = shift(*max, log_divisor);
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
bins[0] = first;
|
|
for(unsigned u = 0; u < bin_count - 1; u++)
|
|
bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned ii = 0; ii < bin_count - 1; ++ii)
|
|
swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
bins[bin_count - 1] = last;
|
|
|
|
//If we've bucketsorted, the array is sorted and we should skip recursion
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u]);
|
|
else
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
|
|
}
|
|
}
|
|
|
|
//Holds the bin vector and makes the initial recursive call
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void
|
|
spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type>(first, last, bin_cache, 0, bin_sizes);
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
inline void
|
|
spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(first, last, bin_cache, 0, bin_sizes, shift, comp);
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void
|
|
spread_sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
|
|
}
|
|
}
|
|
|
|
//Top-level sorting call for integers
|
|
template <class RandomAccessIter>
|
|
inline void integer_sort(RandomAccessIter first, RandomAccessIter last)
|
|
{
|
|
//Don't sort if it's too small to optimize
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last);
|
|
else
|
|
detail::spread_sort(first, last, *first >> 0, *first);
|
|
}
|
|
|
|
//integer_sort with functors
|
|
template <class RandomAccessIter, class right_shift, class compare>
|
|
inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
|
|
right_shift shift, compare comp) {
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last, comp);
|
|
else
|
|
detail::spread_sort(first, last, shift(*first, 0), *first, shift, comp);
|
|
}
|
|
|
|
//integer_sort with right_shift functor
|
|
template <class RandomAccessIter, class right_shift>
|
|
inline void integer_sort(RandomAccessIter first, RandomAccessIter last,
|
|
right_shift shift) {
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last);
|
|
else
|
|
detail::spread_sort(first, last, shift(*first, 0), *first, shift);
|
|
}
|
|
|
|
//------------------------------------------------------ float_sort source --------------------------------------
|
|
//Casts a RandomAccessIter to the specified data type
|
|
template<class cast_type, class RandomAccessIter>
|
|
inline cast_type
|
|
cast_float_iter(const RandomAccessIter & floatiter)
|
|
{
|
|
cast_type result;
|
|
std::memcpy(&result, &(*floatiter), sizeof(cast_type));
|
|
return result;
|
|
}
|
|
|
|
//Casts a data element to the specified datinner_float_a type
|
|
template<class data_type, class cast_type>
|
|
inline cast_type
|
|
mem_cast(const data_type & data)
|
|
{
|
|
cast_type result;
|
|
std::memcpy(&result, &data, sizeof(cast_type));
|
|
return result;
|
|
}
|
|
|
|
namespace detail {
|
|
template <class RandomAccessIter, class div_type, class right_shift>
|
|
inline void
|
|
find_extremes(RandomAccessIter current, RandomAccessIter last, div_type & max, div_type & min, right_shift shift)
|
|
{
|
|
min = max = shift(*current, 0);
|
|
while(++current < last) {
|
|
div_type value = shift(*current, 0);
|
|
if(max < value)
|
|
max = value;
|
|
else if(value < min)
|
|
min = value;
|
|
}
|
|
}
|
|
|
|
//Specialized swap loops for floating-point casting
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void inner_float_swap_loop(RandomAccessIter * bins, const RandomAccessIter & nextbinstart, unsigned ii
|
|
, const unsigned log_divisor, const div_type div_min)
|
|
{
|
|
RandomAccessIter * local_bin = bins + ii;
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
for(RandomAccessIter * target_bin = (bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)); target_bin != local_bin;
|
|
target_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(current) >> log_divisor) - div_min)) {
|
|
data_type tmp;
|
|
RandomAccessIter b = (*target_bin)++;
|
|
RandomAccessIter * b_bin = bins + ((cast_float_iter<div_type, RandomAccessIter>(b) >> log_divisor) - div_min);
|
|
//Three-way swap; if the item to be swapped doesn't belong in the current bin, swap it to where it belongs
|
|
if (b_bin != local_bin) {
|
|
RandomAccessIter c = (*b_bin)++;
|
|
tmp = *c;
|
|
*c = *b;
|
|
}
|
|
else
|
|
tmp = *b;
|
|
*b = *current;
|
|
*current = tmp;
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void float_swap_loop(RandomAccessIter * bins, RandomAccessIter & nextbinstart, unsigned ii
|
|
, const std::vector<size_t> &bin_sizes, const unsigned log_divisor, const div_type div_min)
|
|
{
|
|
nextbinstart += bin_sizes[ii];
|
|
inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, log_divisor, div_min);
|
|
}
|
|
|
|
template <class RandomAccessIter, class cast_type>
|
|
inline void
|
|
find_extremes(RandomAccessIter current, RandomAccessIter last, cast_type & max, cast_type & min)
|
|
{
|
|
min = max = cast_float_iter<cast_type, RandomAccessIter>(current);
|
|
while(++current < last) {
|
|
cast_type value = cast_float_iter<cast_type, RandomAccessIter>(current);
|
|
if(max < value)
|
|
max = value;
|
|
else if(value < min)
|
|
min = value;
|
|
}
|
|
}
|
|
|
|
//Special-case sorting of positive floats with casting instead of a right_shift
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void
|
|
positive_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
bins[0] = first;
|
|
for(unsigned u = 0; u < bin_count - 1; u++)
|
|
bins[u + 1] = bins[u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned u = 0; u < bin_count - 1; ++u)
|
|
float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, bin_sizes, log_divisor, div_min);
|
|
bins[bin_count - 1] = last;
|
|
|
|
//Return if we've completed bucketsorting
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(unsigned u = cache_offset; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u]);
|
|
else
|
|
positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
}
|
|
}
|
|
|
|
//Sorting negative_ float_s
|
|
//Note that bins are iterated in reverse order because max_neg_float = min_neg_int
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void
|
|
negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
bins[bin_count - 1] = first;
|
|
for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
//The last bin will always have the correct elements in it
|
|
for(int ii = bin_count - 1; ii > 0; --ii)
|
|
float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, ii, bin_sizes, log_divisor, div_min);
|
|
//Since we don't process the last bin, we need to update its end position
|
|
bin_cache[cache_offset] = last;
|
|
|
|
//Return if we've completed bucketsorting
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
size_t count = bin_cache[ii] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[ii]);
|
|
else
|
|
negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
|
|
}
|
|
}
|
|
|
|
//Sorting negative_ float_s
|
|
//Note that bins are iterated in reverse order because max_neg_float = min_neg_int
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void
|
|
negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes, right_shift shift)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min, shift);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
bins[bin_count - 1] = first;
|
|
for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
//The last bin will always have the correct elements in it
|
|
for(int ii = bin_count - 1; ii > 0; --ii)
|
|
swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
//Since we don't process the last bin, we need to update its end position
|
|
bin_cache[cache_offset] = last;
|
|
|
|
//Return if we've completed bucketsorting
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
size_t count = bin_cache[ii] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[ii]);
|
|
else
|
|
negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
|
|
}
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
inline void
|
|
negative_float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min, shift);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
bins[bin_count - 1] = first;
|
|
for(int ii = bin_count - 2; ii >= 0; --ii)
|
|
bins[ii] = bins[ii + 1] + bin_sizes[ii + 1];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
//The last bin will always have the correct elements in it
|
|
for(int ii = bin_count - 1; ii > 0; --ii)
|
|
swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, ii, shift, bin_sizes, log_divisor, div_min);
|
|
//Since we don't process the last bin, we need to update its end position
|
|
bin_cache[cache_offset] = last;
|
|
|
|
//Return if we've completed bucketsorting
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Recursing
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(int ii = cache_end - 1; ii >= (int)cache_offset; lastPos = bin_cache[ii], --ii) {
|
|
size_t count = bin_cache[ii] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[ii], comp);
|
|
else
|
|
negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift, compare>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
}
|
|
}
|
|
|
|
//Casting special-case for floating-point sorting
|
|
template <class RandomAccessIter, class div_type, class data_type>
|
|
inline void
|
|
float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[(cast_float_iter<div_type, RandomAccessIter>(current++) >> log_divisor) - div_min]++;
|
|
//The index of the first positive bin
|
|
div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
//Resetting if all bins are negative
|
|
if(cache_offset + first_positive > cache_end)
|
|
first_positive = cache_end - cache_offset;
|
|
//Reversing the order of the negative bins
|
|
//Note that because of the negative/positive ordering direction flip
|
|
//We can not depend upon bin order and positions matching up
|
|
//so bin_sizes must be reused to contain the end of the bin
|
|
if(first_positive > 0) {
|
|
bins[first_positive - 1] = first;
|
|
for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
bins[ii] = first + bin_sizes[ii + 1];
|
|
bin_sizes[ii] += bin_sizes[ii + 1];
|
|
}
|
|
//Handling positives following negatives
|
|
if((unsigned)first_positive < bin_count) {
|
|
bins[first_positive] = first + bin_sizes[0];
|
|
bin_sizes[first_positive] += bin_sizes[0];
|
|
}
|
|
}
|
|
else
|
|
bins[0] = first;
|
|
for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
bins[u + 1] = first + bin_sizes[u];
|
|
bin_sizes[u + 1] += bin_sizes[u];
|
|
}
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned u = 0; u < bin_count; ++u) {
|
|
nextbinstart = first + bin_sizes[u];
|
|
inner_float_swap_loop<RandomAccessIter, div_type, data_type>(bins, nextbinstart, u, log_divisor, div_min);
|
|
}
|
|
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Handling negative values first
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
size_t count = bin_cache[ii] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[ii]);
|
|
//sort negative values using reversed-bin spread_sort
|
|
else
|
|
negative_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes);
|
|
}
|
|
|
|
for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u]);
|
|
//sort positive values using normal spread_sort
|
|
else
|
|
positive_float_sort_rec<RandomAccessIter, div_type, data_type>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes);
|
|
}
|
|
}
|
|
|
|
//Functor implementation for recursive sorting
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void
|
|
float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes, right_shift shift)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min, shift);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
//The index of the first positive bin
|
|
div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
//Resetting if all bins are negative
|
|
if(cache_offset + first_positive > cache_end)
|
|
first_positive = cache_end - cache_offset;
|
|
//Reversing the order of the negative bins
|
|
//Note that because of the negative/positive ordering direction flip
|
|
//We can not depend upon bin order and positions matching up
|
|
//so bin_sizes must be reused to contain the end of the bin
|
|
if(first_positive > 0) {
|
|
bins[first_positive - 1] = first;
|
|
for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
bins[ii] = first + bin_sizes[ii + 1];
|
|
bin_sizes[ii] += bin_sizes[ii + 1];
|
|
}
|
|
//Handling positives following negatives
|
|
if((unsigned)first_positive < bin_count) {
|
|
bins[first_positive] = first + bin_sizes[0];
|
|
bin_sizes[first_positive] += bin_sizes[0];
|
|
}
|
|
}
|
|
else
|
|
bins[0] = first;
|
|
for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
bins[u + 1] = first + bin_sizes[u];
|
|
bin_sizes[u + 1] += bin_sizes[u];
|
|
}
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned u = 0; u < bin_count; ++u) {
|
|
nextbinstart = first + bin_sizes[u];
|
|
inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
|
|
}
|
|
|
|
//Return if we've completed bucketsorting
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Handling negative values first
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
size_t count = bin_cache[ii] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[ii]);
|
|
//sort negative values using reversed-bin spread_sort
|
|
else
|
|
negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift);
|
|
}
|
|
|
|
for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u]);
|
|
//sort positive values using normal spread_sort
|
|
else
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift);
|
|
}
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
inline void
|
|
float_sort_rec(RandomAccessIter first, RandomAccessIter last, std::vector<RandomAccessIter> &bin_cache, unsigned cache_offset
|
|
, std::vector<size_t> &bin_sizes, right_shift shift, compare comp)
|
|
{
|
|
div_type max, min;
|
|
find_extremes(first, last, max, min, shift);
|
|
if(max == min)
|
|
return;
|
|
unsigned log_divisor = get_log_divisor(last - first, rough_log_2_size((size_t)(max) - min));
|
|
div_type div_min = min >> log_divisor;
|
|
div_type div_max = max >> log_divisor;
|
|
unsigned bin_count = div_max - div_min + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, bin_count);
|
|
|
|
//Calculating the size of each bin
|
|
for (RandomAccessIter current = first; current != last;)
|
|
bin_sizes[shift(*(current++), log_divisor) - div_min]++;
|
|
//The index of the first positive bin
|
|
div_type first_positive = (div_min < 0) ? -div_min : 0;
|
|
//Resetting if all bins are negative
|
|
if(cache_offset + first_positive > cache_end)
|
|
first_positive = cache_end - cache_offset;
|
|
//Reversing the order of the negative bins
|
|
//Note that because of the negative/positive ordering direction flip
|
|
//We can not depend upon bin order and positions matching up
|
|
//so bin_sizes must be reused to contain the end of the bin
|
|
if(first_positive > 0) {
|
|
bins[first_positive - 1] = first;
|
|
for(int ii = first_positive - 2; ii >= 0; --ii) {
|
|
bins[ii] = first + bin_sizes[ii + 1];
|
|
bin_sizes[ii] += bin_sizes[ii + 1];
|
|
}
|
|
//Handling positives following negatives
|
|
if((unsigned)first_positive < bin_count) {
|
|
bins[first_positive] = first + bin_sizes[0];
|
|
bin_sizes[first_positive] += bin_sizes[0];
|
|
}
|
|
}
|
|
else
|
|
bins[0] = first;
|
|
for(unsigned u = first_positive; u < bin_count - 1; u++) {
|
|
bins[u + 1] = first + bin_sizes[u];
|
|
bin_sizes[u + 1] += bin_sizes[u];
|
|
}
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
for(unsigned u = 0; u < bin_count; ++u) {
|
|
nextbinstart = first + bin_sizes[u];
|
|
inner_swap_loop<RandomAccessIter, div_type, data_type, right_shift>(bins, nextbinstart, u, shift, log_divisor, div_min);
|
|
}
|
|
|
|
//Return if we've completed bucketsorting
|
|
if(!log_divisor)
|
|
return;
|
|
|
|
//Handling negative values first
|
|
size_t max_count = get_max_count(log_divisor, last - first);
|
|
RandomAccessIter lastPos = first;
|
|
for(int ii = cache_offset + first_positive - 1; ii >= (int)cache_offset ; lastPos = bin_cache[ii--]) {
|
|
size_t count = bin_cache[ii] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[ii]);
|
|
//sort negative values using reversed-bin spread_sort
|
|
else
|
|
negative_float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[ii], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
}
|
|
|
|
for(unsigned u = cache_offset + first_positive; u < cache_end; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
if(count < 2)
|
|
continue;
|
|
if(count < max_count)
|
|
std::sort(lastPos, bin_cache[u]);
|
|
//sort positive values using normal spread_sort
|
|
else
|
|
spread_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(lastPos, bin_cache[u], bin_cache, cache_end, bin_sizes, shift, comp);
|
|
}
|
|
}
|
|
|
|
template <class RandomAccessIter, class cast_type, class data_type>
|
|
inline void
|
|
float_Sort(RandomAccessIter first, RandomAccessIter last, cast_type, data_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
float_sort_rec<RandomAccessIter, cast_type, data_type>(first, last, bin_cache, 0, bin_sizes);
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift>
|
|
inline void
|
|
float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift);
|
|
}
|
|
|
|
template <class RandomAccessIter, class div_type, class data_type, class right_shift, class compare>
|
|
inline void
|
|
float_Sort(RandomAccessIter first, RandomAccessIter last, div_type, data_type, right_shift shift, compare comp)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
float_sort_rec<RandomAccessIter, div_type, data_type, right_shift>(first, last, bin_cache, 0, bin_sizes, shift, comp);
|
|
}
|
|
}
|
|
|
|
//float_sort with casting
|
|
//The cast_type must be equal in size to the data type, and must be a signed integer
|
|
template <class RandomAccessIter, class cast_type>
|
|
inline void float_sort_cast(RandomAccessIter first, RandomAccessIter last, cast_type cVal)
|
|
{
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last);
|
|
else
|
|
detail::float_Sort(first, last, cVal, *first);
|
|
}
|
|
|
|
//float_sort with casting to an int
|
|
//Only use this with IEEE floating-point numbers
|
|
template <class RandomAccessIter>
|
|
inline void float_sort_cast_to_int(RandomAccessIter first, RandomAccessIter last)
|
|
{
|
|
int cVal = 0;
|
|
float_sort_cast(first, last, cVal);
|
|
}
|
|
|
|
//float_sort with functors
|
|
template <class RandomAccessIter, class right_shift>
|
|
inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift)
|
|
{
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last);
|
|
else
|
|
detail::float_Sort(first, last, shift(*first, 0), *first, shift);
|
|
}
|
|
|
|
template <class RandomAccessIter, class right_shift, class compare>
|
|
inline void float_sort(RandomAccessIter first, RandomAccessIter last, right_shift shift, compare comp)
|
|
{
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last, comp);
|
|
else
|
|
detail::float_Sort(first, last, shift(*first, 0), *first, shift, comp);
|
|
}
|
|
|
|
//------------------------------------------------- string_sort source ---------------------------------------------
|
|
namespace detail {
|
|
//Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
|
|
template<class RandomAccessIter>
|
|
inline void
|
|
update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset)
|
|
{
|
|
unsigned nextOffset = char_offset;
|
|
bool done = false;
|
|
while(!done) {
|
|
RandomAccessIter curr = first;
|
|
do {
|
|
//ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
|
|
if((*curr).size() > char_offset && ((*curr).size() <= (nextOffset + 1) || (*curr)[nextOffset] != (*first)[nextOffset])) {
|
|
done = true;
|
|
break;
|
|
}
|
|
} while(++curr != finish);
|
|
if(!done)
|
|
++nextOffset;
|
|
}
|
|
char_offset = nextOffset;
|
|
}
|
|
|
|
//Offsetting on identical characters. This function works a character at a time for optimal worst-case performance.
|
|
template<class RandomAccessIter, class get_char, class get_length>
|
|
inline void
|
|
update_offset(RandomAccessIter first, RandomAccessIter finish, unsigned &char_offset, get_char getchar, get_length length)
|
|
{
|
|
unsigned nextOffset = char_offset;
|
|
bool done = false;
|
|
while(!done) {
|
|
RandomAccessIter curr = first;
|
|
do {
|
|
//ignore empties, but if the nextOffset would exceed the length or not match, exit; we've found the last matching character
|
|
if(length(*curr) > char_offset && (length(*curr) <= (nextOffset + 1) || getchar((*curr), nextOffset) != getchar((*first), nextOffset))) {
|
|
done = true;
|
|
break;
|
|
}
|
|
} while(++curr != finish);
|
|
if(!done)
|
|
++nextOffset;
|
|
}
|
|
char_offset = nextOffset;
|
|
}
|
|
|
|
//A comparison functor for strings that assumes they are identical up to char_offset
|
|
template<class data_type, class unsignedchar_type>
|
|
struct offset_lessthan {
|
|
offset_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
inline bool operator()(const data_type &x, const data_type &y) const
|
|
{
|
|
unsigned minSize = std::min(x.size(), y.size());
|
|
for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
if(static_cast<unsignedchar_type>(x[u]) < static_cast<unsignedchar_type>(y[u]))
|
|
return true;
|
|
else if(static_cast<unsignedchar_type>(y[u]) < static_cast<unsignedchar_type>(x[u]))
|
|
return false;
|
|
}
|
|
return x.size() < y.size();
|
|
}
|
|
unsigned fchar_offset;
|
|
};
|
|
|
|
//A comparison functor for strings that assumes they are identical up to char_offset
|
|
template<class data_type, class unsignedchar_type>
|
|
struct offset_greaterthan {
|
|
offset_greaterthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
inline bool operator()(const data_type &x, const data_type &y) const
|
|
{
|
|
unsigned minSize = std::min(x.size(), y.size());
|
|
for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
if(static_cast<unsignedchar_type>(x[u]) > static_cast<unsignedchar_type>(y[u]))
|
|
return true;
|
|
else if(static_cast<unsignedchar_type>(y[u]) > static_cast<unsignedchar_type>(x[u]))
|
|
return false;
|
|
}
|
|
return x.size() > y.size();
|
|
}
|
|
unsigned fchar_offset;
|
|
};
|
|
|
|
//A comparison functor for strings that assumes they are identical up to char_offset
|
|
template<class data_type, class get_char, class get_length>
|
|
struct offset_char_lessthan {
|
|
offset_char_lessthan(unsigned char_offset) : fchar_offset(char_offset){}
|
|
inline bool operator()(const data_type &x, const data_type &y) const
|
|
{
|
|
unsigned minSize = std::min(length(x), length(y));
|
|
for(unsigned u = fchar_offset; u < minSize; ++u) {
|
|
if(getchar(x, u) < getchar(y, u))
|
|
return true;
|
|
else if(getchar(y, u) < getchar(x, u))
|
|
return false;
|
|
}
|
|
return length(x) < length(y);
|
|
}
|
|
unsigned fchar_offset;
|
|
get_char getchar;
|
|
get_length length;
|
|
};
|
|
|
|
//String sorting recursive implementation
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
inline void
|
|
string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
, unsigned cache_offset, std::vector<size_t> &bin_sizes)
|
|
{
|
|
//This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
//Iterate to the end of the empties. If all empty, return
|
|
while((*first).size() <= char_offset) {
|
|
if(++first == last)
|
|
return;
|
|
}
|
|
RandomAccessIter finish = last - 1;
|
|
//Getting the last non-empty
|
|
for(;(*finish).size() <= char_offset; --finish) { }
|
|
++finish;
|
|
//Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
update_offset(first, finish, char_offset);
|
|
|
|
const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
//Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
const unsigned max_size = bin_count;
|
|
const unsigned membin_count = bin_count + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
|
//Calculating the size of each bin; this takes roughly 10% of runtime
|
|
for (RandomAccessIter current = first; current != last; ++current) {
|
|
if((*current).size() <= char_offset) {
|
|
bin_sizes[0]++;
|
|
}
|
|
else
|
|
bin_sizes[static_cast<unsignedchar_type>((*current)[char_offset]) + 1]++;
|
|
}
|
|
//Assign the bin positions
|
|
bin_cache[cache_offset] = first;
|
|
for(unsigned u = 0; u < membin_count - 1; u++)
|
|
bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
//handling empty bins
|
|
RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
nextbinstart += bin_sizes[0];
|
|
RandomAccessIter * target_bin;
|
|
//Iterating over each element in the bin of empties
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//empties belong in this bin
|
|
while((*current).size() > char_offset) {
|
|
target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]);
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
//iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
unsigned last_bin = bin_count - 1;
|
|
for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
//This dominates runtime, mostly in the swap and bin lookups
|
|
for(unsigned u = 0; u < last_bin; ++u) {
|
|
local_bin = bins + u;
|
|
nextbinstart += bin_sizes[u + 1];
|
|
//Iterating over each element in this bin
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//Swapping elements in current into place until the correct element has been swapped in
|
|
for(target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
|
|
target_bin = bins + static_cast<unsignedchar_type>((*current)[char_offset]))
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
bins[last_bin] = last;
|
|
//Recursing
|
|
RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
//Skip this loop for empties
|
|
for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
//don't sort unless there are at least two items to compare
|
|
if(count < 2)
|
|
continue;
|
|
//using std::sort if its worst-case is better
|
|
if(count < max_size)
|
|
std::sort(lastPos, bin_cache[u], offset_lessthan<data_type, unsignedchar_type>(char_offset + 1));
|
|
else
|
|
string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
|
|
}
|
|
}
|
|
|
|
//Sorts strings in reverse order, with empties at the end
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
inline void
|
|
reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
, unsigned cache_offset, std::vector<size_t> &bin_sizes)
|
|
{
|
|
//This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
RandomAccessIter curr = first;
|
|
//Iterate to the end of the empties. If all empty, return
|
|
while((*curr).size() <= char_offset) {
|
|
if(++curr == last)
|
|
return;
|
|
}
|
|
//Getting the last non-empty
|
|
while((*(--last)).size() <= char_offset) { }
|
|
++last;
|
|
//Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
update_offset(curr, last, char_offset);
|
|
RandomAccessIter * target_bin;
|
|
|
|
const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
//Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
const unsigned max_size = bin_count;
|
|
const unsigned membin_count = bin_count + 1;
|
|
const unsigned max_bin = bin_count - 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
|
|
RandomAccessIter * end_bin = &(bin_cache[cache_offset + max_bin]);
|
|
|
|
//Calculating the size of each bin; this takes roughly 10% of runtime
|
|
for (RandomAccessIter current = first; current != last; ++current) {
|
|
if((*current).size() <= char_offset) {
|
|
bin_sizes[bin_count]++;
|
|
}
|
|
else
|
|
bin_sizes[max_bin - static_cast<unsignedchar_type>((*current)[char_offset])]++;
|
|
}
|
|
//Assign the bin positions
|
|
bin_cache[cache_offset] = first;
|
|
for(unsigned u = 0; u < membin_count - 1; u++)
|
|
bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = last;
|
|
//handling empty bins
|
|
RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
|
|
RandomAccessIter lastFull = *local_bin;
|
|
//Iterating over each element in the bin of empties
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//empties belong in this bin
|
|
while((*current).size() > char_offset) {
|
|
target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]);
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
nextbinstart = first;
|
|
//iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
unsigned last_bin = max_bin;
|
|
for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
|
|
//This dominates runtime, mostly in the swap and bin lookups
|
|
for(unsigned u = 0; u < last_bin; ++u) {
|
|
local_bin = bins + u;
|
|
nextbinstart += bin_sizes[u];
|
|
//Iterating over each element in this bin
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//Swapping elements in current into place until the correct element has been swapped in
|
|
for(target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]); target_bin != local_bin;
|
|
target_bin = end_bin - static_cast<unsignedchar_type>((*current)[char_offset]))
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
bins[last_bin] = lastFull;
|
|
//Recursing
|
|
RandomAccessIter lastPos = first;
|
|
//Skip this loop for empties
|
|
for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
//don't sort unless there are at least two items to compare
|
|
if(count < 2)
|
|
continue;
|
|
//using std::sort if its worst-case is better
|
|
if(count < max_size)
|
|
std::sort(lastPos, bin_cache[u], offset_greaterthan<data_type, unsignedchar_type>(char_offset + 1));
|
|
else
|
|
reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes);
|
|
}
|
|
}
|
|
|
|
//String sorting recursive implementation
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length>
|
|
inline void
|
|
string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
, unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length)
|
|
{
|
|
//This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
//Iterate to the end of the empties. If all empty, return
|
|
while(length(*first) <= char_offset) {
|
|
if(++first == last)
|
|
return;
|
|
}
|
|
RandomAccessIter finish = last - 1;
|
|
//Getting the last non-empty
|
|
for(;length(*finish) <= char_offset; --finish) { }
|
|
++finish;
|
|
update_offset(first, finish, char_offset, getchar, length);
|
|
|
|
const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
//Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
const unsigned max_size = bin_count;
|
|
const unsigned membin_count = bin_count + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
|
//Calculating the size of each bin; this takes roughly 10% of runtime
|
|
for (RandomAccessIter current = first; current != last; ++current) {
|
|
if(length(*current) <= char_offset) {
|
|
bin_sizes[0]++;
|
|
}
|
|
else
|
|
bin_sizes[getchar((*current), char_offset) + 1]++;
|
|
}
|
|
//Assign the bin positions
|
|
bin_cache[cache_offset] = first;
|
|
for(unsigned u = 0; u < membin_count - 1; u++)
|
|
bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
//handling empty bins
|
|
RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
nextbinstart += bin_sizes[0];
|
|
RandomAccessIter * target_bin;
|
|
//Iterating over each element in the bin of empties
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//empties belong in this bin
|
|
while(length(*current) > char_offset) {
|
|
target_bin = bins + getchar((*current), char_offset);
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
//iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
unsigned last_bin = bin_count - 1;
|
|
for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
//This dominates runtime, mostly in the swap and bin lookups
|
|
for(unsigned ii = 0; ii < last_bin; ++ii) {
|
|
local_bin = bins + ii;
|
|
nextbinstart += bin_sizes[ii + 1];
|
|
//Iterating over each element in this bin
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//Swapping elements in current into place until the correct element has been swapped in
|
|
for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
|
|
target_bin = bins + getchar((*current), char_offset))
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
bins[last_bin] = last;
|
|
|
|
//Recursing
|
|
RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
//Skip this loop for empties
|
|
for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
//don't sort unless there are at least two items to compare
|
|
if(count < 2)
|
|
continue;
|
|
//using std::sort if its worst-case is better
|
|
if(count < max_size)
|
|
std::sort(lastPos, bin_cache[u], offset_char_lessthan<data_type, get_char, get_length>(char_offset + 1));
|
|
else
|
|
string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(lastPos, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length);
|
|
}
|
|
}
|
|
|
|
//String sorting recursive implementation
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
|
|
inline void
|
|
string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
, unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
|
|
{
|
|
//This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
//Iterate to the end of the empties. If all empty, return
|
|
while(length(*first) <= char_offset) {
|
|
if(++first == last)
|
|
return;
|
|
}
|
|
RandomAccessIter finish = last - 1;
|
|
//Getting the last non-empty
|
|
for(;length(*finish) <= char_offset; --finish) { }
|
|
++finish;
|
|
update_offset(first, finish, char_offset, getchar, length);
|
|
|
|
const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
//Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
const unsigned max_size = bin_count;
|
|
const unsigned membin_count = bin_count + 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count) + 1;
|
|
|
|
//Calculating the size of each bin; this takes roughly 10% of runtime
|
|
for (RandomAccessIter current = first; current != last; ++current) {
|
|
if(length(*current) <= char_offset) {
|
|
bin_sizes[0]++;
|
|
}
|
|
else
|
|
bin_sizes[getchar((*current), char_offset) + 1]++;
|
|
}
|
|
//Assign the bin positions
|
|
bin_cache[cache_offset] = first;
|
|
for(unsigned u = 0; u < membin_count - 1; u++)
|
|
bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = first;
|
|
//handling empty bins
|
|
RandomAccessIter * local_bin = &(bin_cache[cache_offset]);
|
|
nextbinstart += bin_sizes[0];
|
|
RandomAccessIter * target_bin;
|
|
//Iterating over each element in the bin of empties
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//empties belong in this bin
|
|
while(length(*current) > char_offset) {
|
|
target_bin = bins + getchar((*current), char_offset);
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
//iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
unsigned last_bin = bin_count - 1;
|
|
for(; last_bin && !bin_sizes[last_bin + 1]; --last_bin) { }
|
|
//This dominates runtime, mostly in the swap and bin lookups
|
|
for(unsigned u = 0; u < last_bin; ++u) {
|
|
local_bin = bins + u;
|
|
nextbinstart += bin_sizes[u + 1];
|
|
//Iterating over each element in this bin
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//Swapping elements in current into place until the correct element has been swapped in
|
|
for(target_bin = bins + getchar((*current), char_offset); target_bin != local_bin;
|
|
target_bin = bins + getchar((*current), char_offset))
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
bins[last_bin] = last;
|
|
|
|
//Recursing
|
|
RandomAccessIter lastPos = bin_cache[cache_offset];
|
|
//Skip this loop for empties
|
|
for(unsigned u = cache_offset + 1; u < cache_offset + last_bin + 2; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
//don't sort unless there are at least two items to compare
|
|
if(count < 2)
|
|
continue;
|
|
//using std::sort if its worst-case is better
|
|
if(count < max_size)
|
|
std::sort(lastPos, bin_cache[u], comp);
|
|
else
|
|
string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
|
|
, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
|
|
}
|
|
}
|
|
|
|
//Sorts strings in reverse order, with empties at the end
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type, class get_char, class get_length, class compare>
|
|
inline void
|
|
reverse_string_sort_rec(RandomAccessIter first, RandomAccessIter last, unsigned char_offset, std::vector<RandomAccessIter> &bin_cache
|
|
, unsigned cache_offset, std::vector<size_t> &bin_sizes, get_char getchar, get_length length, compare comp)
|
|
{
|
|
//This section is not strictly necessary, but makes handling of long identical substrings much faster, with a mild average performance impact.
|
|
RandomAccessIter curr = first;
|
|
//Iterate to the end of the empties. If all empty, return
|
|
while(length(*curr) <= char_offset) {
|
|
if(++curr == last)
|
|
return;
|
|
}
|
|
//Getting the last non-empty
|
|
while(length(*(--last)) <= char_offset) { }
|
|
++last;
|
|
//Offsetting on identical characters. This section works a character at a time for optimal worst-case performance.
|
|
update_offset(first, last, char_offset, getchar, length);
|
|
|
|
const unsigned bin_count = (1 << (sizeof(unsignedchar_type)*8));
|
|
//Equal worst-case between radix and comparison-based is when bin_count = n*log(n).
|
|
const unsigned max_size = bin_count;
|
|
const unsigned membin_count = bin_count + 1;
|
|
const unsigned max_bin = bin_count - 1;
|
|
unsigned cache_end;
|
|
RandomAccessIter * bins = size_bins(bin_sizes, bin_cache, cache_offset, cache_end, membin_count);
|
|
RandomAccessIter *end_bin = &(bin_cache[cache_offset + max_bin]);
|
|
|
|
//Calculating the size of each bin; this takes roughly 10% of runtime
|
|
for (RandomAccessIter current = first; current != last; ++current) {
|
|
if(length(*current) <= char_offset) {
|
|
bin_sizes[bin_count]++;
|
|
}
|
|
else
|
|
bin_sizes[max_bin - getchar((*current), char_offset)]++;
|
|
}
|
|
//Assign the bin positions
|
|
bin_cache[cache_offset] = first;
|
|
for(unsigned u = 0; u < membin_count - 1; u++)
|
|
bin_cache[cache_offset + u + 1] = bin_cache[cache_offset + u] + bin_sizes[u];
|
|
|
|
//Swap into place
|
|
RandomAccessIter nextbinstart = last;
|
|
//handling empty bins
|
|
RandomAccessIter * local_bin = &(bin_cache[cache_offset + bin_count]);
|
|
RandomAccessIter lastFull = *local_bin;
|
|
RandomAccessIter * target_bin;
|
|
//Iterating over each element in the bin of empties
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//empties belong in this bin
|
|
while(length(*current) > char_offset) {
|
|
target_bin = end_bin - getchar((*current), char_offset);
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
}
|
|
*local_bin = nextbinstart;
|
|
nextbinstart = first;
|
|
//iterate backwards to find the last bin with elements in it; this saves iterations in multiple loops
|
|
unsigned last_bin = max_bin;
|
|
for(; last_bin && !bin_sizes[last_bin]; --last_bin) { }
|
|
//This dominates runtime, mostly in the swap and bin lookups
|
|
for(unsigned u = 0; u < last_bin; ++u) {
|
|
local_bin = bins + u;
|
|
nextbinstart += bin_sizes[u];
|
|
//Iterating over each element in this bin
|
|
for(RandomAccessIter current = *local_bin; current < nextbinstart; ++current) {
|
|
//Swapping elements in current into place until the correct element has been swapped in
|
|
for(target_bin = end_bin - getchar((*current), char_offset); target_bin != local_bin;
|
|
target_bin = end_bin - getchar((*current), char_offset))
|
|
iter_swap(current, (*target_bin)++);
|
|
}
|
|
*local_bin = nextbinstart;
|
|
}
|
|
bins[last_bin] = lastFull;
|
|
//Recursing
|
|
RandomAccessIter lastPos = first;
|
|
//Skip this loop for empties
|
|
for(unsigned u = cache_offset; u <= cache_offset + last_bin; lastPos = bin_cache[u], ++u) {
|
|
size_t count = bin_cache[u] - lastPos;
|
|
//don't sort unless there are at least two items to compare
|
|
if(count < 2)
|
|
continue;
|
|
//using std::sort if its worst-case is better
|
|
if(count < max_size)
|
|
std::sort(lastPos, bin_cache[u], comp);
|
|
else
|
|
reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(lastPos
|
|
, bin_cache[u], char_offset + 1, bin_cache, cache_end, bin_sizes, getchar, length, comp);
|
|
}
|
|
}
|
|
|
|
//Holds the bin vector and makes the initial recursive call
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
inline void
|
|
string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
|
|
}
|
|
|
|
//Holds the bin vector and makes the initial recursive call
|
|
template <class RandomAccessIter, class data_type, class unsignedchar_type>
|
|
inline void
|
|
reverse_string_sort(RandomAccessIter first, RandomAccessIter last, data_type, unsignedchar_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type>(first, last, 0, bin_cache, 0, bin_sizes);
|
|
}
|
|
|
|
//Holds the bin vector and makes the initial recursive call
|
|
template <class RandomAccessIter, class get_char, class get_length, class data_type, class unsignedchar_type>
|
|
inline void
|
|
string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, data_type, unsignedchar_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length);
|
|
}
|
|
|
|
//Holds the bin vector and makes the initial recursive call
|
|
template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
|
|
inline void
|
|
string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
|
|
}
|
|
|
|
//Holds the bin vector and makes the initial recursive call
|
|
template <class RandomAccessIter, class get_char, class get_length, class compare, class data_type, class unsignedchar_type>
|
|
inline void
|
|
reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp, data_type, unsignedchar_type)
|
|
{
|
|
std::vector<size_t> bin_sizes;
|
|
std::vector<RandomAccessIter> bin_cache;
|
|
reverse_string_sort_rec<RandomAccessIter, data_type, unsignedchar_type, get_char, get_length, compare>(first, last, 0, bin_cache, 0, bin_sizes, getchar, length, comp);
|
|
}
|
|
}
|
|
|
|
//Allows character-type overloads
|
|
template <class RandomAccessIter, class unsignedchar_type>
|
|
inline void string_sort(RandomAccessIter first, RandomAccessIter last, unsignedchar_type unused)
|
|
{
|
|
//Don't sort if it's too small to optimize
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last);
|
|
else
|
|
detail::string_sort(first, last, *first, unused);
|
|
}
|
|
|
|
//Top-level sorting call; wraps using default of unsigned char
|
|
template <class RandomAccessIter>
|
|
inline void string_sort(RandomAccessIter first, RandomAccessIter last)
|
|
{
|
|
unsigned char unused = '\0';
|
|
string_sort(first, last, unused);
|
|
}
|
|
|
|
//Allows character-type overloads
|
|
template <class RandomAccessIter, class compare, class unsignedchar_type>
|
|
inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp, unsignedchar_type unused)
|
|
{
|
|
//Don't sort if it's too small to optimize
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last, comp);
|
|
else
|
|
detail::reverse_string_sort(first, last, *first, unused);
|
|
}
|
|
|
|
//Top-level sorting call; wraps using default of unsigned char
|
|
template <class RandomAccessIter, class compare>
|
|
inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, compare comp)
|
|
{
|
|
unsigned char unused = '\0';
|
|
reverse_string_sort(first, last, comp, unused);
|
|
}
|
|
|
|
template <class RandomAccessIter, class get_char, class get_length>
|
|
inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length)
|
|
{
|
|
//Don't sort if it's too small to optimize
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last);
|
|
else {
|
|
//skipping past empties at the beginning, which allows us to get the character type
|
|
//.empty() is not used so as not to require a user declaration of it
|
|
while(!length(*first)) {
|
|
if(++first == last)
|
|
return;
|
|
}
|
|
detail::string_sort(first, last, getchar, length, *first, getchar((*first), 0));
|
|
}
|
|
}
|
|
|
|
template <class RandomAccessIter, class get_char, class get_length, class compare>
|
|
inline void string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
|
|
{
|
|
//Don't sort if it's too small to optimize
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last, comp);
|
|
else {
|
|
//skipping past empties at the beginning, which allows us to get the character type
|
|
//.empty() is not used so as not to require a user declaration of it
|
|
while(!length(*first)) {
|
|
if(++first == last)
|
|
return;
|
|
}
|
|
detail::string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
|
|
}
|
|
}
|
|
|
|
template <class RandomAccessIter, class get_char, class get_length, class compare>
|
|
inline void reverse_string_sort(RandomAccessIter first, RandomAccessIter last, get_char getchar, get_length length, compare comp)
|
|
{
|
|
//Don't sort if it's too small to optimize
|
|
if(last - first < detail::MIN_SORT_SIZE)
|
|
std::sort(first, last, comp);
|
|
else {
|
|
//skipping past empties at the beginning, which allows us to get the character type
|
|
//.empty() is not used so as not to require a user declaration of it
|
|
while(!length(*(--last))) {
|
|
//Note: if there is just one non-empty, and it's at the beginning, then it's already in sorted order
|
|
if(first == last)
|
|
return;
|
|
}
|
|
//making last just after the end of the non-empty part of the array
|
|
++last;
|
|
detail::reverse_string_sort(first, last, getchar, length, comp, *first, getchar((*first), 0));
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|