50ca986bc1
BUG= R=juberti@webrtc.org Review URL: https://webrtc-codereview.appspot.com/31869004 git-svn-id: http://webrtc.googlecode.com/svn/trunk@7572 4adac7df-926f-26a2-2b94-8c16560cd09d
1448 lines
52 KiB
C++
1448 lines
52 KiB
C++
/*
|
|
* libjingle
|
|
* Copyright 2004--2005, Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
|
|
* EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
|
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "webrtc/p2p/base/port.h"
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#include "webrtc/p2p/base/common.h"
|
|
#include "webrtc/p2p/base/portallocator.h"
|
|
#include "webrtc/base/base64.h"
|
|
#include "webrtc/base/crc32.h"
|
|
#include "webrtc/base/helpers.h"
|
|
#include "webrtc/base/logging.h"
|
|
#include "webrtc/base/messagedigest.h"
|
|
#include "webrtc/base/scoped_ptr.h"
|
|
#include "webrtc/base/stringencode.h"
|
|
#include "webrtc/base/stringutils.h"
|
|
|
|
namespace {
|
|
|
|
// Determines whether we have seen at least the given maximum number of
|
|
// pings fail to have a response.
|
|
inline bool TooManyFailures(
|
|
const std::vector<uint32>& pings_since_last_response,
|
|
uint32 maximum_failures,
|
|
uint32 rtt_estimate,
|
|
uint32 now) {
|
|
|
|
// If we haven't sent that many pings, then we can't have failed that many.
|
|
if (pings_since_last_response.size() < maximum_failures)
|
|
return false;
|
|
|
|
// Check if the window in which we would expect a response to the ping has
|
|
// already elapsed.
|
|
return pings_since_last_response[maximum_failures - 1] + rtt_estimate < now;
|
|
}
|
|
|
|
// Determines whether we have gone too long without seeing any response.
|
|
inline bool TooLongWithoutResponse(
|
|
const std::vector<uint32>& pings_since_last_response,
|
|
uint32 maximum_time,
|
|
uint32 now) {
|
|
|
|
if (pings_since_last_response.size() == 0)
|
|
return false;
|
|
|
|
return pings_since_last_response[0] + maximum_time < now;
|
|
}
|
|
|
|
// GICE(ICEPROTO_GOOGLE) requires different username for RTP and RTCP.
|
|
// This function generates a different username by +1 on the last character of
|
|
// the given username (|rtp_ufrag|).
|
|
std::string GetRtcpUfragFromRtpUfrag(const std::string& rtp_ufrag) {
|
|
ASSERT(!rtp_ufrag.empty());
|
|
if (rtp_ufrag.empty()) {
|
|
return rtp_ufrag;
|
|
}
|
|
// Change the last character to the one next to it in the base64 table.
|
|
char new_last_char;
|
|
if (!rtc::Base64::GetNextBase64Char(rtp_ufrag[rtp_ufrag.size() - 1],
|
|
&new_last_char)) {
|
|
// Should not be here.
|
|
ASSERT(false);
|
|
}
|
|
std::string rtcp_ufrag = rtp_ufrag;
|
|
rtcp_ufrag[rtcp_ufrag.size() - 1] = new_last_char;
|
|
ASSERT(rtcp_ufrag != rtp_ufrag);
|
|
return rtcp_ufrag;
|
|
}
|
|
|
|
// We will restrict RTT estimates (when used for determining state) to be
|
|
// within a reasonable range.
|
|
const uint32 MINIMUM_RTT = 100; // 0.1 seconds
|
|
const uint32 MAXIMUM_RTT = 3000; // 3 seconds
|
|
|
|
// When we don't have any RTT data, we have to pick something reasonable. We
|
|
// use a large value just in case the connection is really slow.
|
|
const uint32 DEFAULT_RTT = MAXIMUM_RTT;
|
|
|
|
// Computes our estimate of the RTT given the current estimate.
|
|
inline uint32 ConservativeRTTEstimate(uint32 rtt) {
|
|
return rtc::_max(MINIMUM_RTT, rtc::_min(MAXIMUM_RTT, 2 * rtt));
|
|
}
|
|
|
|
// Weighting of the old rtt value to new data.
|
|
const int RTT_RATIO = 3; // 3 : 1
|
|
|
|
// The delay before we begin checking if this port is useless.
|
|
const int kPortTimeoutDelay = 30 * 1000; // 30 seconds
|
|
|
|
// Used by the Connection.
|
|
const uint32 MSG_DELETE = 1;
|
|
}
|
|
|
|
namespace cricket {
|
|
|
|
// TODO(ronghuawu): Use "host", "srflx", "prflx" and "relay". But this requires
|
|
// the signaling part be updated correspondingly as well.
|
|
const char LOCAL_PORT_TYPE[] = "local";
|
|
const char STUN_PORT_TYPE[] = "stun";
|
|
const char PRFLX_PORT_TYPE[] = "prflx";
|
|
const char RELAY_PORT_TYPE[] = "relay";
|
|
|
|
const char UDP_PROTOCOL_NAME[] = "udp";
|
|
const char TCP_PROTOCOL_NAME[] = "tcp";
|
|
const char SSLTCP_PROTOCOL_NAME[] = "ssltcp";
|
|
|
|
static const char* const PROTO_NAMES[] = { UDP_PROTOCOL_NAME,
|
|
TCP_PROTOCOL_NAME,
|
|
SSLTCP_PROTOCOL_NAME };
|
|
|
|
const char* ProtoToString(ProtocolType proto) {
|
|
return PROTO_NAMES[proto];
|
|
}
|
|
|
|
bool StringToProto(const char* value, ProtocolType* proto) {
|
|
for (size_t i = 0; i <= PROTO_LAST; ++i) {
|
|
if (_stricmp(PROTO_NAMES[i], value) == 0) {
|
|
*proto = static_cast<ProtocolType>(i);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// RFC 6544, TCP candidate encoding rules.
|
|
const int DISCARD_PORT = 9;
|
|
const char TCPTYPE_ACTIVE_STR[] = "active";
|
|
const char TCPTYPE_PASSIVE_STR[] = "passive";
|
|
const char TCPTYPE_SIMOPEN_STR[] = "so";
|
|
|
|
// Foundation: An arbitrary string that is the same for two candidates
|
|
// that have the same type, base IP address, protocol (UDP, TCP,
|
|
// etc.), and STUN or TURN server. If any of these are different,
|
|
// then the foundation will be different. Two candidate pairs with
|
|
// the same foundation pairs are likely to have similar network
|
|
// characteristics. Foundations are used in the frozen algorithm.
|
|
static std::string ComputeFoundation(
|
|
const std::string& type,
|
|
const std::string& protocol,
|
|
const rtc::SocketAddress& base_address) {
|
|
std::ostringstream ost;
|
|
ost << type << base_address.ipaddr().ToString() << protocol;
|
|
return rtc::ToString<uint32>(rtc::ComputeCrc32(ost.str()));
|
|
}
|
|
|
|
Port::Port(rtc::Thread* thread, rtc::PacketSocketFactory* factory,
|
|
rtc::Network* network, const rtc::IPAddress& ip,
|
|
const std::string& username_fragment, const std::string& password)
|
|
: thread_(thread),
|
|
factory_(factory),
|
|
send_retransmit_count_attribute_(false),
|
|
network_(network),
|
|
ip_(ip),
|
|
min_port_(0),
|
|
max_port_(0),
|
|
component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
|
|
generation_(0),
|
|
ice_username_fragment_(username_fragment),
|
|
password_(password),
|
|
timeout_delay_(kPortTimeoutDelay),
|
|
enable_port_packets_(false),
|
|
ice_protocol_(ICEPROTO_HYBRID),
|
|
ice_role_(ICEROLE_UNKNOWN),
|
|
tiebreaker_(0),
|
|
shared_socket_(true),
|
|
candidate_filter_(CF_ALL) {
|
|
Construct();
|
|
}
|
|
|
|
Port::Port(rtc::Thread* thread, const std::string& type,
|
|
rtc::PacketSocketFactory* factory,
|
|
rtc::Network* network, const rtc::IPAddress& ip,
|
|
int min_port, int max_port, const std::string& username_fragment,
|
|
const std::string& password)
|
|
: thread_(thread),
|
|
factory_(factory),
|
|
type_(type),
|
|
send_retransmit_count_attribute_(false),
|
|
network_(network),
|
|
ip_(ip),
|
|
min_port_(min_port),
|
|
max_port_(max_port),
|
|
component_(ICE_CANDIDATE_COMPONENT_DEFAULT),
|
|
generation_(0),
|
|
ice_username_fragment_(username_fragment),
|
|
password_(password),
|
|
timeout_delay_(kPortTimeoutDelay),
|
|
enable_port_packets_(false),
|
|
ice_protocol_(ICEPROTO_HYBRID),
|
|
ice_role_(ICEROLE_UNKNOWN),
|
|
tiebreaker_(0),
|
|
shared_socket_(false),
|
|
candidate_filter_(CF_ALL) {
|
|
ASSERT(factory_ != NULL);
|
|
Construct();
|
|
}
|
|
|
|
void Port::Construct() {
|
|
// If the username_fragment and password are empty, we should just create one.
|
|
if (ice_username_fragment_.empty()) {
|
|
ASSERT(password_.empty());
|
|
ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH);
|
|
password_ = rtc::CreateRandomString(ICE_PWD_LENGTH);
|
|
}
|
|
LOG_J(LS_INFO, this) << "Port created";
|
|
}
|
|
|
|
Port::~Port() {
|
|
// Delete all of the remaining connections. We copy the list up front
|
|
// because each deletion will cause it to be modified.
|
|
|
|
std::vector<Connection*> list;
|
|
|
|
AddressMap::iterator iter = connections_.begin();
|
|
while (iter != connections_.end()) {
|
|
list.push_back(iter->second);
|
|
++iter;
|
|
}
|
|
|
|
for (uint32 i = 0; i < list.size(); i++)
|
|
delete list[i];
|
|
}
|
|
|
|
Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) {
|
|
AddressMap::const_iterator iter = connections_.find(remote_addr);
|
|
if (iter != connections_.end())
|
|
return iter->second;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
void Port::AddAddress(const rtc::SocketAddress& address,
|
|
const rtc::SocketAddress& base_address,
|
|
const rtc::SocketAddress& related_address,
|
|
const std::string& protocol,
|
|
const std::string& tcptype,
|
|
const std::string& type,
|
|
uint32 type_preference,
|
|
uint32 relay_preference,
|
|
bool final) {
|
|
if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) {
|
|
ASSERT(!tcptype.empty());
|
|
}
|
|
|
|
Candidate c;
|
|
c.set_id(rtc::CreateRandomString(8));
|
|
c.set_component(component_);
|
|
c.set_type(type);
|
|
c.set_protocol(protocol);
|
|
c.set_tcptype(tcptype);
|
|
c.set_address(address);
|
|
c.set_priority(c.GetPriority(type_preference, network_->preference(),
|
|
relay_preference));
|
|
c.set_username(username_fragment());
|
|
c.set_password(password_);
|
|
c.set_network_name(network_->name());
|
|
c.set_generation(generation_);
|
|
c.set_related_address(related_address);
|
|
c.set_foundation(ComputeFoundation(type, protocol, base_address));
|
|
candidates_.push_back(c);
|
|
SignalCandidateReady(this, c);
|
|
|
|
if (final) {
|
|
SignalPortComplete(this);
|
|
}
|
|
}
|
|
|
|
void Port::AddConnection(Connection* conn) {
|
|
connections_[conn->remote_candidate().address()] = conn;
|
|
conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed);
|
|
SignalConnectionCreated(this, conn);
|
|
}
|
|
|
|
void Port::OnReadPacket(
|
|
const char* data, size_t size, const rtc::SocketAddress& addr,
|
|
ProtocolType proto) {
|
|
// If the user has enabled port packets, just hand this over.
|
|
if (enable_port_packets_) {
|
|
SignalReadPacket(this, data, size, addr);
|
|
return;
|
|
}
|
|
|
|
// If this is an authenticated STUN request, then signal unknown address and
|
|
// send back a proper binding response.
|
|
rtc::scoped_ptr<IceMessage> msg;
|
|
std::string remote_username;
|
|
if (!GetStunMessage(data, size, addr, msg.accept(), &remote_username)) {
|
|
LOG_J(LS_ERROR, this) << "Received non-STUN packet from unknown address ("
|
|
<< addr.ToSensitiveString() << ")";
|
|
} else if (!msg) {
|
|
// STUN message handled already
|
|
} else if (msg->type() == STUN_BINDING_REQUEST) {
|
|
// Check for role conflicts.
|
|
if (IsStandardIce() &&
|
|
!MaybeIceRoleConflict(addr, msg.get(), remote_username)) {
|
|
LOG(LS_INFO) << "Received conflicting role from the peer.";
|
|
return;
|
|
}
|
|
|
|
SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false);
|
|
} else {
|
|
// NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we
|
|
// pruned a connection for this port while it had STUN requests in flight,
|
|
// because we then get back responses for them, which this code correctly
|
|
// does not handle.
|
|
if (msg->type() != STUN_BINDING_RESPONSE) {
|
|
LOG_J(LS_ERROR, this) << "Received unexpected STUN message type ("
|
|
<< msg->type() << ") from unknown address ("
|
|
<< addr.ToSensitiveString() << ")";
|
|
}
|
|
}
|
|
}
|
|
|
|
void Port::OnReadyToSend() {
|
|
AddressMap::iterator iter = connections_.begin();
|
|
for (; iter != connections_.end(); ++iter) {
|
|
iter->second->OnReadyToSend();
|
|
}
|
|
}
|
|
|
|
size_t Port::AddPrflxCandidate(const Candidate& local) {
|
|
candidates_.push_back(local);
|
|
return (candidates_.size() - 1);
|
|
}
|
|
|
|
bool Port::IsStandardIce() const {
|
|
return (ice_protocol_ == ICEPROTO_RFC5245);
|
|
}
|
|
|
|
bool Port::IsGoogleIce() const {
|
|
return (ice_protocol_ == ICEPROTO_GOOGLE);
|
|
}
|
|
|
|
bool Port::IsHybridIce() const {
|
|
return (ice_protocol_ == ICEPROTO_HYBRID);
|
|
}
|
|
|
|
bool Port::GetStunMessage(const char* data, size_t size,
|
|
const rtc::SocketAddress& addr,
|
|
IceMessage** out_msg, std::string* out_username) {
|
|
// NOTE: This could clearly be optimized to avoid allocating any memory.
|
|
// However, at the data rates we'll be looking at on the client side,
|
|
// this probably isn't worth worrying about.
|
|
ASSERT(out_msg != NULL);
|
|
ASSERT(out_username != NULL);
|
|
*out_msg = NULL;
|
|
out_username->clear();
|
|
|
|
// Don't bother parsing the packet if we can tell it's not STUN.
|
|
// In ICE mode, all STUN packets will have a valid fingerprint.
|
|
if (IsStandardIce() && !StunMessage::ValidateFingerprint(data, size)) {
|
|
return false;
|
|
}
|
|
|
|
// Parse the request message. If the packet is not a complete and correct
|
|
// STUN message, then ignore it.
|
|
rtc::scoped_ptr<IceMessage> stun_msg(new IceMessage());
|
|
rtc::ByteBuffer buf(data, size);
|
|
if (!stun_msg->Read(&buf) || (buf.Length() > 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (stun_msg->type() == STUN_BINDING_REQUEST) {
|
|
// Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first.
|
|
// If not present, fail with a 400 Bad Request.
|
|
if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) ||
|
|
(IsStandardIce() &&
|
|
!stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY))) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN request without username/M-I "
|
|
<< "from " << addr.ToSensitiveString();
|
|
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST,
|
|
STUN_ERROR_REASON_BAD_REQUEST);
|
|
return true;
|
|
}
|
|
|
|
// If the username is bad or unknown, fail with a 401 Unauthorized.
|
|
std::string local_ufrag;
|
|
std::string remote_ufrag;
|
|
IceProtocolType remote_protocol_type;
|
|
if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag,
|
|
&remote_protocol_type) ||
|
|
local_ufrag != username_fragment()) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN request with bad local username "
|
|
<< local_ufrag << " from "
|
|
<< addr.ToSensitiveString();
|
|
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
|
|
STUN_ERROR_REASON_UNAUTHORIZED);
|
|
return true;
|
|
}
|
|
|
|
// Port is initialized to GOOGLE-ICE protocol type. If pings from remote
|
|
// are received before the signal message, protocol type may be different.
|
|
// Based on the STUN username, we can determine what's the remote protocol.
|
|
// This also enables us to send the response back using the same protocol
|
|
// as the request.
|
|
if (IsHybridIce()) {
|
|
SetIceProtocolType(remote_protocol_type);
|
|
}
|
|
|
|
// If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized
|
|
if (IsStandardIce() &&
|
|
!stun_msg->ValidateMessageIntegrity(data, size, password_)) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN request with bad M-I "
|
|
<< "from " << addr.ToSensitiveString();
|
|
SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED,
|
|
STUN_ERROR_REASON_UNAUTHORIZED);
|
|
return true;
|
|
}
|
|
out_username->assign(remote_ufrag);
|
|
} else if ((stun_msg->type() == STUN_BINDING_RESPONSE) ||
|
|
(stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) {
|
|
if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) {
|
|
if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) {
|
|
LOG_J(LS_ERROR, this) << "Received STUN binding error:"
|
|
<< " class=" << error_code->eclass()
|
|
<< " number=" << error_code->number()
|
|
<< " reason='" << error_code->reason() << "'"
|
|
<< " from " << addr.ToSensitiveString();
|
|
// Return message to allow error-specific processing
|
|
} else {
|
|
LOG_J(LS_ERROR, this) << "Received STUN binding error without a error "
|
|
<< "code from " << addr.ToSensitiveString();
|
|
return true;
|
|
}
|
|
}
|
|
// NOTE: Username should not be used in verifying response messages.
|
|
out_username->clear();
|
|
} else if (stun_msg->type() == STUN_BINDING_INDICATION) {
|
|
LOG_J(LS_VERBOSE, this) << "Received STUN binding indication:"
|
|
<< " from " << addr.ToSensitiveString();
|
|
out_username->clear();
|
|
// No stun attributes will be verified, if it's stun indication message.
|
|
// Returning from end of the this method.
|
|
} else {
|
|
LOG_J(LS_ERROR, this) << "Received STUN packet with invalid type ("
|
|
<< stun_msg->type() << ") from "
|
|
<< addr.ToSensitiveString();
|
|
return true;
|
|
}
|
|
|
|
// Return the STUN message found.
|
|
*out_msg = stun_msg.release();
|
|
return true;
|
|
}
|
|
|
|
bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) {
|
|
int family = ip().family();
|
|
// We use single-stack sockets, so families must match.
|
|
if (addr.family() != family) {
|
|
return false;
|
|
}
|
|
// Link-local IPv6 ports can only connect to other link-local IPv6 ports.
|
|
if (family == AF_INET6 && (IPIsPrivate(ip()) != IPIsPrivate(addr.ipaddr()))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Port::ParseStunUsername(const StunMessage* stun_msg,
|
|
std::string* local_ufrag,
|
|
std::string* remote_ufrag,
|
|
IceProtocolType* remote_protocol_type) const {
|
|
// The packet must include a username that either begins or ends with our
|
|
// fragment. It should begin with our fragment if it is a request and it
|
|
// should end with our fragment if it is a response.
|
|
local_ufrag->clear();
|
|
remote_ufrag->clear();
|
|
const StunByteStringAttribute* username_attr =
|
|
stun_msg->GetByteString(STUN_ATTR_USERNAME);
|
|
if (username_attr == NULL)
|
|
return false;
|
|
|
|
const std::string username_attr_str = username_attr->GetString();
|
|
size_t colon_pos = username_attr_str.find(":");
|
|
// If we are in hybrid mode set the appropriate ice protocol type based on
|
|
// the username argument style.
|
|
if (IsHybridIce()) {
|
|
*remote_protocol_type = (colon_pos != std::string::npos) ?
|
|
ICEPROTO_RFC5245 : ICEPROTO_GOOGLE;
|
|
} else {
|
|
*remote_protocol_type = ice_protocol_;
|
|
}
|
|
if (*remote_protocol_type == ICEPROTO_RFC5245) {
|
|
if (colon_pos != std::string::npos) { // RFRAG:LFRAG
|
|
*local_ufrag = username_attr_str.substr(0, colon_pos);
|
|
*remote_ufrag = username_attr_str.substr(
|
|
colon_pos + 1, username_attr_str.size());
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (*remote_protocol_type == ICEPROTO_GOOGLE) {
|
|
int remote_frag_len = static_cast<int>(username_attr_str.size());
|
|
remote_frag_len -= static_cast<int>(username_fragment().size());
|
|
if (remote_frag_len < 0)
|
|
return false;
|
|
|
|
*local_ufrag = username_attr_str.substr(0, username_fragment().size());
|
|
*remote_ufrag = username_attr_str.substr(
|
|
username_fragment().size(), username_attr_str.size());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Port::MaybeIceRoleConflict(
|
|
const rtc::SocketAddress& addr, IceMessage* stun_msg,
|
|
const std::string& remote_ufrag) {
|
|
// Validate ICE_CONTROLLING or ICE_CONTROLLED attributes.
|
|
bool ret = true;
|
|
IceRole remote_ice_role = ICEROLE_UNKNOWN;
|
|
uint64 remote_tiebreaker = 0;
|
|
const StunUInt64Attribute* stun_attr =
|
|
stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING);
|
|
if (stun_attr) {
|
|
remote_ice_role = ICEROLE_CONTROLLING;
|
|
remote_tiebreaker = stun_attr->value();
|
|
}
|
|
|
|
// If |remote_ufrag| is same as port local username fragment and
|
|
// tie breaker value received in the ping message matches port
|
|
// tiebreaker value this must be a loopback call.
|
|
// We will treat this as valid scenario.
|
|
if (remote_ice_role == ICEROLE_CONTROLLING &&
|
|
username_fragment() == remote_ufrag &&
|
|
remote_tiebreaker == IceTiebreaker()) {
|
|
return true;
|
|
}
|
|
|
|
stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED);
|
|
if (stun_attr) {
|
|
remote_ice_role = ICEROLE_CONTROLLED;
|
|
remote_tiebreaker = stun_attr->value();
|
|
}
|
|
|
|
switch (ice_role_) {
|
|
case ICEROLE_CONTROLLING:
|
|
if (ICEROLE_CONTROLLING == remote_ice_role) {
|
|
if (remote_tiebreaker >= tiebreaker_) {
|
|
SignalRoleConflict(this);
|
|
} else {
|
|
// Send Role Conflict (487) error response.
|
|
SendBindingErrorResponse(stun_msg, addr,
|
|
STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
|
|
ret = false;
|
|
}
|
|
}
|
|
break;
|
|
case ICEROLE_CONTROLLED:
|
|
if (ICEROLE_CONTROLLED == remote_ice_role) {
|
|
if (remote_tiebreaker < tiebreaker_) {
|
|
SignalRoleConflict(this);
|
|
} else {
|
|
// Send Role Conflict (487) error response.
|
|
SendBindingErrorResponse(stun_msg, addr,
|
|
STUN_ERROR_ROLE_CONFLICT, STUN_ERROR_REASON_ROLE_CONFLICT);
|
|
ret = false;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
ASSERT(false);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
void Port::CreateStunUsername(const std::string& remote_username,
|
|
std::string* stun_username_attr_str) const {
|
|
stun_username_attr_str->clear();
|
|
*stun_username_attr_str = remote_username;
|
|
if (IsStandardIce()) {
|
|
// Connectivity checks from L->R will have username RFRAG:LFRAG.
|
|
stun_username_attr_str->append(":");
|
|
}
|
|
stun_username_attr_str->append(username_fragment());
|
|
}
|
|
|
|
void Port::SendBindingResponse(StunMessage* request,
|
|
const rtc::SocketAddress& addr) {
|
|
ASSERT(request->type() == STUN_BINDING_REQUEST);
|
|
|
|
// Retrieve the username from the request.
|
|
const StunByteStringAttribute* username_attr =
|
|
request->GetByteString(STUN_ATTR_USERNAME);
|
|
ASSERT(username_attr != NULL);
|
|
if (username_attr == NULL) {
|
|
// No valid username, skip the response.
|
|
return;
|
|
}
|
|
|
|
// Fill in the response message.
|
|
StunMessage response;
|
|
response.SetType(STUN_BINDING_RESPONSE);
|
|
response.SetTransactionID(request->transaction_id());
|
|
const StunUInt32Attribute* retransmit_attr =
|
|
request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT);
|
|
if (retransmit_attr) {
|
|
// Inherit the incoming retransmit value in the response so the other side
|
|
// can see our view of lost pings.
|
|
response.AddAttribute(new StunUInt32Attribute(
|
|
STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value()));
|
|
|
|
if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) {
|
|
LOG_J(LS_INFO, this)
|
|
<< "Received a remote ping with high retransmit count: "
|
|
<< retransmit_attr->value();
|
|
}
|
|
}
|
|
|
|
// Only GICE messages have USERNAME and MAPPED-ADDRESS in the response.
|
|
// ICE messages use XOR-MAPPED-ADDRESS, and add MESSAGE-INTEGRITY.
|
|
if (IsStandardIce()) {
|
|
response.AddAttribute(
|
|
new StunXorAddressAttribute(STUN_ATTR_XOR_MAPPED_ADDRESS, addr));
|
|
response.AddMessageIntegrity(password_);
|
|
response.AddFingerprint();
|
|
} else if (IsGoogleIce()) {
|
|
response.AddAttribute(
|
|
new StunAddressAttribute(STUN_ATTR_MAPPED_ADDRESS, addr));
|
|
response.AddAttribute(new StunByteStringAttribute(
|
|
STUN_ATTR_USERNAME, username_attr->GetString()));
|
|
}
|
|
|
|
// Send the response message.
|
|
rtc::ByteBuffer buf;
|
|
response.Write(&buf);
|
|
rtc::PacketOptions options(DefaultDscpValue());
|
|
if (SendTo(buf.Data(), buf.Length(), addr, options, false) < 0) {
|
|
LOG_J(LS_ERROR, this) << "Failed to send STUN ping response to "
|
|
<< addr.ToSensitiveString();
|
|
}
|
|
|
|
// The fact that we received a successful request means that this connection
|
|
// (if one exists) should now be readable.
|
|
Connection* conn = GetConnection(addr);
|
|
ASSERT(conn != NULL);
|
|
if (conn)
|
|
conn->ReceivedPing();
|
|
}
|
|
|
|
void Port::SendBindingErrorResponse(StunMessage* request,
|
|
const rtc::SocketAddress& addr,
|
|
int error_code, const std::string& reason) {
|
|
ASSERT(request->type() == STUN_BINDING_REQUEST);
|
|
|
|
// Fill in the response message.
|
|
StunMessage response;
|
|
response.SetType(STUN_BINDING_ERROR_RESPONSE);
|
|
response.SetTransactionID(request->transaction_id());
|
|
|
|
// When doing GICE, we need to write out the error code incorrectly to
|
|
// maintain backwards compatiblility.
|
|
StunErrorCodeAttribute* error_attr = StunAttribute::CreateErrorCode();
|
|
if (IsStandardIce()) {
|
|
error_attr->SetCode(error_code);
|
|
} else if (IsGoogleIce()) {
|
|
error_attr->SetClass(error_code / 256);
|
|
error_attr->SetNumber(error_code % 256);
|
|
}
|
|
error_attr->SetReason(reason);
|
|
response.AddAttribute(error_attr);
|
|
|
|
if (IsStandardIce()) {
|
|
// Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY,
|
|
// because we don't have enough information to determine the shared secret.
|
|
if (error_code != STUN_ERROR_BAD_REQUEST &&
|
|
error_code != STUN_ERROR_UNAUTHORIZED)
|
|
response.AddMessageIntegrity(password_);
|
|
response.AddFingerprint();
|
|
} else if (IsGoogleIce()) {
|
|
// GICE responses include a username, if one exists.
|
|
const StunByteStringAttribute* username_attr =
|
|
request->GetByteString(STUN_ATTR_USERNAME);
|
|
if (username_attr)
|
|
response.AddAttribute(new StunByteStringAttribute(
|
|
STUN_ATTR_USERNAME, username_attr->GetString()));
|
|
}
|
|
|
|
// Send the response message.
|
|
rtc::ByteBuffer buf;
|
|
response.Write(&buf);
|
|
rtc::PacketOptions options(DefaultDscpValue());
|
|
SendTo(buf.Data(), buf.Length(), addr, options, false);
|
|
LOG_J(LS_INFO, this) << "Sending STUN binding error: reason=" << reason
|
|
<< " to " << addr.ToSensitiveString();
|
|
}
|
|
|
|
void Port::OnMessage(rtc::Message *pmsg) {
|
|
ASSERT(pmsg->message_id == MSG_CHECKTIMEOUT);
|
|
CheckTimeout();
|
|
}
|
|
|
|
std::string Port::ToString() const {
|
|
std::stringstream ss;
|
|
ss << "Port[" << content_name_ << ":" << component_
|
|
<< ":" << generation_ << ":" << type_
|
|
<< ":" << network_->ToString() << "]";
|
|
return ss.str();
|
|
}
|
|
|
|
void Port::EnablePortPackets() {
|
|
enable_port_packets_ = true;
|
|
}
|
|
|
|
void Port::OnConnectionDestroyed(Connection* conn) {
|
|
AddressMap::iterator iter =
|
|
connections_.find(conn->remote_candidate().address());
|
|
ASSERT(iter != connections_.end());
|
|
connections_.erase(iter);
|
|
|
|
// On the controlled side, ports time out, but only after all connections
|
|
// fail. Note: If a new connection is added after this message is posted,
|
|
// but it fails and is removed before kPortTimeoutDelay, then this message
|
|
// will still cause the Port to be destroyed.
|
|
if (ice_role_ == ICEROLE_CONTROLLED)
|
|
thread_->PostDelayed(timeout_delay_, this, MSG_CHECKTIMEOUT);
|
|
}
|
|
|
|
void Port::Destroy() {
|
|
ASSERT(connections_.empty());
|
|
LOG_J(LS_INFO, this) << "Port deleted";
|
|
SignalDestroyed(this);
|
|
delete this;
|
|
}
|
|
|
|
void Port::CheckTimeout() {
|
|
ASSERT(ice_role_ == ICEROLE_CONTROLLED);
|
|
// If this port has no connections, then there's no reason to keep it around.
|
|
// When the connections time out (both read and write), they will delete
|
|
// themselves, so if we have any connections, they are either readable or
|
|
// writable (or still connecting).
|
|
if (connections_.empty())
|
|
Destroy();
|
|
}
|
|
|
|
const std::string Port::username_fragment() const {
|
|
if (!IsStandardIce() &&
|
|
component_ == ICE_CANDIDATE_COMPONENT_RTCP) {
|
|
// In GICE mode, we should adjust username fragment for rtcp component.
|
|
return GetRtcpUfragFromRtpUfrag(ice_username_fragment_);
|
|
} else {
|
|
return ice_username_fragment_;
|
|
}
|
|
}
|
|
|
|
// A ConnectionRequest is a simple STUN ping used to determine writability.
|
|
class ConnectionRequest : public StunRequest {
|
|
public:
|
|
explicit ConnectionRequest(Connection* connection)
|
|
: StunRequest(new IceMessage()),
|
|
connection_(connection) {
|
|
}
|
|
|
|
virtual ~ConnectionRequest() {
|
|
}
|
|
|
|
virtual void Prepare(StunMessage* request) {
|
|
request->SetType(STUN_BINDING_REQUEST);
|
|
std::string username;
|
|
connection_->port()->CreateStunUsername(
|
|
connection_->remote_candidate().username(), &username);
|
|
request->AddAttribute(
|
|
new StunByteStringAttribute(STUN_ATTR_USERNAME, username));
|
|
|
|
// connection_ already holds this ping, so subtract one from count.
|
|
if (connection_->port()->send_retransmit_count_attribute()) {
|
|
request->AddAttribute(new StunUInt32Attribute(
|
|
STUN_ATTR_RETRANSMIT_COUNT,
|
|
static_cast<uint32>(
|
|
connection_->pings_since_last_response_.size() - 1)));
|
|
}
|
|
|
|
// Adding ICE-specific attributes to the STUN request message.
|
|
if (connection_->port()->IsStandardIce()) {
|
|
// Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role.
|
|
if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) {
|
|
request->AddAttribute(new StunUInt64Attribute(
|
|
STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker()));
|
|
// Since we are trying aggressive nomination, sending USE-CANDIDATE
|
|
// attribute in every ping.
|
|
// If we are dealing with a ice-lite end point, nomination flag
|
|
// in Connection will be set to false by default. Once the connection
|
|
// becomes "best connection", nomination flag will be turned on.
|
|
if (connection_->use_candidate_attr()) {
|
|
request->AddAttribute(new StunByteStringAttribute(
|
|
STUN_ATTR_USE_CANDIDATE));
|
|
}
|
|
} else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) {
|
|
request->AddAttribute(new StunUInt64Attribute(
|
|
STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker()));
|
|
} else {
|
|
ASSERT(false);
|
|
}
|
|
|
|
// Adding PRIORITY Attribute.
|
|
// Changing the type preference to Peer Reflexive and local preference
|
|
// and component id information is unchanged from the original priority.
|
|
// priority = (2^24)*(type preference) +
|
|
// (2^8)*(local preference) +
|
|
// (2^0)*(256 - component ID)
|
|
uint32 prflx_priority = ICE_TYPE_PREFERENCE_PRFLX << 24 |
|
|
(connection_->local_candidate().priority() & 0x00FFFFFF);
|
|
request->AddAttribute(
|
|
new StunUInt32Attribute(STUN_ATTR_PRIORITY, prflx_priority));
|
|
|
|
// Adding Message Integrity attribute.
|
|
request->AddMessageIntegrity(connection_->remote_candidate().password());
|
|
// Adding Fingerprint.
|
|
request->AddFingerprint();
|
|
}
|
|
}
|
|
|
|
virtual void OnResponse(StunMessage* response) {
|
|
connection_->OnConnectionRequestResponse(this, response);
|
|
}
|
|
|
|
virtual void OnErrorResponse(StunMessage* response) {
|
|
connection_->OnConnectionRequestErrorResponse(this, response);
|
|
}
|
|
|
|
virtual void OnTimeout() {
|
|
connection_->OnConnectionRequestTimeout(this);
|
|
}
|
|
|
|
virtual int GetNextDelay() {
|
|
// Each request is sent only once. After a single delay , the request will
|
|
// time out.
|
|
timeout_ = true;
|
|
return CONNECTION_RESPONSE_TIMEOUT;
|
|
}
|
|
|
|
private:
|
|
Connection* connection_;
|
|
};
|
|
|
|
//
|
|
// Connection
|
|
//
|
|
|
|
Connection::Connection(Port* port, size_t index,
|
|
const Candidate& remote_candidate)
|
|
: port_(port), local_candidate_index_(index),
|
|
remote_candidate_(remote_candidate), read_state_(STATE_READ_INIT),
|
|
write_state_(STATE_WRITE_INIT), connected_(true), pruned_(false),
|
|
use_candidate_attr_(false), remote_ice_mode_(ICEMODE_FULL),
|
|
requests_(port->thread()), rtt_(DEFAULT_RTT), last_ping_sent_(0),
|
|
last_ping_received_(0), last_data_received_(0),
|
|
last_ping_response_received_(0), reported_(false), state_(STATE_WAITING) {
|
|
// All of our connections start in WAITING state.
|
|
// TODO(mallinath) - Start connections from STATE_FROZEN.
|
|
// Wire up to send stun packets
|
|
requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket);
|
|
LOG_J(LS_INFO, this) << "Connection created";
|
|
}
|
|
|
|
Connection::~Connection() {
|
|
}
|
|
|
|
const Candidate& Connection::local_candidate() const {
|
|
ASSERT(local_candidate_index_ < port_->Candidates().size());
|
|
return port_->Candidates()[local_candidate_index_];
|
|
}
|
|
|
|
uint64 Connection::priority() const {
|
|
uint64 priority = 0;
|
|
// RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs
|
|
// Let G be the priority for the candidate provided by the controlling
|
|
// agent. Let D be the priority for the candidate provided by the
|
|
// controlled agent.
|
|
// pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0)
|
|
IceRole role = port_->GetIceRole();
|
|
if (role != ICEROLE_UNKNOWN) {
|
|
uint32 g = 0;
|
|
uint32 d = 0;
|
|
if (role == ICEROLE_CONTROLLING) {
|
|
g = local_candidate().priority();
|
|
d = remote_candidate_.priority();
|
|
} else {
|
|
g = remote_candidate_.priority();
|
|
d = local_candidate().priority();
|
|
}
|
|
priority = rtc::_min(g, d);
|
|
priority = priority << 32;
|
|
priority += 2 * rtc::_max(g, d) + (g > d ? 1 : 0);
|
|
}
|
|
return priority;
|
|
}
|
|
|
|
void Connection::set_read_state(ReadState value) {
|
|
ReadState old_value = read_state_;
|
|
read_state_ = value;
|
|
if (value != old_value) {
|
|
LOG_J(LS_VERBOSE, this) << "set_read_state";
|
|
SignalStateChange(this);
|
|
CheckTimeout();
|
|
}
|
|
}
|
|
|
|
void Connection::set_write_state(WriteState value) {
|
|
WriteState old_value = write_state_;
|
|
write_state_ = value;
|
|
if (value != old_value) {
|
|
LOG_J(LS_VERBOSE, this) << "set_write_state";
|
|
SignalStateChange(this);
|
|
CheckTimeout();
|
|
}
|
|
}
|
|
|
|
void Connection::set_state(State state) {
|
|
State old_state = state_;
|
|
state_ = state;
|
|
if (state != old_state) {
|
|
LOG_J(LS_VERBOSE, this) << "set_state";
|
|
}
|
|
}
|
|
|
|
void Connection::set_connected(bool value) {
|
|
bool old_value = connected_;
|
|
connected_ = value;
|
|
if (value != old_value) {
|
|
LOG_J(LS_VERBOSE, this) << "set_connected";
|
|
}
|
|
}
|
|
|
|
void Connection::set_use_candidate_attr(bool enable) {
|
|
use_candidate_attr_ = enable;
|
|
}
|
|
|
|
void Connection::OnSendStunPacket(const void* data, size_t size,
|
|
StunRequest* req) {
|
|
rtc::PacketOptions options(port_->DefaultDscpValue());
|
|
if (port_->SendTo(data, size, remote_candidate_.address(),
|
|
options, false) < 0) {
|
|
LOG_J(LS_WARNING, this) << "Failed to send STUN ping " << req->id();
|
|
}
|
|
}
|
|
|
|
void Connection::OnReadPacket(
|
|
const char* data, size_t size, const rtc::PacketTime& packet_time) {
|
|
rtc::scoped_ptr<IceMessage> msg;
|
|
std::string remote_ufrag;
|
|
const rtc::SocketAddress& addr(remote_candidate_.address());
|
|
if (!port_->GetStunMessage(data, size, addr, msg.accept(), &remote_ufrag)) {
|
|
// The packet did not parse as a valid STUN message
|
|
|
|
// If this connection is readable, then pass along the packet.
|
|
if (read_state_ == STATE_READABLE) {
|
|
// readable means data from this address is acceptable
|
|
// Send it on!
|
|
|
|
last_data_received_ = rtc::Time();
|
|
recv_rate_tracker_.Update(size);
|
|
SignalReadPacket(this, data, size, packet_time);
|
|
|
|
// If timed out sending writability checks, start up again
|
|
if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) {
|
|
LOG(LS_WARNING) << "Received a data packet on a timed-out Connection. "
|
|
<< "Resetting state to STATE_WRITE_INIT.";
|
|
set_write_state(STATE_WRITE_INIT);
|
|
}
|
|
} else {
|
|
// Not readable means the remote address hasn't sent a valid
|
|
// binding request yet.
|
|
|
|
LOG_J(LS_WARNING, this)
|
|
<< "Received non-STUN packet from an unreadable connection.";
|
|
}
|
|
} else if (!msg) {
|
|
// The packet was STUN, but failed a check and was handled internally.
|
|
} else {
|
|
// The packet is STUN and passed the Port checks.
|
|
// Perform our own checks to ensure this packet is valid.
|
|
// If this is a STUN request, then update the readable bit and respond.
|
|
// If this is a STUN response, then update the writable bit.
|
|
switch (msg->type()) {
|
|
case STUN_BINDING_REQUEST:
|
|
if (remote_ufrag == remote_candidate_.username()) {
|
|
// Check for role conflicts.
|
|
if (port_->IsStandardIce() &&
|
|
!port_->MaybeIceRoleConflict(addr, msg.get(), remote_ufrag)) {
|
|
// Received conflicting role from the peer.
|
|
LOG(LS_INFO) << "Received conflicting role from the peer.";
|
|
return;
|
|
}
|
|
|
|
// Incoming, validated stun request from remote peer.
|
|
// This call will also set the connection readable.
|
|
port_->SendBindingResponse(msg.get(), addr);
|
|
|
|
// If timed out sending writability checks, start up again
|
|
if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT))
|
|
set_write_state(STATE_WRITE_INIT);
|
|
|
|
if ((port_->IsStandardIce()) &&
|
|
(port_->GetIceRole() == ICEROLE_CONTROLLED)) {
|
|
const StunByteStringAttribute* use_candidate_attr =
|
|
msg->GetByteString(STUN_ATTR_USE_CANDIDATE);
|
|
if (use_candidate_attr)
|
|
SignalUseCandidate(this);
|
|
}
|
|
} else {
|
|
// The packet had the right local username, but the remote username
|
|
// was not the right one for the remote address.
|
|
LOG_J(LS_ERROR, this)
|
|
<< "Received STUN request with bad remote username "
|
|
<< remote_ufrag;
|
|
port_->SendBindingErrorResponse(msg.get(), addr,
|
|
STUN_ERROR_UNAUTHORIZED,
|
|
STUN_ERROR_REASON_UNAUTHORIZED);
|
|
|
|
}
|
|
break;
|
|
|
|
// Response from remote peer. Does it match request sent?
|
|
// This doesn't just check, it makes callbacks if transaction
|
|
// id's match.
|
|
case STUN_BINDING_RESPONSE:
|
|
case STUN_BINDING_ERROR_RESPONSE:
|
|
if (port_->IsGoogleIce() ||
|
|
msg->ValidateMessageIntegrity(
|
|
data, size, remote_candidate().password())) {
|
|
requests_.CheckResponse(msg.get());
|
|
}
|
|
// Otherwise silently discard the response message.
|
|
break;
|
|
|
|
// Remote end point sent an STUN indication instead of regular
|
|
// binding request. In this case |last_ping_received_| will be updated.
|
|
// Otherwise we can mark connection to read timeout. No response will be
|
|
// sent in this scenario.
|
|
case STUN_BINDING_INDICATION:
|
|
if (port_->IsStandardIce() && read_state_ == STATE_READABLE) {
|
|
ReceivedPing();
|
|
} else {
|
|
LOG_J(LS_WARNING, this) << "Received STUN binding indication "
|
|
<< "from an unreadable connection.";
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ASSERT(false);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Connection::OnReadyToSend() {
|
|
if (write_state_ == STATE_WRITABLE) {
|
|
SignalReadyToSend(this);
|
|
}
|
|
}
|
|
|
|
void Connection::Prune() {
|
|
if (!pruned_) {
|
|
LOG_J(LS_VERBOSE, this) << "Connection pruned";
|
|
pruned_ = true;
|
|
requests_.Clear();
|
|
set_write_state(STATE_WRITE_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
void Connection::Destroy() {
|
|
LOG_J(LS_VERBOSE, this) << "Connection destroyed";
|
|
set_read_state(STATE_READ_TIMEOUT);
|
|
set_write_state(STATE_WRITE_TIMEOUT);
|
|
}
|
|
|
|
void Connection::UpdateState(uint32 now) {
|
|
uint32 rtt = ConservativeRTTEstimate(rtt_);
|
|
|
|
std::string pings;
|
|
for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
|
|
char buf[32];
|
|
rtc::sprintfn(buf, sizeof(buf), "%u",
|
|
pings_since_last_response_[i]);
|
|
pings.append(buf).append(" ");
|
|
}
|
|
LOG_J(LS_VERBOSE, this) << "UpdateState(): pings_since_last_response_=" <<
|
|
pings << ", rtt=" << rtt << ", now=" << now;
|
|
|
|
// Check the readable state.
|
|
//
|
|
// Since we don't know how many pings the other side has attempted, the best
|
|
// test we can do is a simple window.
|
|
// If other side has not sent ping after connection has become readable, use
|
|
// |last_data_received_| as the indication.
|
|
// If remote endpoint is doing RFC 5245, it's not required to send ping
|
|
// after connection is established. If this connection is serving a data
|
|
// channel, it may not be in a position to send media continuously. Do not
|
|
// mark connection timeout if it's in RFC5245 mode.
|
|
// Below check will be performed with end point if it's doing google-ice.
|
|
if (port_->IsGoogleIce() && (read_state_ == STATE_READABLE) &&
|
|
(last_ping_received_ + CONNECTION_READ_TIMEOUT <= now) &&
|
|
(last_data_received_ + CONNECTION_READ_TIMEOUT <= now)) {
|
|
LOG_J(LS_INFO, this) << "Unreadable after "
|
|
<< now - last_ping_received_
|
|
<< " ms without a ping,"
|
|
<< " ms since last received response="
|
|
<< now - last_ping_response_received_
|
|
<< " ms since last received data="
|
|
<< now - last_data_received_
|
|
<< " rtt=" << rtt;
|
|
set_read_state(STATE_READ_TIMEOUT);
|
|
}
|
|
|
|
// Check the writable state. (The order of these checks is important.)
|
|
//
|
|
// Before becoming unwritable, we allow for a fixed number of pings to fail
|
|
// (i.e., receive no response). We also have to give the response time to
|
|
// get back, so we include a conservative estimate of this.
|
|
//
|
|
// Before timing out writability, we give a fixed amount of time. This is to
|
|
// allow for changes in network conditions.
|
|
|
|
if ((write_state_ == STATE_WRITABLE) &&
|
|
TooManyFailures(pings_since_last_response_,
|
|
CONNECTION_WRITE_CONNECT_FAILURES,
|
|
rtt,
|
|
now) &&
|
|
TooLongWithoutResponse(pings_since_last_response_,
|
|
CONNECTION_WRITE_CONNECT_TIMEOUT,
|
|
now)) {
|
|
uint32 max_pings = CONNECTION_WRITE_CONNECT_FAILURES;
|
|
LOG_J(LS_INFO, this) << "Unwritable after " << max_pings
|
|
<< " ping failures and "
|
|
<< now - pings_since_last_response_[0]
|
|
<< " ms without a response,"
|
|
<< " ms since last received ping="
|
|
<< now - last_ping_received_
|
|
<< " ms since last received data="
|
|
<< now - last_data_received_
|
|
<< " rtt=" << rtt;
|
|
set_write_state(STATE_WRITE_UNRELIABLE);
|
|
}
|
|
|
|
if ((write_state_ == STATE_WRITE_UNRELIABLE ||
|
|
write_state_ == STATE_WRITE_INIT) &&
|
|
TooLongWithoutResponse(pings_since_last_response_,
|
|
CONNECTION_WRITE_TIMEOUT,
|
|
now)) {
|
|
LOG_J(LS_INFO, this) << "Timed out after "
|
|
<< now - pings_since_last_response_[0]
|
|
<< " ms without a response, rtt=" << rtt;
|
|
set_write_state(STATE_WRITE_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
void Connection::Ping(uint32 now) {
|
|
ASSERT(connected_);
|
|
last_ping_sent_ = now;
|
|
pings_since_last_response_.push_back(now);
|
|
ConnectionRequest *req = new ConnectionRequest(this);
|
|
LOG_J(LS_VERBOSE, this) << "Sending STUN ping " << req->id() << " at " << now;
|
|
requests_.Send(req);
|
|
state_ = STATE_INPROGRESS;
|
|
}
|
|
|
|
void Connection::ReceivedPing() {
|
|
last_ping_received_ = rtc::Time();
|
|
set_read_state(STATE_READABLE);
|
|
}
|
|
|
|
std::string Connection::ToString() const {
|
|
const char CONNECT_STATE_ABBREV[2] = {
|
|
'-', // not connected (false)
|
|
'C', // connected (true)
|
|
};
|
|
const char READ_STATE_ABBREV[3] = {
|
|
'-', // STATE_READ_INIT
|
|
'R', // STATE_READABLE
|
|
'x', // STATE_READ_TIMEOUT
|
|
};
|
|
const char WRITE_STATE_ABBREV[4] = {
|
|
'W', // STATE_WRITABLE
|
|
'w', // STATE_WRITE_UNRELIABLE
|
|
'-', // STATE_WRITE_INIT
|
|
'x', // STATE_WRITE_TIMEOUT
|
|
};
|
|
const std::string ICESTATE[4] = {
|
|
"W", // STATE_WAITING
|
|
"I", // STATE_INPROGRESS
|
|
"S", // STATE_SUCCEEDED
|
|
"F" // STATE_FAILED
|
|
};
|
|
const Candidate& local = local_candidate();
|
|
const Candidate& remote = remote_candidate();
|
|
std::stringstream ss;
|
|
ss << "Conn[" << port_->content_name()
|
|
<< ":" << local.id() << ":" << local.component()
|
|
<< ":" << local.generation()
|
|
<< ":" << local.type() << ":" << local.protocol()
|
|
<< ":" << local.address().ToSensitiveString()
|
|
<< "->" << remote.id() << ":" << remote.component()
|
|
<< ":" << remote.priority()
|
|
<< ":" << remote.type() << ":"
|
|
<< remote.protocol() << ":" << remote.address().ToSensitiveString() << "|"
|
|
<< CONNECT_STATE_ABBREV[connected()]
|
|
<< READ_STATE_ABBREV[read_state()]
|
|
<< WRITE_STATE_ABBREV[write_state()]
|
|
<< ICESTATE[state()] << "|"
|
|
<< priority() << "|";
|
|
if (rtt_ < DEFAULT_RTT) {
|
|
ss << rtt_ << "]";
|
|
} else {
|
|
ss << "-]";
|
|
}
|
|
return ss.str();
|
|
}
|
|
|
|
std::string Connection::ToSensitiveString() const {
|
|
return ToString();
|
|
}
|
|
|
|
void Connection::OnConnectionRequestResponse(ConnectionRequest* request,
|
|
StunMessage* response) {
|
|
// We've already validated that this is a STUN binding response with
|
|
// the correct local and remote username for this connection.
|
|
// So if we're not already, become writable. We may be bringing a pruned
|
|
// connection back to life, but if we don't really want it, we can always
|
|
// prune it again.
|
|
uint32 rtt = request->Elapsed();
|
|
set_write_state(STATE_WRITABLE);
|
|
set_state(STATE_SUCCEEDED);
|
|
|
|
if (remote_ice_mode_ == ICEMODE_LITE) {
|
|
// A ice-lite end point never initiates ping requests. This will allow
|
|
// us to move to STATE_READABLE.
|
|
ReceivedPing();
|
|
}
|
|
|
|
std::string pings;
|
|
for (size_t i = 0; i < pings_since_last_response_.size(); ++i) {
|
|
char buf[32];
|
|
rtc::sprintfn(buf, sizeof(buf), "%u",
|
|
pings_since_last_response_[i]);
|
|
pings.append(buf).append(" ");
|
|
}
|
|
|
|
rtc::LoggingSeverity level =
|
|
(pings_since_last_response_.size() > CONNECTION_WRITE_CONNECT_FAILURES) ?
|
|
rtc::LS_INFO : rtc::LS_VERBOSE;
|
|
|
|
LOG_JV(level, this) << "Received STUN ping response " << request->id()
|
|
<< ", pings_since_last_response_=" << pings
|
|
<< ", rtt=" << rtt;
|
|
|
|
pings_since_last_response_.clear();
|
|
last_ping_response_received_ = rtc::Time();
|
|
rtt_ = (RTT_RATIO * rtt_ + rtt) / (RTT_RATIO + 1);
|
|
|
|
// Peer reflexive candidate is only for RFC 5245 ICE.
|
|
if (port_->IsStandardIce()) {
|
|
MaybeAddPrflxCandidate(request, response);
|
|
}
|
|
}
|
|
|
|
void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request,
|
|
StunMessage* response) {
|
|
const StunErrorCodeAttribute* error_attr = response->GetErrorCode();
|
|
int error_code = STUN_ERROR_GLOBAL_FAILURE;
|
|
if (error_attr) {
|
|
if (port_->IsGoogleIce()) {
|
|
// When doing GICE, the error code is written out incorrectly, so we need
|
|
// to unmunge it here.
|
|
error_code = error_attr->eclass() * 256 + error_attr->number();
|
|
} else {
|
|
error_code = error_attr->code();
|
|
}
|
|
}
|
|
|
|
if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE ||
|
|
error_code == STUN_ERROR_SERVER_ERROR ||
|
|
error_code == STUN_ERROR_UNAUTHORIZED) {
|
|
// Recoverable error, retry
|
|
} else if (error_code == STUN_ERROR_STALE_CREDENTIALS) {
|
|
// Race failure, retry
|
|
} else if (error_code == STUN_ERROR_ROLE_CONFLICT) {
|
|
HandleRoleConflictFromPeer();
|
|
} else {
|
|
// This is not a valid connection.
|
|
LOG_J(LS_ERROR, this) << "Received STUN error response, code="
|
|
<< error_code << "; killing connection";
|
|
set_state(STATE_FAILED);
|
|
set_write_state(STATE_WRITE_TIMEOUT);
|
|
}
|
|
}
|
|
|
|
void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) {
|
|
// Log at LS_INFO if we miss a ping on a writable connection.
|
|
rtc::LoggingSeverity sev = (write_state_ == STATE_WRITABLE) ?
|
|
rtc::LS_INFO : rtc::LS_VERBOSE;
|
|
LOG_JV(sev, this) << "Timing-out STUN ping " << request->id()
|
|
<< " after " << request->Elapsed() << " ms";
|
|
}
|
|
|
|
void Connection::CheckTimeout() {
|
|
// If both read and write have timed out or read has never initialized, then
|
|
// this connection can contribute no more to p2p socket unless at some later
|
|
// date readability were to come back. However, we gave readability a long
|
|
// time to timeout, so at this point, it seems fair to get rid of this
|
|
// connection.
|
|
if ((read_state_ == STATE_READ_TIMEOUT ||
|
|
read_state_ == STATE_READ_INIT) &&
|
|
write_state_ == STATE_WRITE_TIMEOUT) {
|
|
port_->thread()->Post(this, MSG_DELETE);
|
|
}
|
|
}
|
|
|
|
void Connection::HandleRoleConflictFromPeer() {
|
|
port_->SignalRoleConflict(port_);
|
|
}
|
|
|
|
void Connection::OnMessage(rtc::Message *pmsg) {
|
|
ASSERT(pmsg->message_id == MSG_DELETE);
|
|
|
|
LOG_J(LS_INFO, this) << "Connection deleted due to read or write timeout";
|
|
SignalDestroyed(this);
|
|
delete this;
|
|
}
|
|
|
|
size_t Connection::recv_bytes_second() {
|
|
return recv_rate_tracker_.units_second();
|
|
}
|
|
|
|
size_t Connection::recv_total_bytes() {
|
|
return recv_rate_tracker_.total_units();
|
|
}
|
|
|
|
size_t Connection::sent_bytes_second() {
|
|
return send_rate_tracker_.units_second();
|
|
}
|
|
|
|
size_t Connection::sent_total_bytes() {
|
|
return send_rate_tracker_.total_units();
|
|
}
|
|
|
|
void Connection::MaybeAddPrflxCandidate(ConnectionRequest* request,
|
|
StunMessage* response) {
|
|
// RFC 5245
|
|
// The agent checks the mapped address from the STUN response. If the
|
|
// transport address does not match any of the local candidates that the
|
|
// agent knows about, the mapped address represents a new candidate -- a
|
|
// peer reflexive candidate.
|
|
const StunAddressAttribute* addr =
|
|
response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS);
|
|
if (!addr) {
|
|
LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
|
|
<< "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the "
|
|
<< "stun response message";
|
|
return;
|
|
}
|
|
|
|
bool known_addr = false;
|
|
for (size_t i = 0; i < port_->Candidates().size(); ++i) {
|
|
if (port_->Candidates()[i].address() == addr->GetAddress()) {
|
|
known_addr = true;
|
|
break;
|
|
}
|
|
}
|
|
if (known_addr) {
|
|
return;
|
|
}
|
|
|
|
// RFC 5245
|
|
// Its priority is set equal to the value of the PRIORITY attribute
|
|
// in the Binding request.
|
|
const StunUInt32Attribute* priority_attr =
|
|
request->msg()->GetUInt32(STUN_ATTR_PRIORITY);
|
|
if (!priority_attr) {
|
|
LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - "
|
|
<< "No STUN_ATTR_PRIORITY found in the "
|
|
<< "stun response message";
|
|
return;
|
|
}
|
|
const uint32 priority = priority_attr->value();
|
|
std::string id = rtc::CreateRandomString(8);
|
|
|
|
Candidate new_local_candidate;
|
|
new_local_candidate.set_id(id);
|
|
new_local_candidate.set_component(local_candidate().component());
|
|
new_local_candidate.set_type(PRFLX_PORT_TYPE);
|
|
new_local_candidate.set_protocol(local_candidate().protocol());
|
|
new_local_candidate.set_address(addr->GetAddress());
|
|
new_local_candidate.set_priority(priority);
|
|
new_local_candidate.set_username(local_candidate().username());
|
|
new_local_candidate.set_password(local_candidate().password());
|
|
new_local_candidate.set_network_name(local_candidate().network_name());
|
|
new_local_candidate.set_related_address(local_candidate().address());
|
|
new_local_candidate.set_foundation(
|
|
ComputeFoundation(PRFLX_PORT_TYPE, local_candidate().protocol(),
|
|
local_candidate().address()));
|
|
|
|
// Change the local candidate of this Connection to the new prflx candidate.
|
|
local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate);
|
|
|
|
// SignalStateChange to force a re-sort in P2PTransportChannel as this
|
|
// Connection's local candidate has changed.
|
|
SignalStateChange(this);
|
|
}
|
|
|
|
ProxyConnection::ProxyConnection(Port* port, size_t index,
|
|
const Candidate& candidate)
|
|
: Connection(port, index, candidate), error_(0) {
|
|
}
|
|
|
|
int ProxyConnection::Send(const void* data, size_t size,
|
|
const rtc::PacketOptions& options) {
|
|
if (write_state_ == STATE_WRITE_INIT || write_state_ == STATE_WRITE_TIMEOUT) {
|
|
error_ = EWOULDBLOCK;
|
|
return SOCKET_ERROR;
|
|
}
|
|
int sent = port_->SendTo(data, size, remote_candidate_.address(),
|
|
options, true);
|
|
if (sent <= 0) {
|
|
ASSERT(sent < 0);
|
|
error_ = port_->GetError();
|
|
} else {
|
|
send_rate_tracker_.Update(sent);
|
|
}
|
|
return sent;
|
|
}
|
|
|
|
} // namespace cricket
|